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Abstract. Stepwise refinement in system-level design corresponds to re-
structuring an internal structure of a system while preserving functions
of the system. We are aiming to build the restructuring process based
on refactoring techniques. In this paper, we describe a restructuring pro-
cedure to obtain a concrete specification description from an abstract
one. Moreover, we describe some existing refactorings used in restruc-
turing steps and a new refactoring for system-level design. We designed
a simple internet-router as an example. As a result, we obtained a spec-
ification model defined in the SpecC methodology from an abstract one.
Moreover, our proposal shows that our research opens a new application
field of refactoring, refactoring can be applied sufficiently to system-level
design, and the refactoring can be the basis of stepwise refinement.

1 Introduction

System-level design methodology, which is aiming to derive interactively and
cooperatively a cycle-accurate hardware implementation and software imple-
mentation from an abstract specification where hardware and software are not
distinguished and concept of time is abstracted, obtains remarkable results to
improve design productivity of system-LSI/System-on-Chip. Some programming
languages, called system-level description languages, are proposed in order to
realize the design methodology. SystemC [1] and SpecC [2] have a concept of
object-orientation. As a methodology, the SpecC design methodology [2] based
on SpecC is well-defined and systematized.

Recently, not only languages but also design methodologies based on object-
orientation are being researched actively. When designers represent the first sys-
tem specification in object-oriented modeling languages such as UML, designers
must satisfy some description constraints of models defined in a methodology.

For example, a specification model in the SpecC methodology has some de-
scription constraints; such as (1) a series of related functions are grouped as a
behavior; (2) channels, ports, and global variables are used to connect behav-
iors; and (3) behaviors access to own ports to communicate each other. However,
in a modeling method in object-oriented design, a function is grouped by data



and procedures related to the data. Moreover, to separate a computation and a
communication by (2) and (3) is enabled after (1).

There are two ways to bridge the gaps between a specification model and a
model of object-oriented design; (a) representing a specification model in UML
directly, or (b) transforming a system specification in UML to a specification
model. In case of (a), designers must consider a structure of functions when
describing the first specification. In case of (b), it is necessary to establish a
concrete transformation procedure preserving the functions of the system.

Restructuring method of a system structure while preserving its functions
have been researched in program semantics and software engineering. Program
transformation and refactoring have been established.

We are aiming to systematize stepwise refinement steps based on refactoring
in order to realize (b). Preliminary result is shown in [3], it focused on obtaining a
concrete system description in SpecC from an abstract one in Java. In this paper,
we focus on the earlier phase than a creation phase of a specification model
in SpecC methodology. Moreover, we describe concrete procedures based on
refactoring in order to derive the specification model in SpecC from an executable
specification that is created from a system specification in UML.

The remainder of this paper is organized as follows. In section 2, we describe
system restructuring techniques, particularly the refactoring. In section 3, we
describe our restructure procedures and a new refactoring for system-level design.
In section 4, we describe an example design and its result. In section 5, we
introduce related works, and section 6 describes the conclusions.

2 System Restructuring Techniques

There are two methods to restructure a system description to another one by
rewriting the internal structure of the system, while preserving the external be-
havior/functions of the system, program transformation and refactoring. How-
ever, compilation and optimization in compiling are not included in the two
restructuring methods because the description form is preserved.

2.1 Program Transformation

Program transformation is based on logic and mathematic, and it is a theoretical
method that rewrites a program following transformation rules whose validity
are guaranteed strictly. Therefore, this method enables to restructure an internal
structure of a system preserving strictly its external behavior. Partial evaluation
and meta-programming might be included. This method is studied for program
customization, derivation, efficiency improvement, and so on. However, there are
few application experiences to a large/complex program because transformation
rules, procedures, and system specification are described as logical/mathematical
expressions.



1:void display(int t){
2: int i;
3: printHeader();
4: for(i=0;i<t;i++){
5: System.out.print(i);}}

(a) Original.

1:void display(int t){
2: printHeader();
3: multiDisp(t);}
4:void multiDisp(int t){
5: int i;
6: for(i=0;i<t;i++){
7: System.out.print(i);}}

(b) Method extracted.

Fig. 1. Example: Extract method.

