
Scheduling of Transactions Based on Extended
Scheduling Timed Petri Nets for SoC System-Level Test-

Case Generation

JinShan Yu， Tun Li，Yang Guo, QingPing Tan

School of Computer Science
National University of Defense Technology

Changsha 410073，P.R. China
yujinshan@yeah.net

Abstract. The effective scheduling of transactions has a great potential for SoC
functional verification. Petri nets have proven to be a promising technique for
solving scheduling problem. This paper aims at presenting a Petri-net based ap-
proach to the scheduling of transactions generated by a test-case generator.
Firstly, an extended scheduling timed Petri nets (ESTPN) model is given to
support transaction scheduling. Secondly, the short term of ‘scheduling of
transactions problem’is formulated by means of an ESTPN which can accom-
modate various scheduling policies. Finally, transactions scheduling schemes
and scheduling algorithm based on ESTPN are given and cases are studied.

1 Introduction

It is well known that verification today constitutes about 70% to 80% of the total de-
sign effort for SoC. Due to SoC’s increasing complexities, SoC and multi-chip system
developers can no longer rely on traditional simulation tools, testbenches, and meth-
odologies, but must augment new verification methodology. The industry has raise the
verification bar to the next level of abstraction -- transactions -- to ensure that design-
ers and verification engineers have the tools and methodologies that give them a
higher degree of confidence in their designs. Transaction-Based Verification (TBV) [1]
enables the use of transactions at each phase of the verification cycle. A transaction is
a single conceptual transfer of high-level data or control. It is defined by its begin time,
end time, and all the relevant information associated with the transaction. For example,
the relevant information (or attributes) of a Read transaction includes address and data.
Transactions can be as simple as a memory Read/Write or as complex as the transfer
of an entire structured data packet through a communication channel. The transaction
level is the level at which the intended functionality of the design is specified and,
therefore, the level at which the design can be verified in a most effective way. Rais-
ing the level of abstraction from signals to transactions facilitates the creation of tests,
the debugging process, and the measurement of functional coverage. Therefore, there

is a growing interest for the TBV methodology, techniques, tools and coverage analy-
sis method.

In this paper, we’re interested in how to schedule transactions based on extended
scheduling timed Petri net (ESTPN) to generate certain SoC system-level test cases.
The advantage of ESTPN-based method is: Firstly, Petri-net based approach can
graphically and concisely represent timing constraints of transactions in a single co-
herent formulation, which is very helpful for the designers to better understand and
formulate the transactions scheduling problems. Secondly, it can support sequent,
concurrent, weight-based, random, while scheduling schemes and these basic schedul-
ing schemes can be composed to generate the more complex schemes. Thirdly,
changes in the markings in an ESTPN model completely describe the evolution of
different transactions scheduling policies, and use timed Petri nets analysis tools to
check their schedulability.

The rest of the paper is organized as follows. Section 2 outlines the related works.
Section 3 presents the formal definition for our extended scheduling timed Petri net.
Section 4 presents how to map transactions scheduling problem into ESTPN. Section
5 lists the transaction scheduling schemes and scheduling algorithm. Cases studies are
given in section 6. Finally section 7 provides some concluding remarks.

2 Related Works

For SoC, characterized by the integration of several interacting components (‘cores’),
cores act in parallel - as a result, logic bugs in systems and SoCs are often related to
scenarios which are timing dependent. Some bugs in the design may only show up
when test occur in a specific ordering, are separated by a specific time interval, or are
executed concurrently. Flexible transaction scheduling is necessary to show up the
design bugs and reduce test cost. In [8], R. Emek proposed a transaction scheduling
language which has been implemented in the random test-case generator: X-Gen [9].
Harrod demonstrated the use of the AMBA-bus dedicated for test purpose [2].

