Efficient Logic Circuit for Network Intrusion
Detection

Huang-Chun Roan!,Chien-Min Ou? Wen-Jyi Hwang***and Chia-Tien Dan Lo®

! Graduate Institute of Computer Science and Information Engineering,
National Taiwan Normal University, Taipei, 117, Taiwan
2 Department of Electronics Engineering,
Ching Yun University, Chungli, 320, Taiwan
3 Department of Computer Science, University of Texas at San Antonio,
San Antonio, TX 78249, USA

Abstract. A novel architecture for a hardware-based network intrusion
detection system (NIDS) is presented in this paper. The system adopts
an FPGA-based signature match co-processor as a core for the NIDS.
The signature matcher is based on an algorithm that employs simple shift
registers, or-gates, and ROMs in which patterns are stored. As compared
with related work, experimental results show that the proposed work
achieves higher throughput and less hardware resource in the FPGA
implementations of network intrusion detection.

1 Introduction

A network intrusion detection system (NIDS) monitors network traffic for suspi-
cious data patterns and activities. It informs system administrators when mali-
cious traffic is detected so that proper actions may be taken. Many NIDSs such
as SNORT [1] prevent computer networks from attacks using pattern-matching
rules. The computational complexity of NIDSs therefore may be high because of
the requirement of the string matching during their detection processes.

The SNORT system running on general purpose processors may only achieve
up to 60 Mbps [2] throughput because of the high computational complexity.
Since these systems do not operate at line speed, some malicious traffic can be
dropped and thus may not be detected. To accelerate the speed for intrusion
detection, several FPGA-based approaches have been proposed [2-6]. Because
the NIDS rules do not change frequently, the cost for FPGA implementations
may not be high as compared with their software-based counterparts. Moreover,
the hardware implementation can exploit parallelism for string matching so that
the throughput of NIDSs can be increased.

One popular way for FPGA implementation is based on regular expressions
[4,7], which results in designs with low area cost and moderate throughput ac-
celeration. In this approach, a regular expression is generated for every pattern.

** To whom all correspondence should be sent
This project is partially supported by the Center for Infrastructure Assurance and
Security at UTSA and US Air Force under grant #26-0200-62

Each regular expression is then implemented by a nondeterministic finite au-
tomata (NFA) or deterministic finite automata (DFA). In the finite automata
implementations, efficient exploitation of parallelism is difficult because the in-
put stream is scanned one character at a time. Another alternative for FPGA
implementation is to use the content addressable memory (CAM) [3,6]. By the
employment of multiple comparators in the CAM, the processing of multiple in-
put characters per cycle is possible. This may effectively increase the throughput
at the expense of higher area cost.

The objective of this paper is to present a novel FPGA implementation ap-
proach for NIDSs achieving both high throughput and low area cost. The pro-
posed architecture is based on the shift-or algorithm for exact string matching
[8]. The shift-or algorithm is an effective software approach for pattern match-
ing because of its simplicity and flexibility. However, it may not perform well
when the pattern size is larger than the computer word size, which is the case
for many SNORT patterns. Accordingly, the software implementation of shift-or
algorithm may not be suited for SNORT systems.

On the other hand, the hardware implementation of shift-or algorithm im-
poses no limitation on the pattern size. In our architecture, each SNORT pattern
is only associated with a ROM and a shift register for pattern comparison, which
are designed in accordance with the pattern size. Because of its simplicity, the
architecture may operate at a higher clock rate as compared with other im-
plementations. In addition, the number of logic elements (LEs) for the circuit
implementation is reduced significantly when the ROM is realized by the em-
bedded RAM blocks of the FPGA. The area cost therefore may be lower than
the existing designs [3,6]. Moreover, although the proposed architecture in its
simplest form only processes one character at a time, the architecture can be
extended to further enhance the throughput of the circuit. Multiple characters
can be scanned and processed in one cycle at the expense of slight increase in
area cost.

The proposed architecture has been prototyped and simulated by the Altera
Stratix FPGA. Experimental results reveal that the circuit attains the through-
put up to 5.14 Gbits/sec with area cost of 1.09 LE per character. The proposed
architecture therefore is an effective solution to high throughput and low area
cost NIDS hardware design.

