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Abstract. The paper presents a new stochastic model for mesh-based
reconfigurable computing. Under the conditions of several statistical as-
sumptions, closed formulae of probability and mathematical expectation
are derived for each type of connections. Both the theoretical deduction
and simulation results are given to verify our approach. The elementary
research can be applied to implement and optimize the interconnect re-
source of mesh-based reconfigurable computing.
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1 Introduction

Reconfigurable computing is emerging as the new paradigm for satisfying the si-
multaneous demand for application performance and flexibility [8]. Thus, Many
applications have been mapped onto reconfigurable architectures [2,9,10,11,12].
These applications include object recognition, image filtering, fingerprint match-
ing, image compression, and stereo vision, and many applications have been
demonstrated to have superior performance on reconfigurable architectures com-
pared to other existing architectures [8].

A very attractive interconnection scheme is the mesh-connected computer be-
cause of its simplicity, regularity, and the fact that the interconnections occupy
only a fixed fraction of the area no matter how large the chip [3,6]. Mesh-based
reconfigurable computing (MBRC) is realized by a processing element (PE) ar-
ray, and the design of PE includes operators and interconnections. Although rich
interconnect resource can provide high flexible interconnect ability, it increases
the area and power of the array. Formerly, the interconnect space exploration of
reconfigurable computing is mostly accomplished by analyzing and comparing,
which is not precise enough [6]. In related research, a typical estimation for the
interconnections in gate arrays has been presented in [5], and following research
has worked out more precise results, which can estimate the channel width, the
routablity and the wire length [3, 7, 14]. Because the interconnections of MBRC
are different from those of gate array, the models for the latter one are not
suitable for the former one. In this paper, elementary research on interconnect
estimation of MBRC is presented.



The organization of this paper is as follows. In Section 2, we define the in-
terconnect resource. Section 3 provides an overview of the stochastic model and
proposes the main statistical assumptions. The task of estimating the proba-
bilities of interconnections and their mathematical expectations is the subject
of Section 4. The comparison of theoretical estimation and simulation results is
given in Section 5. Section 6 serves as the conclusion.

2 Interconnect Resource

The interconnect resource of mesh-based reconfigurable computing belongs to
PEs, and many PEs constitute a PE array as Fig. 1.

Fig. 1. Interconnect model of reconfigurable processing element array

In Fig. 1, the interconnect resource of a PE includes four borders of it, which
are denoted as U, D, L and R, and the types of connections are classified as
follows:

(1) Connections among PEs. “i” , “o”, “n” and “s” denote “input”, “out-
put”, “nearest neighbour” and “hop neighbour” respectively, in which “nearest
neighbour” means the connection can only be connected to the nearest PE with
the length of 1 unit (e.g. the connection length between PE(0, 0) and PE(0, 1)
is 1 unit), and “hop neighbour” means the connection can only be connected to
the PE which is at the same row or column with the length of w units.

(2) Connections in PEs. “f” and “c” denote “function connections” and
“channel connections”, in which the former ones mean the connections are con-
nected to the operators in PEs, serving as the inputs or outputs of the operators,
and the latter ones mean the connections are not connected to the operators, but
traverse from one border to another of a PE. Function connections and channel
connections are implemented by using multiplexors in PEs.



Fig. 2. Hop neighbour connections with w = 2

Fig. 3. Function connections and channel connections in a PE

3 Stochastic Model

It is assumed that the number of connections per PE can be drawn independently
from a Poisson distribution with parameter λ, where λ is defined as the quotient
of the number of connections in a circuit divided by the number of PEs in the
array [1]. Because each border of a PE is equivalent, the number of connections
per border of a PE can be drawn independently from a Poisson distribution with
parameter λ/4. It is further assumed that connection length L is independently
chosen according to a geometric distribution G(L) = (1−ε)εL−1, where 0 < ε < 1
[1].

Different from other networks, the connections of PEs are directional. Assume
x1 is a connection starting from PE(a, b) and ending at PE(u, v), our stochastic
model always chooses the path with the minimal Manhattan distance L = |u−
a| + |v − b|, and chooses hop neighbour connection if possible. Thus, there are
C
|u−a|
L (= C

|v−b|
L ) possible paths from PE(a, b) to PE(u, v). When PE(u, v) is at

the same row or column with PE(a, b), x1 can only choose one border of PE(u, v),
otherwise x1 can choose two borders of it. On the other hand, a connection x2

drawn from PE(a, b) with length L, can end at 4L possible PEs. Therefore, x2

can end at (8L − 4) possible borders in the PE array. Assume that x2 chooses
one border out of the (8L − 4) possible borders with the same probability, the
probability of choosing each border is q(L) = 1

8L−4 .