Research has been going on in developing techniques for test scheduling, test ac-
cess mechanism (TAM) and testability analysis. Recently, there are three major meth-
ods to solve the test scheduling problem: 1) graph-based techniques [11-14], 2) bin-
packing methods [15-19], and 3) ILP/MILP approaches [20-25]. A survey of test
scheduling methods is presented in [10]. Moreover, much research has been done
simultaneously on Petri nets and scheduling problems during the last two decade. The
general discuss for schedule problem based on Petri net is shown in [26]. Using Petri
nets for the modeling of scheduling problems is not a new idea. However, according
to our knowledge, there is no report in literatures on transaction scheduling based on
Petri net. In this paper, we present a transaction scheduling method based on ex-
tended scheduling timed Petri nets (ESTPN’s) for SoC system-level test case genera-
tion. ESTPN’s are more like the graphical representation of the scheduling language
described in [8]. However, ESTPN’s are more systematic and visualizable because
they utilize existing concepts and techniques of Petri nets along with additional repre-
sentation of timing. In our model, time constraint is associated with place, transition

and places denote the scheduled transactions. Weight is associated with arc. Its formal
definition will be given in section 3.

3 Extended Scheduling Timed Petri Net

The scheduling timed Petri net (Scheduling-TPNs) was introduced in [27]. For the
works of schedulability analysis by Scheduling-TPNs, we refer the reader to Jeffreay
J.P. Tsai [27, Li Huifang [28] and Roux [29]. We extend Scheduling-TPNs by adding
weight to arc, and achieve extended timed constraint Petri net (ESTPN). Its formal
definition is:

Definition1. A (Scheduling) Extended Timed constraint Petri net is a tu-
ple ,),,,,,,,,(0MMPWDCFTPESTPN  , where:

1. },...,,{ 21 mpppP  is a finite set of places, denoting the scheduled transactions.
2 },...,,{ 21 ntttT  is a finite set of transitions such that PT . For transac-

tion scheduling, we include three kinds of transitions: basic transition, random transi-
tion, weight-based transition.

3.)()(PTTPF   is a set of arcs(flow relation).
4. C is a set of integer pairs,))(),((maxmin jj ptTptT where jpt is either a place or a

transition.
5. D is a set of transaction processing time)]([jdur pF , where jp is a place.

6. ,....}2,1{: FW is a weight function.
7. },2,1{: jpP is a priority function, assigning a priority to place jp .

9. M is a set of marking with vectorm ,)}(,),(,,{)(1 mjp pMpMM  , where

)(jpM denotes the numbers of token in place jp .

10. ,...}2,1{:0 PM is the initial marking.
Figure 1 shows an ESTPN sample. The state of an ESTPN is given by the distribu-

tion of tokens over the places and the corresponding timestamps. Firing a transition
results in a new state. This way we can generate a sequence of states nsss ,,, 10  ,
corresponding to a transaction scheduling sequence, such that 0s is the initial state
and 1is is the state reachable from is by firing a transition.

Fig. 1. An ESTPN Sample
Several basic definitions for ESTPN’s schuedulability analysis are:

Definition2. A transition it with a time pair, it is said to be enabled if each of its
input places has at least one token.

Definition3. A transition it , which is enabled at time 0T , is said to be firable dur-
ing the time period form)(0 max jtTCT  in which)()(minmax jj tTCtTC  .

A friable transition can fire but there is no guarantee that the firing will complete
successfully because the firing of a transition takes a period of time)(jdur tF . All the

tokens (denotes as sTK ') used for enabling a transition jt will be preserved during

the st j ' firing, and sTK ' can be used to enable other transitions if jt fails to com-

plete their firing. If all the transitions enabled by sTK ' fail to complete their firing,
sTK ' will be trapped in their corresponding places.

Definition4. A transition is said to be schedulable if it is friable and can complete
its firing successfully, i.e.,)())()((minmax jdurjj tFIREtTCtTC  .

Definition5. A marking nM is said to be reachable in sPN ' modeling if there is a
firing sequence,)(100 nnjj MttMMtM  .

The set of all possible markings reachable from 0M is denoted by)(0MR , and the
set of all possible firing sequences from)(0ML . With the considering of timing con-
straints, in ESTPN’s modeling, a marking nM is said to be reachable if and only if all
transitions in  are proved to be schedulable with respect to the timing constraints,
i.e. ,)())()((minmax jdurjj tFtTCtTC  .

4 Mapping transaction scheduling problems into ESTPN

To show that ESTPN can be used to model and analyse transaction scheduling prob-
lems, we provide a translation from transaction scheduling problem to a ‘suitable’
extended timed constraint Petri net. A transaction t is defined by its begin time, end
time, and all the relevant information. So we can identify three stages for transaction
t : (1) t is waiting to be processed, (2) t is being processed and (3) t has been proc-
essed. Basically, Figure 2 shows how we model a transaction t in terms of an ESTPN.
Transitions tst and tct represent the beginning and termination of transaction t re-
spectively. The place tsp , tbp and tcp correspond to the stages just mentioned.