2 Preliminaries

This section briefly describes the shift-or algorithm for exact string matching.
Suppose we are searching for a pattern P = pips...p, inside a large text (or
source) T = tyty...t,,, where n > m. Every character of P and T belongs to the
same alphabet ¥ = {s1, ..., 55|}

Let R; be a bit vector containing information about all matches of the prefixes
of P that end at j. The vector contains m + 1 elements R;[i],i = 0, ..., m, where
R;[i] = 0 if the first ¢ characters of the pattern P match exactly the last ¢
characters up to j in the text (i.e., pip2...pi = tj_it1tj—it2...t;). The transition

0 1 2 3 4 5
J RIS |RIS|R|SIRH]S|R]S|R
5 al| b | c 0|0 0 0 0 0 0
i=t] o[t [1 11 lololt]t]o]o o] 1|1
sli=2f o [11 Y2t]ol 1t t]1]o]1 o | 1|1
i=3] 1o sttt 1] o [C0
(a) (b)

Fig.1. An example of shift-or algorithm with pattern P = aab and text T = acaab,
(a) The bit vector S associated with each symbol s € ¥ = {a, b, ¢} for the pattern P,
(b) The bit vector R; for the text T', where one occurrence of P is found (encircled).

from R; to R;j11 is performed by the recurrence:

) R 0, iij[i—l]:Oandpi:th,
Rjyili] = { 1, otherwise, (1)

where the initial conditions for the recurrence are given by Rg[i| = 1,4 =1, ..., m,
and R;[0] = 0,5 = 0,...,m. The recurrence can be implemented by the simple
shift and OR operations. To see this fact, we first associate each symbol s € X
a bit vector Sy containing m elements, where the i-th element S[i] is given by

o]0, if s = ps,
Sklil = { 1, otherwise. (2)

Assume t;41 = s.. Based on eq.(2), the recurrence shown in eq.(1) can then be
rewritten as

Rj+1[i] ZRj[i—l] OR Sc[i],iz 1,...,m. (3)

We can clearly see now the transition from R; to ;1 involves to no more than
a shift of R; and an OR operation with S., where ¢;;1 = s.. Figure 1 shows
an example of the exact string matching based on the shift-or algorithm, where
P = aaband ¥ = {a,b,c}. The bit vector S}, associated with each sy, € X, which
is determined by eq.(2), is given in Figure 1.(a). In this example, T = acaab.
Therefore, s, = a,c,a,a and b for j = 1,2,3,4 and 5, respectively. The S,
associated with s, for each j can be found from the table shown in Figure 1.(a).
Given S, and Rj_;, the R; can be computed by eq.(3), as shown in Figure
1.(b). Note that, when j = 5, it can be found from Figure 1.(b) that R;[3] = 0.
Therefore, one occurrence of P is found when j = 5.

3 The Architecture

The proposed architecture for SNORT pattern matching is shown in Figure 2.
The architecture contains M modules, where M is the number of SNORT rules

Module 1

Module 2

—|_< Module M

Fig. 2. The basic structure of the proposed circuit, where M is the number of rules
implemented by the circuit.

Ll

Encoder —»

Broadcast
Circuit

LI7

for intrusion detection. The incoming source is first broadcasted to all the mod-
ules. Each module is responsible for the pattern matching of a single rule. The
encoder in the architecture receives the intrusion alarms issued by the modules
detecting matched strings, and transfers the alarms to the administrators for
proper actions.

3.1 Basic module circuit

The module operates by scanning the source string one character at a time.
Therefore, after the clock cycle j, the circuit completes the string matching
process up to t;. Moreover, the character t;11 is the input character to the
module during the clock cycle (j + 1). Assume t;1; = s.. The input character
tjy1 is first delivered to the ROM for the retrieval of S, to the OR gates. Each
OR gate i has two inputs: one is from the i-th output bit of the ROM (i.e.,
Sc[i]), and the other is from the output of FF (i — 1), which contains R;[i — 1]
during the clock cycle j + 1. From eq.(3), it follows that the OR gate i produces
Rjt1[i], which is then used as the input to the FF i. The R;1[i] therefore will
become the output of FF i during the clock j + 2 for the subsequent operations.
Note that, during the clock cycle j+ 1, the m-th OR gate produces R;1[m],
which is identical to 0 when p1ps...p; = tj_;t;_s41...tj41. In this case, the module
will issue an intrusion alarm to the encoder of the NIDS. Therefore, the output
of the OR gate m is the check point of exact string matching with pattern size
m.
For the FPGA devices with embedded memories, the ROM may be imple-
mented solely by the memory bits. Hence, the LEs are required only for the
implementation of the shift register. The circuit therefore may have low area
cost (in terms of the number of LEs) for the FPGA implementation of SNORT
rules.
To implement the ROM, we first note that each ASCII character in a SNORT
rule contains 8 bits. Therefore, | X| = 256 and the ROM contains 256 entries for
pattern matching. The ROM size can be reduced by observing the fact that some

