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Abstract. The Rivest-Shamir-Adleman (RSA) algorithm is a very pop-
ular and secure public key cryptosystem, but its security relies on the
difficulty of factoring large integers. The General Number Field Sieve
(GNFS) algorithm is currently the best known method for factoring large
integers over 110 digits. Our previous work on the parallel GNFS algo-
rithm, which integrated the Montgomery’s block Lanczos method to solve
large and sparse linear systems over GF(2), is less reliable. In this paper,
we have successfully implemented and integrated the parallel General
Number Field Sieve (GNFS) algorithm with the new look-ahead block
Lanczos method for solving large and sparse linear systems generated
by the GNFS algorithm. This new look-ahead block Lanczos method is
based on the look-ahead technique, which is more reliable, avoiding the
break-down of the algorithm due to the domain of GF(2). The algorithm
can find more dependencies than Montgomery’s block Lanczos method
with less iterations. The detailed experimental results on a SUN cluster
will be presented in this paper as well.

1 Introduction

Today, the Rivest-Shamir-Adleman (RSA) algorithm [21] is the most popular
algorithm in public-key cryptosystem and it also has been widely used in real-
world applications such as: internet explorer, email systems, online banking, cell
phones etc. The security of this algorithm mainly relies on the difficulty of factor-
ing large integers. Many integer factorization algorithms have been developed.
Examples are: Trial division [22], Pollard’s p-1 algorithm [19], Lenstra Elliptic
Curve Factorization (ECM) [13], Quadratic Sieve (QS) [20] and General Num-
ber Field Sieve (GNFS) [1–3, 15] algorithm. GNFS is the best known method for
factoring large composite numbers over 110 digits so far.

Although the GNFS algorithm is the fastest algorithm so far, it still takes a
long time to factor large integers. In order to reduce the execution time, one nat-
ural solution is to use parallel computers. The GNFS algorithm contains several



steps. The most time consuming step is sieving which is used to generate enough
relations. This step is very suitable for parallelization because the relation gener-
ations are independent. Another step that could benefit from parallel processing
is the Montgomery’s block Lanczos method [16]. It is used to solve large and
sparse linear systems over GF(2) generated by the GNFS algorithm. The disad-
vantage of this block Lanczos method is its unreliability. The look-ahead block
Lanczos method proposed in [8] has overcome this disadvantage and improved
the overall reliability of block Lanczos algorithm. There are numerous references
available on the look-ahead block Lanczos method [6, 7, 9, 18], but none of those
methods can be applied to GF(2) field directly. The algorithm we are develop-
ing and implementing is very suitable for solving the generated large and sparse
linear systems over small finite fields such as GF(2). In this paper we have suc-
cessfully developed and implemented the look-ahead block Lanczos method, and
integrated together with the GNFS algorithm for integer factorization.

The rest of the paper is organized as follows: we first briefly describe the
original GNFS algorithm in section 2. Then we present two block Lanczos meth-
ods, namely Montgomery’s block Lanczos method [16] and look-ahead block
Lanczos method [8] in section 3 and 4 respectively. Section 5 shows the detailed
implementation and corresponding parallel performance results.

2 The GNFS Algorithm

The General Number Field Sieve (GNFS) algorithm [2, 3, 15] is derived from the
number fields sieve (NFS) algorithm, developed by Lenstra et al. [14]. It is the
fastest known algorithm for integer factorization. The idea of GNFS is from the
congruence of squares algorithm [12].

Suppose we want to factor an integer n where n has two prime factors p and
q. Let’s assume we have two integers s and r, such that s2 and r2 are perfect
squares and satisfy the constraint s2 ≡ r2(mod n). Since n = pq, the following
conditions must hold [2]:

pq|(s2-r2) ⇒pq|(s-r)(s+r)
⇒p|(s-r)(s+r) and q|(s-r)(s+r).

We know that, if c|ab and gcd(b,c) = 1, then c|a. So p, q, r and s must satisfy
p|(s-r) or p|(s+r) and q|(s-r) or q|(s+r). Based on this, it can be proved that
we can find factors of n by computing the greatest common divisor gcd(n,(s+r))
and gcd(n,(s-r)) with the possibility of 2/3 (see [2]).

