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Abstract. This paper presents an efficient technique for code compression. In our 
work, a sequence of instructions that occurs repeatedly in an application will be 
compressed to reduce its code size. During compression, each instruction is first 
divided into the operation part and the register part, and then only the operation 
part is compressed. For reducing the run-time overhead, we propose an 
instruction prefetching mechanism to speed the decompression. Moreover, we 
devise some optimization techniques to improve the code size reduction and the 
performance, and show their impacts. The experimental results show that our 
work can achieve a code size reduction of 33% on average and a low overhead in 
the process of decompression at run time for these benchmarks. 

1 Introduction 

Many memories have been incorporated into embedded systems to execute 
application programs. In some embedded systems, the application programs are 
expected to completely fit in the memory of the chip. In other embedded systems such 
as portable devices, the code sizes of application programs must be as small as possible 
to reduce the cost and decrease the weight. However, the memory required by an 
application program is determined by the size of its data and instructions. Therefore, 
how to compress the code size of an application program to shrink the amount of 
memory required has become a crucial issue in embedded systems.  

In this paper, we address the code compression of an application program by 
compressing its repeated instruction sequences. Here, repeated instruction sequences 
represent the instruction sequences that occur more than once in an application. In our 
method, each instruction of an application is divided into the operation part and the 
register part. Then the operation part is profiled and compressed by reducing the 
number of its repeated sequences. This process will be applied to the newly operation 
part recursively until no further compressions can be performed. Note in above process 
the register part is not compressed. The compression information of operation part and 
register part is put into the instruction table and the register bank respectively. The 
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information about how to access the items in the instruction table and the register bank 
is systematically stored in the index table. During execution, the compressed program is 
decompressed instruction by instruction through accessing these tables. Previous work 
[8,10] showed that there is a tradeoff between the compression ratio and the 
performance. Thus, we propose an instruction prefetching mechanism to speed 
decompression and some optimization techniques to remedy this issue. Our work is 
performed on the basis of the ARM instructions and the experimental results show that 
our method is quite effective in achieving a high code size reduction and a low 
overhead in decompression.  

The remainder of this paper is organized as follows. Section 2 describes the related 
work. We first introduce the compression approach in Section 3 and then present the 
details of our decompression approach in Section 4. Section 5 shows our experimental 
results without optimization. In Section 6, we propose our optimization techniques and 
show their impacts. Finally, we conclude this paper briefly. 

2 Related Work 

Some researchers addressed this issue by using specific architectural support. ARM 
Thumb [1,2] provides a compressed 16-bit instruction set to reduce the code size, each 
of which can be translated to its corresponding 32-bit instruction with a hardware 
decompressor during execution. In addition, MIPS compresses the code in a similar 
way by also providing a shorter instruction set called MIPS16 [11]. IBM CodePack 
uses Huffman encoding [7] for their code compression, partitioning the code word into 
two parts and applying Huffman encoding to these two parts separately [9]. The code 
size reductions of these approaches range from 30% to 40%.  

Other researchers addressed this issue in terms of software. Evans and Fraser devised 
an approach for compressing a stack-machine bytecode and achieved a code size 
reduction of up to 29% [6]. Debray and Evans addressed this issue by proposing a 
profile-guided code compression on the basis of the 80-20 rule [4]. Bell et al. solved 
this problem by using a dictionary table, assigning each of the frequently occurring 
instructions to an index in the dictionary table [3]. Other works provided code 
compression by improving the dictionary method [12,13]. Ernst et al. applied a hybrid 
technique to address this issue, presenting two code compressors to handle transmission 
and memory bottlenecks independently [5]. Keith et al. compressed the code with 
compilation techniques, but the code size reduction was only 5% on average [10].  

3 Compression Approach 

In this section we first present the basic idea with an example and we then describe 
our prefetching mechanism.  