t.,—» ROM
JjH
Se vm
Shift Register B
(@)
Fl‘OH}l\ ROM
[)
S,.11] 5.2] S, [n]
ﬁl OR 1 ﬁl OR 2 ﬁl OR_m
Output
R[O]:O oo o—P R. [mJ
J R; 1] R R, R [m=T] JH
FF_1 FF (m-1

(b)

Fig. 3. The basic circuit of each module for exact pattern matching, (a) The block
diagram of the circuit, (b) The shift register circuit during clock cycle j + 1.

symbols si in the alphabet X may not appear in the pattern P. Accordingly,
they have the same bit vectors S = 1. These symbols then can share the same
entry in the ROM for storage size reduction. One simple way to accomplish this
is to augment a new symbol so (with Sy = 1) in the alphabet X. All the symbols
s having Sy = 1 are then mapped to so by a symbol encoder as shown in Figure
4. These symols then share the same entry associated with sg in the ROM.

Since the LEs are required for the implementation of the symbol encoders,
the area cost may be high if each module has its own symbol encoder. We can
lower the area cost by first dividing the SNORT rules into several groups, where
the rules in each group use the same set of symbols. Therefore, all the rules in
the same group can share the same symbol encoder, as shown in Figure 5. The
overhead for the realization of symbol encoders then can be reduced.

3.2 High throughput module circuit

The basic module circuit shown in Figure 3 only process one character per cycle.
The throughput of the NIDS can be improved further by processing g characters
at a time. This can be accomplished by grouping ¢ consecutive characters in the
source into a single symbol. Without loss of generality, we consider ¢ = 2. Let
2 = {x1,...,2)0/} be the alphabet for the new symbols, where x; = (y1,¥2), and
Y1,Y2 € 2.

Based on {2, a pattern P can be rewritten as P = ujiua...u[y, /2], Where
u; = (p2i—1,p2i). Note that ury,/21 = (Pm—1,Pm) when m is even. However,

8
Symbol Sy ROM
Encoder
m
A
Shift Register L

Fig. 4. The augment of a symbol encoder for reducing the ROM size. In this example,
each input character is assumed to be an ASCII code (8 bits). We also assume the
SNORT rule uses only 7 symbols in the alphabet. The output of the symbol encoder
therefore is 3 bits.

when m is odd, ufm 21 = (Pm, @), where ¢ denotes “don’t care,” and can be
any character in X. We can then associate a bit vector X containing [m/2]
elements for each symbol zj, € {2, where the i-th element of X, is given by

4)0, if 2 = uy,
Xilil = { 1, otherwise. (4)

A ROM containing Xj, ..., X|o| can then be constructed for shift-or operations.
In this case, the ROM contain |2| = |¥|? entries, where each entry has [m/2]
bits. It is therefore necessary to employ a larger ROM for a module with higher
throughput. A symbol encoder similar to that shown in Figure 4 can be employed
to reduce the ROM size. In this case we augment a new symbol 2 (with Xy = 1)
in the alphabet (2. All the symbols x; having X = 1 are then mapped to x¢ by
the symbol encoder.

Note that the string matching operations ending at j over the alphabet (2
are equivalent to the operations ending at either 25 or 25 + 1 (but not both)
over the alphabet Y. It is necessary to perform the matching process ending at
every location of the source over the alphabet Y. Therefore, we employ two shift
registers in the module as shown in Figure 6, where one is for even locations, and
the other is for odd locations. Moreover, since each entry of the ROM contains
only [m/2] bits, the shift registers with [m/2] — 1 FFs and [m/2] OR gates
are sufficient for the operations. When m is even, the total number of FFs and
OR gates in the high throughput circuit is identical to those in the basic circuit
presented in the previous subsection.

