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Abstract. With more and more online game players having access to
broadband Internet connections and high performance computers, peer-
to-peer architecture offers an attractive solution for online multiplayer
game design. However, message synchronization and cheat proof are two
major challenges in implementing a fully distributed peer-to-peer game
system. In this paper, a novel scheme, called Semi-Lock, is proposed
to support message synchronization and prevent protocol level cheats
for such systems. In Semi-Lock, peers encrypt each message by using
cryptographically secure one-way hash function. A two-step validation
is applied at destination peers to verify the integrity and correctness of
the received messages. Trace driven simulations are conducted to verify
the performance of our proposed scheme. Simulation results show that it
significantly outperforms existing algorithms in terms of message latency
and message synchronization ratio, with only little extra computational
overhead on each peer.

1 Introduction

Real-time multiplayer online games are becoming increasingly popular due to the
advancement of game design and the availability of broadband Internet access
to the end users. As predicted in [8], the revenue of worldwide online gaming
will grow to 5.2 billion dollars by 2006.

Existing online multiplayer games typically use a client-server architecture.
Players send messages to a central server and the server broadcasts the update
messages to all players. This architecture has advantages that a single authori-
tative server orders messages, acts as a central repository for data, and is easy
to secure. However, the centralized client-server architecture also has several
disadvantages. First, since every command must go from client to server and
then be re-sent by the server to other clients. This adds additional latency over
the minimum cost of sending commands directly to other clients. Second, the



server becomes a single point of failure in the game, and traffic at the server
increases with the number of players which may result in localized congestion.
Last, this architecture is limited by the computational power of the server. Al-
though, scalability can be achieved by employing server clusters or computing
grid, this solution incurs significant cost.

Recently, a fully distributed peer-to-peer architecture is introduced to address
the above problems [4][5]. Unlike the client-server architecture, in which a single
authoritative copy of the game state is kept at the server, in this peer-to-peer
game architecture, each client keeps a copy of the entire game state. Each peer
is allowed to send messages directly to other peers, which reduces the latency of
message and eliminates localized congestion and single point failure. In order to
support massively multiplayer online games, all peers are divided into different
peer groups according to the locality interest in the virtual world [5], so that the
event in one group will not affect other groups of the game, and players in one
group form a peer-to-peer network in order to exchange event messages. A peer
can be elected as the leader of one group to handle the message exchanges with
other multiple groups [4].

In a peer-to-peer game architecture, each peer may experience different net-
work delays in receiving messages from different peers. Messages from a peer
further away or from one with congested link may take longer time to arrive
at destination peer than that from a nearby peer or one with better network
condition. Thus, to support the fairness of a peer-to-peer game, a synchroniza-
tion mechanism is required at each peer to ensure the fairness of the messaging
among the peers and to guarantee the consistency of the game state at each peer.
Another challenge lying in the peer-to-peer game architecture is to prevent game
cheats. As the definition given in [4], a game cheat is any action by a player that
gives her an unfair advantage over another player. Instead of using an authorita-
tive game server to maintain the game state, each peer keeps a copy of the game
state. Thus, the peer-to-peer game architecture increases the opportunities of
game cheating than the client-server architecture.

In this paper, we focus on the message synchronization and cheat-proof in
the peer-to-peer game architecture. A novel mechanism, called Semi-Lock, is
proposed to support message synchronization and prevent protocol level cheats
while providing low message latency in such systems. In order to prevent protocol
level cheats, when a peer initializes an action message, the message is encrypted
by using cryptographically secure one-way hash function and is sent to other
peers. After waiting a period of D,,q4, Where D, is a tuning parameter based
on the network condition, the peer resend the plain-text message to other peers.
After receiving a plain-text message, a two-step validation is applied to verify the
integrity and correctness of the received message. In Semi-Lock, the game time is
divided into equal frame intervals (FI). At each peer, valid messages received in
one F'I are executed according the rule of game application, and the game state
is updated and saved at the end of each F'I. Rollback operation is conducted to
correct the game state if late messages are received. By adjusting the FI and
Dy parameters, we show that Semi-Lock can meet different requirements of



game designs. Trace driven simulations are conducted to verify the performance
of our proposed scheme. Simulation results show that it significantly outperforms
existing algorithms in terms of message latency and message synchronization
ratio, with only little extra computational overhead on each peer.