Fig. 2. Mapping Transaction Scheduling into ESTPN

Now transaction scheduling problem can be easily formulated by the following
procedures:

Step1: For transaction itrans , each scheduling activity is represented by two transi-
tions tst , tct and one place tbp .

Step2: In terms of transaction partial order, all the transactions involved in a test
case are linked, and modeled as an EPTPN model.

Step3: All the scheduled transactions are interconnected, and a complete EPTPN
model for the scheduling of transactions is created.

5 Transaction Scheduling Schemes and Scheduling Algorithm

5.1 Transaction Scheduling Schemes

Base transaction scheduling schemes in ESTPN include sequent, concurrent, while,
weight-based, random. These scheduling schemes can be composed to generate more
complex scheduling sequence, named composed scheduling scheme.

(1) Sequent scheduling scheme
In sequent scheduling scheme, transaction 't is scheduled after transaction t has

been accomplished, i.e. bus write transaction preceding bus read transaction. It is
modeled by adding extra places. Figure 3 shows the situation where transaction t
precedes transaction 't , i.e. the execution of transaction t has to be completed before
the execution of transaction 't . Place  ',ttpre prevents 'tst form firing until tct

fires. Notes that places are used to model the stages of a transaction.

't
sp 't

st
't

bp
't

ct 't
cp

 ',ttpre

t

't

time

nTransactio

Fig. 3. Sequent Scheduling Scheme and Scheduling Timing
(2) Concurrent scheduling scheme
Concurrent scheduling scheme is modeled as shown in Figure 4. Transaction t and

't are scheduled concurrently.

'
t

sp 't
st

't
bp '

t
ct '

t
cp

t

't

time

nTransactio

't
st 't

ct

Fig. 4. Concurrent Scheduling Scheme and Scheduling Timing
(3) While scheduling scheme
In while scheduling scheme, transaction can be scheduled many times. While

scheduling scheme can be used to generate burst mode transactions. Figure 5 shows
this case.

t

nTransactio

t t

Fig. 5. While Scheduling Scheme and Scheduling Timing
(4) Weight-based scheduling scheme
In weight-based scheduling scheme, scheduler first evaluates the weights on output

arcs from weight transition, and schedules the transaction with greatest weight. Figure
6 shows this case.

sp t stt bpt cptct t

't
sp 't

st
't

bp 't
ct 't

cp
t

time

(a) Weight-based scheduling (w 1>w2) (b) Scheduling Timing

nTransactio

stt ctt

t

t'

W
1

w
2weight

Fig. 6. Weight-based Scheduling Scheme and Scheduling Timing
(5) Random scheduling scheme
In random scheduling scheme, random transition is used to randomly schedule one

transaction. Figure 7 shows this case.

'tsp 'tst
'tbp 'tct 'tcp t

time

nTransactio

or
't

time

nTransactio

'tst 'tct

Fig. 7. Random Scheduling Scheme and Scheduling timing
(6) Composed scheduling scheme
Above five basic scheduling schemes can be composed to generate more complex

scheduling scheme, named composed scheduling scheme.

5.2 Scheduling Algorithm

Based on extended scheduling timed Petri net model, we present the following trans-
actions scheduling algorithm:

Step1 Model transaction scheduling problem and the
imposed time constraints using ESTPN:

Step1.1 Model the transaction scheduling problem as a
Petri net based model.

Step1.2 Mapping the time constraints for the transac-

tions and conditions to the time pair)](),([maxmin jj ptTptT and
the time duration)]([jdur pF which are associated with the
places or transitions in the Petri nets based model. Then
prepare the ESTPN system model.

Step1.3 Determine the initial marking 0M and its ar-

rival time)(0MTArr .

Step2 Determine all friable transitions in marking kM

(if k=0, then 0MMk ) and find the number J of all fri-
able transitions. If the friable transition is the start
transition of one transaction and timing constraints is
met, scheduling transaction. If there are several such
transitions, concurrently schedule these transactions.

Step3 Determine the next mark
)}(,),(,,{)(1 mnextjnextpnext pMpMM 

according to the Petri net
transition rule, and go to step2.