Therefore, the essence of GNFS algorithm is based on the idea of factoring
n by computing the gcd(n, s+r) and gcd(n, s-r). There are six major steps [15]:

1. Selecting parameters: choose an integer m∈Z and a polynomial f which
satisfies f(m) ≡ 0 (mod n).

2. Defining three factor bases: rational factor base R, algebraic factor base A
and quadratic character base Q.



3. Sieving: generate enough pairs (a,b) (relations) to build a linear dependence.
4. Processing relations: filter out useful pairs (a,b) found from sieving.
5. Building up and solve a large and sparse linear system over GF(2).
6. Squaring root: use the results from the previous step to generate two perfect

squares, then factor n.

Based on the previous studies, the most time consuming step is step 3, sieving.
In our previous work [23, 24], we have successfully implemented the sieving in
parallel with very scalable performance. In this paper, we are focusing on another
time consuming part, namely solving the large and sparse linear systems over
GF(2) in parallel.

Table 1. The composite number n and the results after integer factorization

name number

tst10030 727563736353655223147641208603 =
743774339337499•978204944528897

F739 680564733841876926926749214863536422914 =
5704689200685129054721•59649589127497217

tst15045 799356282580692644127991443712991753990450969 =
32823111293257851893153•24353458617583497303673

Briggs51 556158012756522140970101270050308458769458529626977 =
1236405128000120870775846228354119184397•449818591141

tst20061 1241445153765162090376032461564730757085137334450817128010073 =
1127192007137697372923951166979•1101360855918052649813406915187

tst25076 3675041894739039405533259197211548846143110109152323761665377505538520830273 =
69119855780815625390997974542224894323•53169119831396634916152282437374262651

3 Montgomery’s Block Lanczos Method

Montgomery’s block Lanczos method was proposed by Montgomery in 1995 [16].
This block Lanczos method is a variant of the standard Lancozs method [10, 11].
Both Lanczos methods are used to solve large and sparse linear systems. In the
standard Lanczos method, suppose we have a symmetric matrix A∈Rn×n. Based
on the notations used in [16], the method can be described as follows:

w0 = b,

wi = Awi−1 −
i−1∑

j=0

wT
j A2wi−1

wT
j Awj

. (1)

The iteration will stop when wi=0. {w0, w1, . . . wi−1} are a basis of span{b,
Ab, A2b, . . .} with the properties:



∀0 ≤ i < m, wT
i Awi 6= 0, (2)

∀0 ≤ i < j < m, wT
i Awj = wT

j Awi = 0. (3)

The solution x can be computed as follows:

x =
m−1∑

j=0

wT
j b

wT
j Awj

wj . (4)

Furthermore the iteration of wi can be simplified as follows:

wi = Awi−1 − (Awi−1)T (Awi−1)
wT

i−1(Awi−1)
wi−1 − (Awi−2)T (Awi−1)

wT
i−2(Awi−2)

wi−2.

The total time for the Standard Lanczos method is O(dn2)+O(n2), d is the
average number of nonzero entries per column.

The Montgomery’s block Lanczos method is an extension of the Standard
Lanczos method applied over field GF(2). The major problem for working on
GF(2) is that inner products are very likely to become zero because of the binary
entries, then the algorithm breaks down accordingly, can not proceed easily. The
Montgomery’s block Lanczos method is the first attempt to avoid such break
down by using N vectors at a time (N is the length of the computer word).
Instead of using vectors for iteration which easily leads to inner products to
zero, we are using the subspace instead. First we generate the subspace:

Wi isA− invertible,

WT
j AWi = {0}, {i 6= j}, (5)
AW ⊆W, W = W0 +W1 + . . . +Wm−1.