For ARM instructions, the register fields of bit 16 to bit 19, bit 12 to bit 15, and bit 0 
to bit 3 are used to indicate the register part; the remaining bits are the operation part. In 
our work, only the operation part is compressed and for simplicity, we use assembly 
codes to represent binary codes as examples. Our compression concept is shown in 



 
 

Figure 1. In Figure 1b, we first find that the instruction sequence in Figure 1a, two 
consecutive add instructions, is the one that occurs most frequently, so these two add 
instructions are compressed as “add, add”. The process is repeated to check whether 
other instruction sequences can be compressed. The sequence, the rsb followed by “add, 
add”, is compressed as the “rsb, add, add” instruction again and the final result is 
shown in Figure 1c. In contrast with Figure 1a, the length of the code shown in Figure 
1c is shorter. The whole process can be represented as the binary tree illustrated in 
Figure 1d.  

add r0, r8, r4
add r3, r0, r0
rsb r3, r0, r3
add r3, r3, r3
add r0, r0, r3
mul r1, r7, r10
add r2, r9, r11
add r5, r1, r1
add r6, r2, r2
rsb r5, r5, r5
add r6, r2, r6
add r5, r1, r5
add r6, r2, r6

add, add r0, r8, r4, r3, r0, r0
rsb r3, r0, r3
add, add r3, r3, r3, r0, r0, r3
mul r1, r7, r10
add, add r2, r9, r11, r5, r1, r1
add r6, r2, r2
rsb r5, r5, r5
add, add r6, r2, r6, r5, r1, r5
add r6, r2, r6

add, add r0, r8, r4, r3, r0, r0
rsb, add, add   r3, r0, r3, r3, r3, r3, r0, r0, r3
mul r1, r7, r10
add, add r2, r9, r11, r5, r1, r1
add r6, r2, r2
rsb, add, add   r5, r5, r5, r6, r2, r6, r5, r1, r5
add r6, r2, r6

    a.                     b.                                c. 

add add rsb add add mul add add add rsb add add add  
d. 

Figure 1. Motivating example 
The compressed code is stored in three parts: instruction table, register bank, and 

index table, as shown Figure 2.  
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Figure 2. Compression architecture 

In compression, each opcode in the operation part is represented as an index number 
and these opcodes and indices are put into the instruction table and the index table. The 
instruction table contains two parts, as shown in Figure 3. They can be distinguished 



 
 

from the T bit. The left part contains the opcodes of the instructions used in a program 
and the right part represents the combination information of the compressed 
instructions. The sources of compressed instructions may come from the opcodes of the 
left part, other compressed instructions, or a mixture of both. The Left and Right fields 
of the case T = 0 represent the sources in the normal case, and the prefetch field is used 
to optimize the decompression performance. The register operands are stored in the 
register bank. The entries of the index table point to the addresses of the opcode sources 
in the instruction table and the addresses of the register operands in the register bank. In 
decompression, we access the entries in the index table in order to fetch the opcodes 
and the registers. Thus we can compress a code and then easily decompress it 
instruction by instruction at run time. 

OpcodeT OpcodeT
  

RightLeftPrefetchT RightLeftPrefetchT
 

Figure 3. Format of instruction table when T=1 (left) and T=0 (right) 
Now we propose an prefetching mechanism in compression to speed the 

decompression. Consider the example shown in Figure 4. In Figure 4a, three accesses 
are required to fetch instruction “a” from the root. In this case, the internal nodes 
contained in the path are the decompression overheads. Our prefetching scheme keeps 
the index of the left-most subtree or a leaf (that will be executed first) by moving the 
leaf or the tree to the internal nodes in advance. Figure 4b is the tree after the 
instruction prefetching is applied to Figure 4a. In fact, Figure 4b can be further 
optimized to be Figure 4c by applying the prefetching scheme again. In this paper, the 
letters in black circles in the tree represent the instructions, while the letters in white 
circles mean the prefetching information that points to an instruction. In addition, we 
use a dashed line to indicate the target when the prefetching is applied to a tree, 
numbers to represent the indices in instruction table, dot nodes to indicate a tree is 
“don’t care”, and slash nodes to mean a tree including NULL is “don’t care”. 

a b c d e f g h d h

b c f g

a e
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c f g

b e

a

 
              a.                     b.                        c. 