Step 4 Stop.

6 Case studies

We have implemented this scheduling methodology in our SoC system-level func-
tional verification prototype system: SL-Gen. SL-Gen provides interfaces to time Petri
nets analysis tools (Remeo [30], TINA [31]) to simulate and analysis transaction
scheduling Petri nets model.

We illustrate our approach on a SoC design based on AMBA 2.0 Specification. We
create the following transactions for AMBA in SL-Gen: initialize_amba,
HCLK_generator, abort_HCLK_generator, reset, abort_reset,
AHB.initialize_ahb_master, AHB.write, AHB.abort_write, AHB.read, AHB.idle, and
AHB.busy. Figure 8 shows one AMBA transaction scheduling scenario modeled by
ESTPN.

Fig. 8. AMBA Transaction Scheduling Scenario
SL-Gen automatically generates the following system-level testbench:

Initial
integer burstLength;
$timeformat(-9,3,"ns",7);

// $Initialize
tb_initialize_amba;

// Apply transaction scheduling
HCLK_generator_looping;

reset;
repeat (2) // number of bursts to perform
begin

ahb_master0.idle;

writedata.randomize;
repeat (2)

begin
ahb_master0. busy (writedata.addr, 1,

writedata.size, writedata.burst);
ahb_master0. write (writedata.trans,

writedata.addr,
writedata.data, writedata.size, writedata.burst);

writedata.addr = writedata.addr + (1 << write-
data.size);

writedata.randomize_data;
end

end
Abort_HCLK_generator;
end

In SL-Gen, we can get the following simulation timing, shown in Figure 9.

clock

nTransactio

Fig. 9. AMBA Transaction Scheduling Timing

7 Conclusions

An extended scheduling timed Petri net (ESTPN) formulation for the scheduling of
transactions has been proposed. Changes in the markings in an ESTPN model com-
pletely describe the evolution of different transactions scheduling problem. The great
benefit of the Petri-net based approach is graphically and concisely represent timing
constraints of transactions in a single coherent formulation, which is very helpful for
the designers to better understand and formulate the transactions scheduling problems.
Moreover, it is understood from this research that the Petri-net based approach has a
great potential for solving a variety of complicated scheduling problems in transaction
based test case generation. In this regard, further research is also being undertaken to
accommodate complicated constraints such as resource, power, TAM and to imple-
ment the integrated design of the supervisory control and scheduling of transactions
for SoC functional verification.

8 ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China under Grant
No. 60403048 and No. 60573173 .

References

1. Cadence Berkeley Labs: The Transaction-Based Verification Methodology. Technical
Report # CDNL-TR-2000-0825, August 2000.

2. http://www.synopsys.com/

3. http://www.verisity.com/html/specmanelite.html

4. http://www.chronology.com/

5. http://www.testbuilder.net

6. http://www.systemc.org

7. Rohit Jindal and Kshitiz Jain: Verification of Transaction-Level SystemC models using
RTL Testbenches. In Proceedings of the First ACM and IEEE International Conference on
Formal Methods and Models for Co-Design (2003)199-204

8. R. Emek and Y. Naveh: Scheduling of Transactions for System-Level Test-Case Genera-
tion. In Proceedings of the Eighth IEEE International High-Level Design Validation and
Test Workshop (2003) 149-154

9. R.Emek, I.Jaeger, Y.Naveh, G.Bergman, G.Aloni, Y.Katz, M.Farkash, I.Dozoretz and
A.Goldin: X-Gen: A Random Test-Case Generator for Systems and SoCs. In Proceedings
of the Seventh IEEE International High-Level Design Validation and Test Workshop
(2002) 145–150

10. V. Iyengar, K. Chakrabarty, and E.J. Marinissen: Recent Advances in Test Planning for
Modular Testing of Core-Based SOCs. In Proceedings of the 11th Asian Test Symp (2002)
320-325

11. R. Chou, K. Saluja, and V. Agrawal: Scheduling Tests for VLSI Systems under Power
Constraints. IEEE Trans. VLSI, vol. 5, no. 2 (1997)175-185

12. P. Rosinger, B. Al-Hashimi, and N. Nicolici: Power Profile Manipulation: A New Ap-
proach for Reducing Test Application Time under Power Constraints. IEEE Trans. Com-
puter-Aided Design of Integrated Circuits and Systems, vol. 21, no. 10 (2002)1217-1225