The rest of this paper is organized as follows. Section 2 proposes the Semi-
Lock algorithm. Implementation issues of the proposed algorithm are discussed in
Section 3. Section 4 presents performance evaluation of Semi-Lock and compares
it with existing approaches. Section 5 concludes the paper and discusses future
research.

2 Proposed Semi-Lock Scheme

As defined in [4], game cheats can be classified by layer in which they occur,
such as application level cheats, protocol level cheats, and network level cheats.
Application level cheats happen when cheaters modify the code of game or the
operating system to gain unfair benefit. Network level cheats happens when
cheaters use inherent properties of network layer. A denial of service (DoS)
attack is an example of a network level cheat. On the other hand, protocol level
cheats happen when cheaters read, modify or blocks the packets of game protocol
to gain unfair benefit. One typical protocol level cheats is timestamp cheat. In
peer-to-peer games, since each peer maintains its own game state, each game
message must be timestamped when generated so that they can be executed
at the same relative time by each peer. In timestamp cheat, after receiving a
message from peer 1, peer 2 issues a message whose timestamp is before peer 1’s
and sends out to all peers. Thus, if peer 1 wants to attack peer 2 in his message,
peer 2 can dodge the attack by cheating.

Semi-Lock focuses on the prevention of protocol level cheats, while providing
low latency messaging synchronization for the peer-to-peer game architecture.
In order to simplify the discussion, let P; denote peer ¢ in a game session and Fj,
denote the kth game frame interval (FI). m;, is a message that is generated
by P; at time ts. We use Sf,ka to denote the game state that is generated by
P; at frame interval Fj, and t; is the commit time of last message executed in
Fy. P={Py, P, ..., P,} is the set of peers participating in the game session. Let
D; j denote the network delay between P; and P;. We define a system parameter
D a2 as the maximal link delay among all peers in terms of number of F'Is, which
is given as follows:

max{Di,jWPZ-, Pj S P}

Dmaz == [ I

1% FI (1)

2.1 Semi-lock Algorithm

In Semi-Lock, all peers in one game session are assumed to have a synchronized
clock by using Network Time Protocol (NTP). Network delay measurement al-
gorithms [1] are used to acquire delay information D, ; between peers. When a



peer, say P; generates a game message m;;,, the timestamp ¢, is included into
the message. At the same time, P; sends out hash of message, H(m;+_), to other
peers in the game session. After waiting for a time period of D,,,., the peer P;
sends out the plain-text message m; ;. to other peers. Since Semi-Lock commits
the hashed message instantly after message generation, we call ¢5 as the com-
mit time of message m; ¢ , and call the time when P; sends out the plain-text
message m; ¢, as the reveal time of this message. When a peer, say P;, receives
a hashed message H(m;,,), P; keeps H(m;;,) in a hash message list L. The
plain-text messages are kept in a list L, which is sorted by commit time of each
message.

Semi-Lock uses a hybrid approach to synchronize game messages at each peer.
The game time is broken into equal frame intervals (FI). Different from existing
game protocols, in Semi-Lock, a peer is allowed to send multiple messages in an
FI. At the end of each F'I, all plain-text messages received in this interval are
sequentially executed according to their timestamps. Before each execution, each
plain-text message needs to be validated to prevent cheats as two steps as follows:
(i), the hash value of plain-text message is compared to the hash message in the
hash message list to check the integrity of plain-text message; (ii), the difference
between message commit time and current time should be less than 2D, and
more than D,,... After the execution of all messages in a frame interval, the
current game state is updated and saved in a list, called state list L{. Each peer
maintains a state list which is sorted by the generation time of each state. In
one execution, if the commit time of a message is earlier than the commit time
of a message in the previous saved game state, a rollback operation is conducted
to correct all out-of-order messages, and the states after out-of-order message
are replaced by correct game states. In order to reduce memory requirement,
the game states whose commit time of last message is D, 4, earlier than current
time, are removed from the game state list. The detailed description of Semi-Lock
algorithm is given in Figure 1.