Figure 4. Instruction prefetching scheme 
Consider the example shown in Figure 5. The operation part and the register part are 

first put in the instruction table and the register bank. Next the repeated instruction 
sequence “MOVI, SUB” has been compressed with index 6, and T bit is set to false. 
The T bit of index 1 is set true, and prefetch = 1, left = NULL, right = 4. The 
combination (1+4) is inserted into entry 6 in the instruction table. These steps will be 
applied repeatedly and 1+4, 1+5, 7+7, 6+8, 6+6, 1+2 is inserted sequentially. In 
prefetching, four cases must be handled to optimize the compression. First, the left 
subtree is a leaf, thus it will be prefetched. Second, the left is NULL and the right is a 
leaf, then the prefetching information is stored in the root. If the right is an internal 



 
 

node, the prefetching information must be kept for further executions. Third, the 
prefetch is a leaf, the prefetching information is not kept and the prefetch points to a 
tree. Finally, the prefetch is the same as the prefetch of left subtree since the 
information kept in prefetch is a left-most tree. In our approach, if a node and its 
prefetch are not leaves, then it is called a Redundant Node, abbreviated R-node. In this 
case, we are not able to acquire any leaf information during decompression. 

 
a.                                       b. 

Figure 5. Example for ARM instructions 
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Figure 6. Architecture of the Decompression System 

 

4 Decompression Approach 

In decompression, the prefetching is performed only in the root and the right subtree. 
We use the two decompressors synchronously shown in Figure 6 to reduce the 
decompression overhead. One decompresses the indices from the instruction table into 
buffer and the other decompresses the data from buffer into the CPU. Figure 7 shows 
an example of our decompression scheme. For decompressor 1, the index 9 is first 
acquired from the index table and its root is set to true. As the T bit of the index 9 is 
false, index 8 is pushed into the stack and the root of its right side is set to true. Then 
the index 4, to the left of index 9, is pushed into the stack and its root is set to false. 
Next, the prefetch of index 9, index 1, is put in the buffer and the root is set to true 
since the root of index 9 is true. Then the stack is not empty and the process will return 



 
 

to the beginning of this step and acquire an index from the stack. Now we acquire the 
index 4 and its T bit is true, thus it is put in the buffer and the root is set to true. The 
above steps will be repeated and the content of buffer will be (1,4,1,5,1,5). Now we use 
the above buffer to explain the action of decompressor 2. First, we acquire the item 
index = 1 from the buffer. Second, we can access the registers based on the program 
counter and combine them together into one item because the T bit of index = 1 is true. 
Then the new item is delivered to the CPU and the process is rpeated because the stack 
is still empty. These steps will be performed recursively and the instructions (movi, sub, 
movi, add, movi, add) will be delivered to the CPU in order. 
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Figure 7. Insertions of compressed instructions  

The overhead of decompression arises from R-nodes or when the buffer shown in 
Figure 6 is empty. For the first case, R-nodes will not exist in the subtrees indicated by 
prefetches. With the help of this architecture and the optimization schemes described in 
Section 5, our method can fetch an instruction in each access. For the second case, each 
index in the buffer is a prefetch or a leaf. Thus, we can fetch an instruction from 
decompressor2 whenever the buffer is not empty.  

5 Experimental Result  

The experiments are performed on the ARM simulator running the RedHat9.0 
operating system and compiled with a GNU compiler with default settings. The testing 
sets consist of SPEC2000, MediaBench, DSPstone benchmarks.  

5.1   Compression Ratio Evaluation 

The bars in Figure 8 show the compression ratio of four benchmarks calculated by the 
following equation. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

+×+×
32_

__)12_()__(
countsninstructio

sizetableninstructiocountsninstructiowidthcompressedninstructiocompressed  

The compression ratio ranges between 54% and 81%. With our experiences, the width is limited 
to 14 bits. In addition, the instruction savings of applications in SPEC2000 and 
MediaBench are around 30% and 36%, respectively. However, in DSPstone, the 



 
 

instruction saving is low because its applications are quite small. For MPEG4, the 
instruction saving is between 28% and 68%. In particular, the "bitstream" has the best 
result because there are many macros used in it. Consider ghostscript in MediaBench as 
an example, which is the largest program in all benchmarks. It has 304124 instructions 
and its compressed code only contains 5415 opcodes. Therefore, the width and the 
length of the index table are 13 bits and 189545, the width and the length of the 
instruction table are 40 bits and 8192, and the width and the length of the register bank 
are 12 bits and 304124. The compression ratio is (13 × 189545 + 40 × 8192 + 12 × 
304124) / 32 × 304124=0.66. 