Then we define x to be:

x =
m−1∑

j=0

Wj(WT
j AWj)−1WT

j b, (6)

where W is a basis of W. The iteration in the standard Lanczos method will
be changed to:

Wi = ViSi,

Vi+1 = AWiS
T
i + Vi −

i∑

j=0

WjCi+1,j (i ≥ 0),

Wi = 〈Wi〉, (7)



in which
Ci+1,j = (WT

j AWj)−1WT
j A(AWiS

T
i + Vi). (8)

This iteration will stop when V T
i AVi=0 where i = m. The iteration can also

be further simplified as follows:

Vi+1 = AViSiS
T
i + ViDi+1 + Vi−1Ei+1 + Vi−2Fi+1.

where Di+1, Ei+1, Fi+1 are:

Di+1 = IN −W inv
i (V T

i A2ViSiS
T
i + V T

i AVi),
Ei+1 = −W inv

i−1V T
i AViSiS

T
i ,

Fi+1 = −W inv
i−2(IN − V T

i−1AVi−1W
inv
i−1)(V

T
i−1A

2Vi−1Si−1S
T
i−1 + V T

i−1AVi−1)SiS
T
i .

Si is an N × Ni projection matrix (N is the length of computer word and Ni

< N ). The cost of the Montgomery’s block Lanczos method will be reduced to
O(n2)+O(dn2/N).

4 Look-ahead Block Lanczos Method

In this paper, the look-ahead block Lanczos method over small finite fields such
as GF(2) we are developing is mainly based on the method proposed in [8].
There are some advantages of such look-ahead block Lanczos method com-
pared with Montgomery’s block Lanczos method: first of all, this method is
bi-orthogonalizing, so the input matrix generated from GNFS does not need to
be symmetric. In order to apply Montgomery’s block Lanczos method, we need
to multiply the coefficient matrix A with AT . However over GF(2), the rank of
the product AT A is, in general, much less than that of A. Thus, when applied
to find elements of the nullspace of A, the Montgomery’s block Lanczos method
may find many spurious vectors. Secondly, also more importantly, it solves the
problem of break down we mentioned before, namely (Wi

T AWi={0}).
Due to the limited space, we only outline the algorithm in the paper. First

we choose v0 and u0 from Kn×N . Then we will compute v1, v2, · · · , vm−1 and
u1, u2, · · · , um−1. We try to achieve the following conditions:

– K(AT ,u0)=
⊕m−1

i=0 〈ui〉 and K(A,v0)=
⊕m−1

i=0 〈vi〉.
– Each subspace 〈ui〉 and 〈vi〉 is of dimension at most N.
– For all 0≤i<m, uT

i Avi is invertible.
– For all 0 ≤ i, j ≤ m with i 6= j, uT

i Avj = 0 and uT
j Avi = 0.

Then we can decompose the vector spaces 〈ui〉 and 〈vi〉. Define variables v̄i, ūi,
v̂i, ûi, v̌i

i, ǔi
i, σv

i and σu
i have the properties:

– v̂T
i Avi = 0.

– uT
i Av̂i = 0.

– ūT
i Av̄i is invertible.



and
ǔi

i := {ūi
i|ûi

i} = uiσ
u
i , (9)

v̌i
i := {v̄i

i |v̂i
i} = viσ

v
i , (10)

σv
i and σu

i are two invertible matrices in KN×N . This may be computed by
performing a Gauess-Jordan decomposition of the matrix uT

i Avi and using the
output to select the independent row and column vectors, which then correspond
to the columns of v̄i and ūi, respectively. The matrices σu

i and σv
i permute these

columns to the front and apply row and column dependencies, respectively, to
give ûi and v̂i. We define ǔi and v̌i to be the matrices representing this decom-
position: v̌i=viσ

v
i , ǔi=uiσ

u
i . Through this, then vi+1 and ui+1 can be computed

by:

vi+1 = Avi −
i∑

k=0

v̄k(ūT
k Av̄k)−1ūT

k A2vi, (11)

ui+1 = AT ui −
i∑

k=0

ūk(v̄T
k AT ūk)−1v̄T

k (AT )2ui. (12)

In computing ui+2 and vi+2 in next iteration, we have the following situations:

(ǔi−1|ǔi−1)T A(v̌i−1|v̌i|vi+1|Avi+1) =

( ri−1,i−1 uT
i−1A

2vi+1

rii si+1,i+2

0 ri,i+1 ri+1,i+2

)
(13)