2.2 Refactoring

High reusability is one of the most important advantages of object-oriented de-
sign. However, it is actually too difficult to draw it to its maximum from the
first design. Then, refactoring is systematized as a method that improves main-
tainability, readability, reusability, and modularity in later design phase by re-
structuring a system.

Refactoring is a collection of program rewriting rules for each situation and
purpose. The collection is systematized on the purposes of rewriting and pro-
gram structures. For example, Extract Class, Form Template Method, and Move
Method are refactoring names, and a program code of Extract Method in Java is
shown in Fig. 1. Extract Method is used to reduce repeat codes by aggregating
fragments of the code, and to improve modularity and readability by decompos-
ing too longer method. In Fig. 1(a), console output statements in for block (line
4–5) are extracted as a method multiDisp shown in Fig. 1(b), line 4–7. As a
result, readability of the method display, reusability of the method multiDisp,
and modularity of the whole system are improved. Details of other rewriting
rules cited later by its name are shown in reference [4].

Refactoring is a practical method, and a theoretical strictness is not guar-
anteed completely. Instead, it is easier than program transformation to apply
rewriting-rules to restructure a real-world system. For the above-mentioned rea-
sons, we adopt refactoring.

3 Outline of Proposed Methodology

A restructuring of system descriptions consists of four steps; (1) representing
a system specification, (2) generating an executable specification from (1), (3)
re-grouping, and (4) replacing behavior-method call to channel-method call and
adding channel-port. Fig. 2 shows changes of a system structure in proposal
method. In Fig. 2(c), it assumes that a grouping policy is shared-memory com-
munication. In Fig. 2, a rectangle is an object or a behavior, an oval is a method,
an arrow is a method call, a broken line is an access to a variable, and a black
rectangle is a port.
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Fig. 2. Outline of design flow.

3.1 Restructuring Flow

1. Specification Representation. Designers represent a system specification
in UML (Fig. 2(a)). At this abstract level, computation and communication are
not separated. Following the concept of object-oriented design, a grouping unit
is the collection of the data and the procedures related to the data.

2. Executable specification description. Designers describe an executable
specification in SpecC by relating an object and a behavior. All methods that
should be public are defined in interface referring class diagrams or sequence
diagrams. For example, the BehaviorZ implements m3 and m6. All behaviors can
communicate each other by method call. We call such public method “behavior-
method”. Behavior-methods are defined in interface, and we call such inter-
face “behavior-interface”. For example, in Fig. 3 shown later, the line 1–3 are
behavior-interface, and line 5–7 are behavior-method. The behavior Master can
access to behavior-method directly (line 14 in Fig. 3).

At this abstraction level, designers verify through simulation and test that
required functions are satisfied. After that, to simplify a latter restructuring, all
behaviors are applied Self Encapsulate Field. By this refactoring, all methods
that access to internal variables are limited to accessor (getter/setter method).
In Fig. 2(b), the method m4 and m5 are accessors.



1:interface SlaveIF{ //behavior-interface
2: int getArea(int height, int width);
3:};
4:behavior Slave() implements SlaveIF{
5: int getArea(int height, int width){ //behavior-method
6: return height * width;
7: }
8: void main(void){}
9:};

10:behavior Master() {
11: int height = 3, width = 5, area = 0;
12: Slave slave();
13: void main(void){
14: area = slave.getArea(height, width); // behavior-method call
15: }
16:};

Fig. 3. Before replace.

3. Re-grouping. Related functions are grouped by each start method of a
method call chain. A method called by other methods can belong to all behaviors
where a caller method belongs to, or can belong to a new created behavior. For
example in Fig. 2(b), the method m1, m6, m7 and m8 belong to BehaviorY, and the
method m2, m3 and m6 belong to BehaviorX. First, by applying Move Method to
those methods, they are moved to BehaviorX and/or BehavorY. Next, behavior-
interfaces are re-defined according to changes after applying Move Method. Fi-
nally, three groups, BehaviorX, BehaviorY and BehaviorZ are created.

4. Introduce Channel and Add Channel-port. Designers must replace
behavior-method call to channel-method call. “Channel-method” becomes public
by implementing interfaces, and we call a calling to it “channel-method call”.