Figure 2 illustrates the Semi-Lock scheme. At time ¢1, peer P; issues a game
message mq,, and commits the hash of message H(m14,) to the game session.
(For clarity purpose, only game states of Py is illustrated and we omit the mes-
sage exchange between P; and Ps.) Next, at time to, peer Ps issues a message
mg,, and commits the hash of message H(mgy,). After time period of Dyey
(Dpmax = AFT) from their commit time, both P; and P5 send out their plain-text
messages. The delay between P3 and P is less than that between P, and Ps.
Although, P; sends my 4, before Ps sending ms ,, the message ms ., arrives P
before m; ¢,’s arrival. P» executes ms, in the frame interval after state Sy and
generates new state S;. When m; 4, arrives at P, in the frame interval after
state S1, the game state rollbacks to S3, and 57 is recalculated by re-executing
ms3 ¢, Finally, new state Sy is generated and saved in the state list.

Theorem 1. The Semi-Lock algorithm is safe: For any message m, no message
that is generated after m’s reveal time will be executed before m at any game
instance of peers.



Begin Sender Procedure{}
At time ts, peer i (i.e., P;) issues a game message m; ¢,
P; sends out hash message H(m;:,) to other peers
Wait for Djnq. period
P; sends out plain-text message m;, to other peers
End
Begin Receiver Procedure{}
If P; receives a hashed message H(m.¢,)
Keep H(m; ) in list LY
If P; receives a plain-text message my .,
Keep mj ¢, in list L sorted by ¢
End
Begin Frame Generation Procedure{}
At frame interval F}, when P; generates a game frame
Two-step validation for each message in the list L;"
My = {mye, [Vmje, € LT, ts < tema|S | € L)
M. =L" - M,
If M, # null
The latest state S::‘Fq whose t; < min{ts|Vm;., € M,}
Rollback and correct all states S! wlag<e<k
Execute all messages in M. 7
Save state S:,ka where t; = max{ts|Vm;., € M.}
End

Fig. 1. Semi-Lock Algorithm

For the limited space, the proof of the safety of Semi-Lock algorithm is
skipped in the paper.

2.2 Optimized Semi-Lock Algorithm

The basic Semi-Lock algorithm reduces the response time of each message by
allowing peers to optimistically advance their game without waiting to receive all
message from other peers. This leads to a better performance of responsiveness
for Semi-Lock than the Lockstep protocol. However, since each peer still needs
to wait for a period of D,,,., to reveal its plain-text message, Semi-Lock still
suffers from poor responsiveness if there exists a peer with bad connection in
the game session. In the following, we discuss two methods for optimizing the
performance of Semi-Lock while still maintaining the same level security as the
basic Semi-Lock algorithm.

In Semi-Lock scheme, unicast, multicast, or structured peer-to-peer overlay
could be used to send messages among peers. Message transmission between any
two different peers P; and P; requires time D; ; > 0. According to Theorem 1,
if we guarantee that after receiving plain-text message m, no peer can issue a
message that will be executed before m, the safety of algorithm is not compro-
mised. Thus, for any peer P;, the waiting period D,,q, between commit time



Fig. 2. Illustration of Semi-Lock

and reveal time can be reduced by D¢ . . which is P;’s minimal delay to other

peers, i.e., D! .= min{D; ;|Vj # i, P; € P}.