13. D. Zhao and S. Upadhyaya: Adaptive Test Scheduling in SoC's by Dynamic Partitioning.
In Proceedings of the 17th IEEE Int’l Symp. Defect and Fault Tolerance in VLSI Systems
(2002) 334-342

14. D. Zhao and S. Upadhyaya: Power Constrained Test Scheduling with Dynamically Varied
TAM. In Proceedings of the 21st VLSI Test Symp (2003) 273-278

15. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, and R.E. Tarjan: Performance Bounds for
Level-Oriented Two-Dimensional Packing Algorithm. SIAM J. Computing, vol. 9 (1980)
809-826

16. Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y.Zaidan, and S.M.
Reddy: Resource Allocation and Test Scheduling for Concurrent Test of Core-Based SoC
Design. In Proceedings of IEEE Asian Test Symposium (ATS) (2001) 265-270

17. Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y.Zaidan, and S.M.
Reddy: On Concurrent Test of Core-Based SoC Design. J. Electronic Testing: Theory and
Applications, vol. 18(2002) 401–414

18. V. Iyengar, K. Chakrabarty, and E.J. Marinissen: Wrapper/TAM Co-Optimization, Con-
straint-Driven Test Scheduling, and Tester Data Volume Reduction for SOCs. Proc. 39th
Design Automation Conf (2002) 685-690

19. Y. Huang, S.M. Reddy, W.-T. Cheng, P. Reuter, N. Mukherjee,C.-C. Tsai, O. Samman,
and Y. Zaidan: Optimal Core Wrapper Width Selection and SOC Test Scheduling Based
on 3D Bin Packing Algorithm. In Proceedings of ITC 2002 (2002)74-82

20. Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, and S.M.Reddy: Static Pin Mapping
and SOC Test Scheduling for Cores with Multiple Test Sets. In Proceedings of the Fourth
International Symposium on Quality Electronic Design (2003) 99- 104

21. M. Nourani and C. Papachristou: An ILP Formulation to Optimize Test Access Mecha-
nism in SoC Testing. In Proceedings of ITC 2000 (2000)902-910

22. K. Chakrabarty: Test Scheduling for Core-Based Systems Using Mixed Integer Linear
Programming. IEEE Trans. Computer-Aided Design, vol. 19(2000)1163-1174

23. V. Iyengar and K. Chakrabarty: Precedence-Based, Preemptive, and Power-Constrained
Test Scheduling for System-on-a-Chip. In Proceedings of the 19th IEEE VLSI Test Sym-
posium (2001) 368-374

24. M. Nourani and J. Chin: Power-Time Trade-Off in Test Scheduling for SoCs. In Proceed-
ings of IEEE International Conference on Computer Design(ICCD ‘03)(2003) 548-553

25. James Chin and Mehrdad. Nourani: FITS: An Integrated ILP-Based Test Scheduling
Environment. IEEE Trans. on computer, VOL. 54, NO. 12(2005) 1598- 1613

26. W.M.P. van der Aalst: Petri net based scheduling. Computing Science Reports 95/23,
Eindhoven University of Technology, Eindhoven (1995)

27. Jeffrey J.P.Tsai, Steve Jennhwa Yang and Yao-Hsiung Chang: Timing Constraints Petri
Net and Their Application to Schedulability Analysis for Real-Time System Specification.
IEEE Transaction on Software Engineering, VOL. 21. NO. 1(1995)

28. Li Huifang and FAN Yushun: Schedulability analysis method for Timing Constraint Petri
Nets. Tsinghua Science and Technology, Vol.7, No.6(2002) 596-601

29. Roux, O.H., Deplanche, A.M: A t-time Petri net extension for real time-task scheduling
modeling. European Journal of Automation (JESA) 36 (2002) 973-987

30. 20. Guillaume Gardey, Didier Lime, Morgan Magnin, and Olivier (H.) Roux. Romeo: A
Tool for Analyzing Time Petri Nets. CAV 2005, LNCS 3576 (2005) 418-423

31. B. Berthomieu, P-O. Ribet, and F. Vernadat. The tool TINA: Construction of abstract state.
spaces for Petri nets and time Petri nets. International Journal of Production Research,
V42, N14(2004)