First, designers classify behavior-method calls. For example in Fig. 2(c), they
are classified into two, m4 and m5. Second, designers check up sent/received data
by the method call, and define channel according to the data. Third, design-
ers rewrite a code calling a behavior-method to a channel-method call. After
that, designers remove an implements code. As a result, designers obtain an
executable specification shown in Fig. 2(d). Continuously, designers add ports
to behaviors, and rewrite a channel-method call to a channel-port access.

From the above restructuring, designers obtain a rewritten description shown
in Fig. 2(e). Channel definition, rewriting to channel-method call, and adding
channel-port are described in 3.2.

3.2 Replace Behavior-method call to Channel-method call

Here, we describe a new refactoring for system-level design, Replace Behavior-
method call to Channel-method call. In a specification model in SpecC methodol-
ogy, behaviors communicate data by using channels, ports, and global variables.
Moreover, it is necessary to specify the input/output of data.

To satisfy those description constraints, first, channels are defined according
to parameters, arguments and returned value. Next, designers replace behavior-



1:#define INVALID -99999
2:interface GetAreaIF{ //channel-interface
3: void reqSend(int height, int width);
4: void reqRecv(int *height, int *width);
5: void ackSend(int area);
6: void ackRecv(int *area);};
7:channel GetAreaCh() implements GetAreaIF{
8: int height=INVALID, width=INVALID, area=INVALID;
9: event req1, req2, ack1, ack2;

10: bool lock=false; event release; // for concurrent access control
11: void reqSend(int arg1, int arg2){ //channel-method
12: while(lock){wait(release);} lock=true; // for concurrent access control
13: height=arg1; width=arg2; notify(req1); wait(req2);}
14: void reqRecv(int *arg1, int *arg2){ //channel-method
15: while(height == INVALID){wait(req1);}
16: (*arg1)=height; (*arg2)=width;
17: notify(req2); height=INVALID; width=INVALID;}
18: void ackSend(int arg){ //channel-method
19: area=arg; notify(ack1); wait(ack2);}
20: void ackRecv(int *arg){ //channel-method
21: while(area==INVALID){wait(ack1);}
22: (*arg)=area; notify(ack2); area=INVALID;
23: lock=false; notify(release);}}; //for concurrent access control
24:behavior Slave(GetAreaIF getAreaCh){
25: int getArea(int height, int width){return height * width;}
26: void main(void){
27: int height = 0, width = 0, area = 0;
28: getAreaCh.reqRecv(&height, &width); //receive argument
29: area = getArea(height, width); //original processing
30: getAreaCh.ackSend(area);}}; //send result
31:behavior Master(GetAreaIF getAreaCh) {
32: int height=3, width=5, area=0;
33: void main(void){
34: getAreaCh.reqSend(height, width); //send argument
35: getAreaCh.ackRecv(&area);}}; //receive result

Fig. 4. After replace.

method call to channel-method call. The replacing procedures are described
below with Fig. 3, Fig. 4 and program code.

Designers subdivide a behavior-method call into four methods, send argu-
ment, receive argument, send result, and receive result (line 3–6 in Fig. 4 re-
spectively). Second, a new channel implementing them is defined (line 7–23 in
Fig. 4). Third, designers add a channel-port by applying Add Parameter to a
calling/called behavior (line 24 and 31 in Fig. 4). A code of behavior-method call
in the calling behavior (line 14 in Fig. 3) is rewritten to “send argument” and
“receive result” (line 34 and 35 in Fig. 4 respectively). Also, codes of “receive
arguments”, “original processing”, and “send result” are added to main method
(line 28–30 in Fig. 4 respectively). In case of Fig. 4, to realize exclusive access,
designers insert line 10, 12, and 23 in Fig. 4 to channels.

4 Example Design and Result

As an example design, we adopted internet-router. We designed three kinds of
router, “distance vector”, “link state”, and “path vector”. In addition, the speci-
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fication is limited to only basic functions because the purpose of this experiment
is not designing routers. In this paper, we explain the distance-vector router.

We used UML to represent the first specification with Pattern Weaver 1.0
[5], and SpecC languages to describe executable specifications with VisualSpec
3.5 [6]. To simplify, we prohibited dynamic instantiation, instance transference,
and recursion call.