4 Probabilities of Connections

Lemma 1: For a connection x3, emanating from the upper border of PE(0, 0)
and terminating at PE(r, s), the probabilities of the events that x3 uses Unfo



and Usfo of PE(0, 0) are P (Unfo) and P (Usfo), respectively:

P (Unfo) =
∞∑

L=1

G(L)
∑L−1

s=−L+1 C
|s|
L−1∑L−1

s=−L+1 C
|s|
L−1 +

∑L−w
s=−L+w C

|s|
L−w

(1)

P (Usfo) =
∞∑

L=1

G(L)
∑L−w

s=−L+w C
|s|
L−w∑L−1

s=−L+1 C
|s|
L−1 +

∑L−w
s=−L+w C

|s|
L−w

(2)

where, L = |r|+ |s|, the length of hop neighbour connection w > 1, and C0
0 = 1.

When L < w, C
|s|
L−w = 0

Proof: As Fig. 1, if x3 uses Unfo of PE(0, 0), it will pass through PE(1, 0), and
there are C

|s|
L−1 possible paths from PE(1, 0) to PE(r, s). Because our stochastic

model always chooses the path with the minimal Manhattan distance, PE(r, s)
should be above the dash in Fig. 4. Thus, there are

∑L−1
s=−L+1 C

|s|
L−1 possible

paths for x3 with length L. Similarly, if x3 uses Usfo of PE(0, 0), it will pass
through PE(w, 0), and then PE(r, s) should be above the dashdot in Fig. 4.
Thereby, there are C

|s|
L−w possible paths from PE(r, s) to PE(w, 0), and there

are
∑L−w

s=−L+w C
|s|
L−w possible paths for x3 with length L.

Among the connections starting from the upper border of PE(0, 0) with

length L, the proportion of using Unfo is
PL−1

s=−L+1 C
|s|
L−1PL−1

s=−L+1 C
|s|
L−1+

PL−w
s=−L+w C

|s|
L−w

. Further-

more, according to the assumption that connection length L is independently
chosen from a geometric distribution G(L) in Section 3, we have Equation (1).
For the same reason, we have Equation (2).

Fig. 4. All the 4L endpoints of the connections emanating from or terminating at
PE(0, 0) with the length of L = 5 and the length of hop neighbour connection w = 3

Lemma 2: Let X(Unfo) and X(Usfo) be the number of connections ema-
nating from Unfo and Usfo of PE(0, 0). Then, X(Unfo) and X(Usfo) are inde-



pendent and Poisson distributed with parameters P (Unfo)λ/4 and P (Usfo)λ/4,
respectively.

Proof: G(L)
PL−1

s=−L+1 C
|s|
L−1PL−1

s=−L+1 C
|s|
L−1+

PL−w
s=−L+w C

|s|
L−w

< G(L) < εL−1.When |ε| < 1, geo-

metric progression
∑∞

L=1 εL−1 is convergent, so according to comparison princi-

ple, progression
∑∞

L=1 G(L)
PL−1

s=−L+1 C
|s|
L−1PL−1

s=−L+1 C
|s|
L−1+

PL−w
s=−L+w C

|s|
L−w

is convergent too, which

means that P (Unfo) is a constant. It is known that the product of a con-
stant and a random variable which is Poisson distributed is also Poisson dis-
tributed. Since the number of connections emanating from the upper border
of PE(0, 0), X(U) is independent and Poisson distributed with parameter λ/4,
X(Unfo) = P (Unfo)X(U) is Poisson distributed with parameter P (Unfo)λ/4.
For the same reason, X(Usfo) is Poisson distributed with parameter P (Usfo)λ/4.