5.2   Performance Evaluation 

The experiments are performed in the ARM simulator running on RedHat9.0 to count 
the cycles needed to decompress the compressed codes.  In the experiments, the sizes 
of buffer and the two stacks are limited to 16 slots. The curves in Figure 14 show the 
performance degradations. The ratio of performance degradation is calculated from the 
number of cycles during decompression to those executed in the normal cases. The 
range of the performance loss is below 25%. For DSPstone, the average performance 
levels are worse because the average heights of the compression trees in it are higher 
than those of other benchmarks. The average performance in Xvid is better except the 
bitstream. Its performance is bad because it use many macros, which increases the 
height of the tree. 

6 Optimizations 

In this section, we propose some optimizations to enhance our method in compression 
ratio and performance. They are described in the following and the results are shown in 
Figure 9 and Figure 10. 

6.1 Performance Enhancement 

There are some optimizations performed on the instruction table to improve the 
performance without increasing the size. First, in the first part of the instruction table (T 
= 1), the opcode is shorter than the length of entries. For a large application, it is very 
possible to utilize the remaining space of entries to occupy another opcode. In this way, 
a single leaf can contain two opcodes and we can fetch two instructions each time to 
improve the performance. Second, if the width of the left field and the prefetch field is 
longer than that of opcode, the left must be NULL, and the prefetch must be a leaf, we 
can put the opcode of prefetch in the left field and the prefetch field. We can use one bit 
to specify that the content is an index or an opcode. Therefore, the performance will be 
improved. The result is shown in Figure 9 with the line 'Opcode in prefetch and left'. 
Moreover, the case in Figure 10b can be further optimized to be that in Figure 10c.  Its 
performance can be improved by applying the above techniques to it. We can ensure 
that the prefetch will point to a leaf or a tree. In this case, as the left of a tree is NULL, 



 
 

the decompressor2 can deliver more than one instruction each fetch. The defect of this 
way might cause the increase of R-nodes and degrade the performance loss.  The 
curve 'Optimization on instruction table' in Figure 9 shows the performance after all 
methods described in this section are applied. 
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Fig. 8. Results of compression ratio and performance degradation 

If the width of the prefetch in the instruction table can be extended to contain an 
opcode, then the performance will be almost the same as that of the original program. 
This is because it is unnecessary to look up the prefetches. In addition, we still need one 
bit to specify that the content of the prefetch is an opcode or an index, but it will 
increase the size of instruction table. For example, in the case of application 'mesa' in 
the MediaBench, the size of the instruction table will be increased from 40KB to 47KB. 

In the experiment, we found that the number of R-nodes has a close relationship with 
the depth of a tree. Therefore, in the process of compressing an instruction sequence, 
we can check first if the depth of the new tree is higher to stop the merging. In this way, 
we can improve the performance by reducing the R-nodes. We limit the depth of the 
tree to 4 and show the performance result in Figure 9 and the compression result in 
Figure 10 with the line ‘Depth = 4’. 



 
 

6.2  Compression Optimization 
In our work, we use T-bit in the instruction table to tell whether the entry is an 

opcode or not. Indeed, we can use one register or one counter to specify that entries 
belong to which part instead of using the T-bit for each entry. Thus, the size of the 
instruction table can be smaller. The width of the first part of the instruction table is 
always shorter than that of the second part. Therefore, the instruction table can be split 
as two individual parts so that the size of the first part can be reduced greatly. The 
result is shown in Figure 10.   

6.3  Core Size Reduction    

To reduce the hardware area, we can use only one decompressor during compression, 
but it will lead to a performance penalty. The right axis in Figure 17 shows the results 
performed with using only one decompressor. 

In the experiment, the case that the buffer is empty occurs seldom. It means that the 
decompressor2 always decompress more instructions than those produced from the 
decompressor1. If the tree in the buffer contains more than one instruction, that is, there 
are not too many R-nodes in it, the size of the buffer can be reduced to optimize the 
memory required. The experimental results show that the performances are the same no 
matter the size of the buffer is 4, 8 or 16. Thus, the buffer may be not very large. 

 
Figure 9. Performance with optimizations 

7 Conclusions 

    In this paper, for an application, we introduce a code compression approach to 
effectively reduce its code size without causing a great performance loss. In 
compression, applications will be compressed as a binary tree. To speed the 
performance of decompression, we also propose an instruction prefetching mechanism 
and some optimization techniques for improving compression ratio and performance. 
The experimental results show that our work can achieve a code size reduction of 33% 



 
 

on average and a performance degradation of 3% measured by the number of 
instruction fetches.  

 
Figure 10. Compression ratio with optimizations 
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