Since ri−1,i−1 and ri,i are assumed invertible (modifying to operate in the case
where it is not invertible is straightforward), elimination steps to zero uT

i−1A
2vi+1

and si+1,i+2 are performed. For the cases of ri,i+1 has full rank or not, we cope
differently. We continue the same manner until all rows corresponding to ui

have an associated invertible minor. The iterative formula has been simplified
as follows:

ui+1 = AT ui −
i∑

k=0

u̇i
k((v̄i

k)T AT u̇i
k)−1(v̄i

k)T (AT )2ui, (14)

vi+1 = Avi −
i∑

k=0

v̇i
k((ūi

k)T Av̇i
k)−1(ūi

k)T A2vi. (15)

The elimination and decomposition steps presented above do not yield suf-
ficient orthogonality conditions to allow computation of a candidate system so-
lution easily. We would continue the elimination and decomposition until it has
a permuted block diagonal structure, in which the non-zero parts are as closely
clustered around the diagonal as possible. Please refer to [8] for details. Eventu-
ally, the solution x can be calculated by:

x =
m−1∑

i=0

v̇m
i ((ūm

i )T Av̇m
i )−1(ūm

i )T b. (16)



5 Parallel Implementation Details

As we mentioned before, the most time consuming part in GNFS is sieving. This
part has already been parallelized in our previous work [23, 24]. This paper is
build on top of the our previous parallel implementation. Our overall parallel
code is built on the sequential source GNFS code from Monico [15].

5.1 Hardware and programming environment

The whole implementation is built on two software packages, the sequential
GNFS code from Monico [15] (Written in ANSI C) and the sequential Look-
ahead block Lanczos code from Hovinen [8] (Written in C++). For parallel
implementation, MPICH1 (Message Passing Interface) [5] library is used, version
1.2.5.2. The GMP 4.x is also used [4] for precision arithmetic calculations. We
use GUN compiler to compile whole program and MPICH1 [17] for our MPI
library. The cluster we use is a Sun cluster from University of New Brunswick
Canada whose system configurations is:

– Model: Sun Microsystems V60.
– Architecture: x86 cluster.
– Processor count: 164.
– Master processor: 3 GB registered DDR-266 ECC SDRAM.
– Slave processor: 2 to 3 GB registered DDR-266 ECC SDRAM.

In the program, each slave processor only communicates with the master pro-
cessor. Figure 1 shows the flow chart of our parallel program.

6 Performance Evaluation

We have six test cases, each test case have a different size of n, all are listed in
Table 1.

The sieving time increases when the size of n increases. Table 2 shows the
average sieving time for each n with one processor. Table 3 shows the number
of processors we use for each test case. Figure 2 and 3 show the total execution
time for each test case in seconds.

The total sieve time for test case: tst100, F7, tst150, Briggs and tst200 are
presented in Figure 4. Figure 5 gives the total execution time, sieve time, speed-
ups and parallel efficiency with different processor numbers. Figure 6 gives the
speed-ups and parallel efficiency for each test case with different processor num-
bers.

Additionally, based on our comparisons on a few limited test cases, the
method can find more dependencies than Montgomery’s block Lanczos method
with less iterations. We will report the details in future publications.



Main Program

MPI_Init

Slave Slave Slave SlaveMaster

MPI_Finalize

Main Program

Fig. 1. Each processors do the sieving at the same time, and all the slave nodes send
the result back to master node

name number of sieve average sieve time(s)

tst10030 1 35.6

F739 1 28.8

tst15045 5 50.6

Briggs51 3 85.67

tst20061 7 560.6

tst25076 7 4757.91
Table 2. Average sieving time for each n

name number of slave processors

tst10030 1,2,4,8,16

F739 1,2,4,8,16

tst15045 1,2,4,8,16

Briggs51 1,2,4,8,16

tst20061 1,2,4,8,16

tst25076 1,2,4,8,16
Table 3. Number of processors for each test case
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Fig. 2. Execution time for tst100 and F7
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Fig. 3. Execution time for tst150, Briggs and tst200
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Fig. 4. Sieve time for tst100, F7, tst150, Briggs and tst200
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