Lemma 3: For a connection x4, terminating at the upper border of PE(0, 0)
and emanating from PE(r, s), the probabilities of the events that x4 uses Unfi

and Usfi of PE(0, 0) are P (Unfi) and P (Usfi), respectively. Let X(Unfi) and
X(Usfi) be the number of connections terminating at Unfi and Usfi of PE(0, 0).
Then, X(Unfi) and X(Usfi) are independent and Poisson distributed with pa-
rameters P (Unfi)λ and P (Usfi)λ, respectively, where

P (Unfi) =
∞∑

L=1

G(L)q(L)
L−1∑

s=−L+1

C
|s|
L−1

C
|s|
L−1 + C

|s|
L−w

(3)

P (Usfi) =
∞∑

L=1

G(L)q(L)
L−1∑

s=−L+1

C
|s|
L−w

C
|s|
L−1 + C

|s|
L−w

(4)

where L = |r|+ |s|, and C0
0 = 1. When L < w, C

|s|
L−w = 0.

Proof: As Fig. 1, if x4 uses Unfi of PE(0, 0), it will pass through PE(1, 0), and
there are C

|s|
L−1 possible paths from PE(r, s) to PE(1, 0). Because our stochastic

model always chooses the path with the minimal Manhattan distance, PE(r, s)
should be above the dash in Fig. 4. Similarly, if x4 uses Usfo of PE(0, 0), it will
pass through PE(w, 0), and then PE(r, s) should be above the dashdot in Fig.
4. Thereby, there are C

|s|
L−w possible paths from PE(w, 0) to PE(r, s).

All the PEs above the dashdot in Fig.4 can emit connections to Unfi and
Usfi of PE(0, 0), thus the proportions of the entire possible paths with length

L terminating at Unfi and Usfi are
C
|s|
L−1

C
|s|
L−1+C

|s|
L−w

and
C
|s|
L−w

C
|s|
L−1+C

|s|
L−w

, respectively.

Besides, all the PEs between the dash and dashdot in Fig. 4 can only emit
connections to Unfi of PE(0, 0), and the number of such PEs is 2(w − 1).

Based on the assumptions that connection length L is independently chosen
from a geometric distribution G(L) and the probability of choosing one bor-
der of the endpoints is q(L) in Section 3, we have Equation (3). As Lemma 2,

G(L)q(L)
∑L−1

s=−L+1

C
|s|
L−1

C
|s|
L−1+C

|s|
L−w

< G(L) 1
8L−4 (2L − 1) < 1

4εL−1 , so P (Unfi) is

a constant. According to another assumption that the number of connections
per PE can be drawn independently from a Poisson distribution with parameter



λ in Section 3, X(Unfi) is Poisson distributed with parameter P (Unfi)λ. For
the same reason, we have Equation (4) and X(Usfi) is Poisson distributed with
parameter P (Usfi)λ.

Lemma 4: For a connection x5, emanating from PE(r, s) and terminating
at PE(−t + |h|,−h), where t > 0, h = −t,−t + 1, · · · , t − 1, t and hs ≥ 0, the
probabilities of the events that x5 uses Unci and Usci of PE(0, 0) are P (Unci)
and P (Usci), respectively:

P (Unci) =
∞∑

L=2

G(L)
L−1∑
t=1

L−t−1∑

s=−(L−t−1)

t∑

h=−t

C
|s|
L−t−1C

|h|
t

C
|s|+|h|
L

q′(L, s, h, t) (5)

P (Usci) =
∞∑

L=w+1

G(L)
L−w∑
t=1

L−t−w∑

s=−(L−t−w)

t∑

h=−t

C
|s|
L−t−wC

|h|
t

C
|s|+|h|
L

q′(L, s, h, t) (6)

where, L = |r|+ |s|+ t, C0
0 = 1 and

q′(L, s, h, t) =





0, hs < 0
q(L), hs ≥ 0 and (h = 0 or h = ±t)
2q(L), others

Proof: If x5 uses Unci of PE(0, 0), it will pass through PE(1, 0). For each t, x5

is divided into three segments: the first is from PE(r, s) to PE(1, 0) with length
L − t − 1, the second is from PE(1, 0) to PE(0, 0) with length 1, and the third
is from PE(0, 0) to PE(−t + |h|,−h) with length t. Thus, there is C

|s|
L−t−1C

|h|
t

possible paths form PE(r, s) to PE(−t + |h|,−h) if x5 uses Unci of PE(0, 0).
Since there are C

|s|+|h|
L possible paths from PE(r, s) to PE(−t + |h|,−h), taking

into account the assumption that the probability of choosing one border of the

endpoints is q(L), the probability of using Unci is
C
|s|
L−t−1C

|h|
t

C
|s|+|h|
L

q(L).