Furthermore, if peer-to-peer games use unicast to exchange messages among
peers, optimized Semi-Lock can further reduce the waiting period of each mes-
sage while still maintaining the same level security as the basic Semi-Lock algo-
rithm. With unicast communication, after commit time of a message m, P; will
wait for time period of Dy,q — D; ;j before sending plain-text message m to P;,
where D; ; is the link delay between P; and P;. If the link delay estimation is
accurate, the plain-text message m will arrive P; late than D, after message’s
commit time, so that after receiving plain-text m no peer can issue a message
that can be executed before m.

Since each message will arrive its destination peer D,,,, time later than
its commit time, all messages will be sequentially executed according to their
commit time. Therefore, no rollback operation is required for optimized Semi-
Lock algorithm under unicast communication when delay estimation is accurate.
In later performance evaluation section, we show that optimized Semi-Lock can
also achieve zero rollback performance under multicast communication when the
game session uses only one multicast group to disseminate messages.

3 Implementation Issues

In order to use Semi-Lock in real peer-to-peer game systems, there are several
issues that need to be addressed. In this section, we address two critical imple-
mentation issues of Semi-Lock in real network environments.

3.1 Handling Message Loss

In above section, we assume there exist reliable communication channels among
peers and messages never get lost. However, in real networks, loss of packets
always happens. We need to consider three different cases for Semi-Lock when
messages get lost. Case 1: The hash message is lost but the plain-text message is



received. In order to differentiate this situation from the cheats, the peer will send
out a verification request to other peers which includes the plain-text message.
The other peers compare the plain-text message with their valid message and
send back the verification confirmation. If the majority of other peers confirm
the validation, the plain-text message can be correctly executed. Case 2: If the
hash message is received, but the plain-text message is lost, the peer can retrieve
the valid plain-text message from other peers excluding the source peer. Case 3:
Both hash message and plain-text message are lost. In this case, the peer still
can reconcile the game state with other peers by retrieving the valid messages
from other peers. Therefore, Semi-Lock can provide consistent game states to all
peers even in network environments with packet losses.

3.2 Concealing Rollback

The other concern is how to conceal the visual artifacts that may result from the
rollback operations of Semi-Lock. Occasionally, rollbacks will cause some drastic
changes, such as the player in a first person shooting (FPS) game coming back
to life when he is thought to be killed. One approach to minimize the occurrence
of these artifacts is to classify the messages into different levels of significance.
We delay the execution of significant messages such as a player’s death in case
there is a rollback.

4 Performance Evaluation

In this section, we evaluate Semi-Lock under different parameter settings. Two
existing cheat-proof protocols, namely Lockstep [2] and NEO [4] are compared
with Semi-Lock in the performance evaluations.

4.1 Experiment Setup

We design a trace driven simulator to evaluate the performance of Semi-Lock.
Because there is no peer-to-peer game available in the Internet, we use Quake
III [9] which is a popular first person shooting game based on client-server ar-
chitecture to collect the trace data. We use five Quake III clients to connect to
one Quake III server in the Internet and record the game traffic locally with
tecpdump. We then use Ethereal [10], which has a built-in packet decoder for
Quake III, to filter out everything except the game messages sent out by our
client. In these trace files, there are 30-50 action messages per second that are
generated by clients and sent to the server. We use the trace data in 270 seconds
from game start time of each trace file to simulate a game session that lasts for
270 seconds.

In our simulator, the Transit-Stub method of GT-ITM model [7] is used
to generate a hierarchical interconnecting network. Similar to SimMud [5], we
use Pastry peer-to-peer overlay [6] to support peer-to-peer routing and also use
Scribe that is built on top of Pastry to provide application level message multi-
cast in our simulations.



4.2 Experiment Results

In each of the following experiments, if there are n peers in one game session,
they are randomly selected from 1600 nodes in the simulated network. 10 ex-
periments with different random seeds are conducted, and the average result of
these experiments is recorded as one final result. The primary metric we use to
measure the performance is the message response time which is the time from
when a peer first sends out action message to when the message is executed and
displayed on the screen of the other peers.