4.1 Design Flow

1. Behavior of Router. From use case analysis, we obtained three basic func-
tions, exchanging route information, route exploration, and management of a
route table. Moreover, we defined three classes, Communication, Algorithm, and
Table. We described not only class diagram, usecase description, and usecase di-
agram but also sequence diagram, communication diagram, and so on. In this
paper, only class diagram and communication diagram are illustrated in Fig. 5
and 6 respectively.

The router behaves according to the below procedures, rcv1, rcv2, rcv3
and rcv4 in Fig. 6, when the router receives a route information. And the router
behaves according to the below procedures, snd1 and snd2 in Fig. 6, when the
router sends own route information to neighbors.

2. Executable Specification Description. We described an executable spec-
ification in SpecC according to the previous specification. By relating a class to a
behavior, we defined three behaviors, “Communication”, “Algorithm”, and “Ta-
ble”. The executable specification is illustrated in Fig. 7. Oval, rectangle, arrow,
and a broken line represent method, behavior, method-call, and an access to
variables respectively.

3.Re-grouping. Each start method, receive and send, and other methods
relating to the start method belong to two behaviors. These two behaviors,
Rreceive and Send, are created by dividing Communication. The internal vari-
able table in Table and accessors are left in Table. In addition, the internal
variable neighbors in Communication belongs to Send.
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The behavior Receive is created by applying Extract Class to the method
receive in Communication. After applying, only send and accessor are left
in Communication. To rename Communication to Send, Rename is applied to
the behavior Communication because the main function of Communication is
only to send route information. There are eight methods belong to the behavior
Receive and six methods belong to the behavior Send. To move those methods
to each behavior, Move Method is applied to each method. To rename Receive
to Algorithm, Rename is applied to the behavior Receive because the main
function of Receive is execution of routing algorithm.

As a result of the above restructuring, we obtained a re-grouped description
shown in Fig. 8.

4. Introduce Channel and Add Channel-port. In Fig. 8, there are two
behavior-method calls, getData and setData. Therefore, we defined eight channel-
methods and two channels according to the behavior-method by applying 3.2.
From these restructuring, we obtained the executable specification shown in Fig.
9. Next, we added channel-ports to behaviors Algorithm, Send, and Table by
applying 3.2. From these restructuring, we obtained an executable specification
which can satisfy description constraints of the specification (Fig. 10).
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4.2 Experimental Results and Discussions

It was confirmed that the specification model (Fig. 10) behaved just same as the
first executable specification (Fig. 7) by the simulation. Moreover, the bug was
not mixed by rewriting at all, and there was not returning to previous steps in
this experiment either.

The policy of grouping the relating function is various. For example, the
method getCost and other related methods can be grouped together as a be-
havior GetCost illustrated in Fig. 11 and Fig. 12. As a result, the behavior
Algorithm must wait until the behavior GetCost is released, and vice versa.
Designers can restructure a system description to various structures by using
refactoring, while considering the trade-off such as processing time.

5 Related Works

[7] and [8] use to describe a system specification in UML and SystemC. [7]
enables to generate SystemC codes from a system specification in UML using
UML-profile. However, designers need to consider the structure and connection
relation of function modules when describing a system specification. [8] also
generates SystemC codes from a system specification in UML using Rational
Rose RT tool. In this research, some descriptions in UML are limited to represent
connection and communication between modules. These two researches belong
to the approach (a) explained in section 1.

There are some researches applying MDA [9] to SoC design such as [10] and
[11]. However, it is difficult to confirm through simulation whether behaviors of
a system are correct or not. In our method, designers can trace and control any
refinement steps, and any anytime the specification is executable.

Program derivation of a systolic array from a mathematical specification [12]
is an application of program transformation to system-level design. This brings
the completely validated implementation formally because based on program
transformation. However, the application example to the real-world design is few



because same reason. In our method, it is easier than program transformation
to apply to a real-world design because our method based on refactoring.

6 Summary and Conclusions

In this paper, we described an application of existing refactoring to system-level
design, and proposed a new refactoring for system-level design. Additionally, we
described concrete refinement steps that refine an executable specification based
on refactoring. Designers can restructure a system specification in safely, because
the external behaviors (or functions) are preserved. Proposal restructuring steps
enable designers to describe a system specification at higher level.

The most important of future works is an automation of whole restructuring
flow. Some simple refactoring are automated in some integrated development en-
vironments (IDE). We aim to realize a design automation based on our proposal,
referring those tools.
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