As Fig. 5, when the length of x5 is L, there are 2(L−t−1)+1 starting points
and 2t+1 endpoints for each t. Not each of the starting points and endpoints can
constitute a point-pair which denotes a possible path of x5 because they have to
satisfy that hs ≥ 0. In addition, when h = 0 or h = ±t, x5 can only terminate
at one border of the endpoint, otherwise x5 can end at two borders of it. Calcu-
lating the sum of the probabilities for all point-pairs, we have the probability of

using Unci with length L is
∑L−1

t=1

∑L−t−1
s=−(L−t−1)

∑t
h=−t

C
|s|
L−t−1C

|h|
t

C
|s|+|h|
L

q′(L, s, h, t).

With the assumption that connection length L is independently chosen from a
geometric distribution G(L), we have Equation (5). Because

G(L)

L−1X
t=1

L−t−1X
s=−(L−t−1)

tX
h=−t

C
|s|
L−t−1C

|h|
t

C
|s|+|h|
L

q′(L, s, h, t) < G(L)

L−1X
t=1

L−t−1X
s=−(L−t−1)

tX
h=−t

1 · 2q(L)

= G(L)

L−1X
t=1

1

4L− 2
[2(L− t)− 1](2t + 1) < G(L)

L−1X
t=1

1

4L− 2
· 2L · 3t

= (1− ε)εL−1 3L

2L− 1

L(L− 1)

2
< εL−1 3L

L

L2

2
=

3

2
εL−1L2 = u(L)



and limL→∞
u(L+1)

u(L) = limL→∞ ε(1 + 1
L )2 = ε < 1, according to D Alembert

discriminance, progression
∑∞

L=1 u(L) is convergent. Thereupon, according to
comparison principle, progression

∞∑

L=2

G(L)
L−1∑
t=1

L−t−1∑

s=−(L−t−1)

t∑

h=−t

C
|s|
L−t−1C

|h|
t

C
|s|+|h|
L

q′(L, s, h, t)

is convergent too, which means that P (Unci) is a constant.
For the same reason, if x5 uses Usci of PE(0, 0), it will pass through PE(w, 0).

Then, we have Equation (6) and P (Usci) is a constant too.

Fig. 5. All the starting points (denoted as circles) and endpoints (denoted as triangles)
of the connections traversing PE(0, 0) with L = 7, w = 3, and t = 3

Lemma 5: For a connection x6, emanating from PE(r, s) and terminating
at PE(t − |h|,−h), where t > 0, h = −t,−t + 1, · · · , t − 1, t and hs ≥ 0, the
probabilities of the events that x6 uses Unco and Usco of PE(0, 0) are P (Unco)
and P (Usco), respectively:

P (Unco) =
∞∑

L=2

G(L)
L−1∑
t=1

L−t∑

s=−(L−t)

t−1∑

h=−(t−1)

C
|s|
L−tC

|h|
t−1

C
|s|+|h|
L

q′′(L, s, h, t), (7)

P (Usco) =
∞∑

L=w+1

G(L)
L−1∑
t=w

L−t∑

s=−(L−t)

t−w∑

h=−(t−w)

C
|s|
L−tC

|h|
t−w

C
|s|+|h|
L

q′′′(L, s, h, t), (8)

where L = |r|+ |s|+ t,

q′′(L, s, h, t) =





0, hs < 0
q(L), hs ≥ 0 and (h = 0 or h = ±(t− 1))
2q(L), others



and

q′′′(L, s, h, t) =





0, hs < 0
q(L), hs ≥ 0 and (h = 0 or h = ±(t− w))
2q(L), others

Proof: As Lemma 4.
Lemma 6: Let X(Unci), X(Usci), X(Unco) and X(Usco) be the number of

connections traversing Unci, Usci, Unco and Usco of PE(0, 0), respectively. Their
mathematical expectations are:

E[X(Unci)] =
P (Unci)

P (Unci) + P (Usci)
E[X(Uci)]

E[X(Usci)] =
P (Usci)

P (Unci) + P (Usci)
E[X(Uci)]

E[X(Unco)] =
P (Unco)

P (Unco) + P (Usco)
E[X(Uco)]

E[X(Usco)] =
P (Usco)

P (Unco) + P (Usco)
E[X(Uco)],

where X(Uci) = X(Unci)+X(Usci), X(Uco) = X(Unco)+X(Usco) and E[X(Uci)] =
E[X(Uco)] = λ

4
ε

1−ε .
Proof: The number of PEs that a connection traverses with length L is

X(L) = L− 1. With the assumption that connection length L is independently
chosen from a geometric distribution G(L) = (1 − ε)εL−1, the mathematical
expectation of X(L) is E[X(L)] =

∑∞
L=1 G(L)(L − 1) = ε

1−ε . Let n and m
be the number of connections in a circuit and the number of PEs in the array,
respectively. Thus, the mathematical expectation of the number of connections
traversing per PE is n

m
ε

1−ε = λ ε
1−ε . Since four borders of a PE are chosen with

the same probability, we have E[X(Uci)] = E[X(Uco)] = λ
4

ε
1−ε .