Basic Semi-Lock vs Optimized Semi-Lock In this experiment, we explore
the performance of the basic Semi-Lock, say SemiLock(B), under different frame
intervals and number of peers, and it is compared with optimized Semi-Lock,
say SemiLock(O). We change the game frame interval, FI, of each peer and
evaluate the message response time and the number of rollbacks of Semi-Lock
under different number of peers in the game session.
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Fig. 3. Performances under different frame intervals and number of peers

As shown in Figure 3(a), the message response time is reduced as the frame
interval decreases, but it increases as the number of peers increases in one game
session. This is because when the FI decreases, each message needs to wait
for less time for execution after being received by the destination peer. The
increasing of number of peers incurs the increase of maximal link latency, Dy, a4,
among peers in one game session which leads to the increase of message response
time. Figure 3(a) also shows that the optimized Semi-Lock algorithm reduces the
message response time by about 50 ms.

Let the rollback number be the number of rollback operations that are ex-
ecuted in one peer in one games session of 270 seconds. In Figure 3(b), the
rollback number drops as the frame interval increases, and slightly increases as



more peers participate in one game session. As F'I increases, more messages will
be synchronized in one frame interval, so less misording messages need to be
corrected by rollback operations. This results in the drop of rollbacks. As shown
in Figure 3(b), the optimized Semi-Lock significantly reduces rollback operations
as compared to the basic Semi-Lock. In simulations, we use the Scribe [3] multi-
cast protocol to multicast the game messages, and all peers in the game session
join one multicast group. In Scribe, a multicast tree is built among all peers to
disseminate the messages in one group, so every multicast message is routed to
the root node of the multicast tree, then sent to other peers. So the minimal
delay D¢, of each peer P; is the delay between P; and the peer that is closest
to root of the multicast tree. Since the optimized Semi-Lock algorithm reduces
the waiting time of each message by minimal delay D ; for each peer P, it
makes all message arrive the root peer in the same sequence as the messages were
generated, thus few rollbacks are needed to correct the misording messages.

Different Message Rates In this experiment, we compare Semi-Lock with
NEO and Lockstep under different message rates with five peers in the game
session. We set the round time of NEO is 100 ms in the experiment. Since Quake
ITI game has a high message rate, each player generates about 30-50 messages per
second. We measure that the average interval between two consecutive messages
is around 38 ms based on the measurement of 45 trace files we got. In order to
evaluate the performance of each scheme under different game message rates, we
vary the message rate by delaying each message multiple times of the original
message interval.
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Fig. 4. Different message rates

As shown in Figure 4, Lockstep has the worst response time performance un-
der different message rates. NEO has similar message response time as Semi-Lock
at the low message rates. When the message rate increases, (i.e., average message
interval decreases), the message response time of NEO significantly increases, es-



pecially, when average message interval less than 100 ms. Whereas Semi-Lock
constantly has low message response time under different message rates. This is
because Semi-Lock allows sending multiple messages in one frame interval. How-
ever, NEO allows only one message sending in each round so that messages are
congested when the message interval is less than the round duration. Although
we can reduce the round duration of NEO to relieve the congestion, this will lead
to more misording messages. In Lockstep, each peer needs to receive all commit-
ted messages from other peers and then sends out the plain-text message, which
results in poor message throughput. Therefore, we conclude that the Lockstep
and NEO protocols are not suitable for the game with high message rate.

5 Conclusions

In this paper, we addressed two important issues in the design of peer-to-peer
game systems: message synchronization and cheat proof. A novel scheme called
Semi-Lock is proposed to support message synchronization and prevent protocol
level cheats while providing low latency for peer-to-peer game systems. Trace
driven simulations are conducted to verify the performance of Semi-Lock. Sim-
ulation results show that the Semi-Lock significantly outperforms two existing
algorithms in message latency and synchronization with little more computation
overhead on each peer. In our future work, we plan to evaluate the performance
of Semi-Lock in packet loss network environments. Investigating Semi-Lock in
support of massively multiplayer games is also part of our future work.
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