From Lemma 4, the probabilities of the events that x5 uses Unci and Usci of
PE(0, 0) are P (Unci) and P (Usci), respectively, so the proportion of using Unci

is P (Unci)
P (Unci)+P (Usci)

, and E[X(Unci)] = P (Unci)
P (Unci)+P (Usci)

E[X(Uci)]. For the same
reason, we have E[X(Usci)], E[X(Unco)] and E[X(Usco)].

5 Estimation and Simulation

It is known that the mathematical expectation of a random variable which is
Poisson distributed with parameter λ is λ. Thus, we are able to have E[X(Unfi)],
E[X(Usfi)], E[X(Unfo)], E[X(Usfo)], E[X(Unci)], E[X(Usci)], E[X(Unco)] and
E[X(Usco)] from Lemmas 1-6.

Using Lemmas 1 and 2, we have E[X(Unfo) + X(Usfo)] = λ
4 . On the other

side, we have E[X(Unfi) + X(Usfi)] = λ
4 from Lemma 3. Therefore, the mathe-

matical expectation of the number of connections emanating from the upper



border of PE(0, 0) is equal to that of the number of connections terminat-
ing at the upper border of it. Additionally, from Lemmas 4 and 5, we have
E[X(Unci)] = E[X(Unco)] and E[X(Usci)] = E[X(Usco)].

A simulation program is exploited to verify our approach. With the assump-
tions that the number of connections per PE can be drawn independently from
a Poisson distribution with parameter λ, connection length L is independently
chosen from a geometric distribution G(L) = (1− ε)εL−1, where ε ∈ (0, 1), and
the probability of choosing one border of the endpoints is q(L), the program
routes all the connections with the minimal Manhattan distance and calculates
the average number of connections using Unfo, Usfo and so on, such as X(Unfo)
and X(Usfo). The inputs of the simulation program are n, m, w and ε, where n
is the number of connections in the circuit, m is the number of PEs in the array,
w is the length of hop neighbour connection, and ε is the parameter of geometric
distribution G(L). Table 1 is the results of the simulation program with w = 2
and ε = 0.3 [7], and Table 2 is the theoretical estimation using Lemmas 1-6.

Table 1. Simulation results

n m X(Unfo) X(Usfo) X(Unfi) X(Usfi) X(Unco) X(Usco) X(Unci) X(Usci)

251 16 3.53 0.39 3.50 0.42 1.20 0.20 1.23 0.17

319 16 4.34 0.64 4.44 0.55 2.06 0.30 1.97 0.39

479 25 4.21 0.58 4.22 0.57 1.89 0.33 1.88 0.34

688 25 6.15 0.73 6.18 0.70 2.31 0.37 2.28 0.40

Table 2. Theoretical estimation

n m E[X(Unfo)] E[X(Usfo)] E[X(Unfi)] E[X(Usfi)] E[X(Unco)] E[X(Usco)] E[X(Unci)] E[X(Usci)]

251 16 3.61 0.31 3.70 0.22 1.41 0.27 1.41 0.27

319 16 4.58 0.40 4.70 0.28 1.79 0.34 1.79 0.34

479 25 4.41 0.38 4.52 0.27 1.72 0.33 1.72 0.33

688 25 6.33 0.55 6.49 0.39 2.47 0.48 2.47 0.48

6 Conclusion

We presented a new stochastic model for mesh-based reconfigurable computing
based on the statistical distributions. The average number of each type of con-



nections is estimated, and the simulation results demonstrate the effectiveness
of our approach. With our elementary research, designers can estimate the re-
quired interconnection resource quickly and optimize their design of PE array
accordingly. Incorporating more knowledge from the actual design process, the
further research is directed to developing an estimation of other interconnect
design parameters such as area occupancy, signal delay, power dissipation, etc.
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