To perform the string matching operations ending at the even locations of
the source over X, we convert the source T to the sequence T, = ejes... over
alphabet {2, where e; = (t2j_1,t2;). During the clock cycle j + 1, symbol e;41 is
fetched to the ROM. This is equivalent to the scanning of two characters t2;41
and tg;42 simultaneously for shift-or operations.

The shift-or operations at the odd locations of the source can be performed in
the similar manner, except that the source T' is extracted as T, = 0102..., where
0j = (t2j,t2j4+1). During the clock cycle j + 1, we scan the symbol o;. From

A
=
o
<

Shift Register 1 P;»

ROM 2

8 Symbol 3
Encoder

A

m
y 2

Shift Register 2 Ié;»

ROM 3

A

m
y 3

Shift Register 3 Iélﬁ>

Fig. 5. The sharing of the same symbol encoder by three different SNORT rules. Each
character is also assumed to be an ASCII code. All the SNORT rules use the same
alphabet consisting of 7 symbols.

Figure 6, we observe that o; can be obtained from e; and e;;; via delaying
and broadcasting operations. Therefore, the shift-or operations at even and odd
locations share the same input as shown in the figure.

4 Experimental Results and Comparisons

This section presents experimental results of the proposed architecture. Table
1 compares the throughput, the number of LEs per character, total number of
memory bits and operating frequency of the proposed circuits with and without
the symbol encoder. The throughput indicates the maximum number of bits
per second the circuit can process. For the sake of simplicity, only the circuits
processing one character at a time (i.e., ¢ = 1) are considered in the table.
Moreover, for the circuit with symbol encoders, the rules using the same set of
symbols will share the same symbol encoder, as shown in Figure 5. We use the
Altera Quartus II as the tool for circuit synthesization. The target FPGA device
is Stratix EP1S80.

Table 2 shows the throughput, the number of LEs per character, the memory
bits and operating frequency of our circuits with ¢ = 1 and ¢ = 2 realized by
the FPGA device Stratix EP1S80. As shown in Table 2, because the circuit with
q = 2 processes two characters for each clock cycle, it has higher throughput
than that of the cuicuit with ¢ = 1, which processes one character per cycle

2j4 > Symbol o rROM
i »| Encoder
J
\ Pﬁi‘
Del
" Shift Register —
by
j

A4

A 4

Symbol ROM

Encoder :1 >Output
m

s

Shift Register -

\d

Fig. 6. The structure of a high throughput module circuit processing two characters
at a time (¢ = 2).

Table 1. Comparisons of the proposed architecture with and without symbol encoder,
where the number of characters available for pattern matching is 1568 characters.

Design Throughput |Logic cellsiMemory|Operating
(Gb/s) /char bits Frequency (MHz)

Without symbol|2.57 0.97 387,584 (321.03

encoder

With symbol |2.57 0.99 25,738 (321.03

encoder

only. On the other hand, it can also be observed from Table 2 that the circuit
with ¢ = 2 has slightly higher number of LEs per character. This is because the
circuit has more complex address encoders for reducing the storage size in ROM.
In addition, for ¢ = 2, the string matching operations for each rule requires two
independent ROMs as shown in Figure 6. Therefore, the number of memory bits
used by the circuit with ¢ = 2 is higher than that of the circuit with ¢ = 1.

Table 3 compares the FPGA implementations of the proposed architecture
with those of the existing related works. Note that the exact comparisons of these
circuits may be difficult because they use different distance measures, and are
realized by different FPGA devices. However, it can still be observed from the
table that our circuits have effective throughput-area performance as compared
with existing work. This is because our design is based on the simple shift-or
algorithm. The simplicity of circuit allows the string matching operations to
be performed at high clock rate with small hardware area. In particular, when
g = 2, our circuit attains the throughput of 5.14 Gbits/sec while requiring only

Table 2. Comparisons of the proposed architecture with ¢ = 1 and ¢ = 2, where the
number of characters available for pattern matching is 1568 characters.

Design|Throughput|Logic cells|Memory|Operating
(Gb/s) /char bits Frequency (MHz)

qg=1 |2.57 0.99 25,738 |321.03

qg=2 |5.14 1.09 40,768 [321.03

the area cost of 1.09 LEs per character. These facts demonstrate the effectiveness
of our design.

Table 3. Comparisons of various string matching FPGA designs.

Design Device Throughput|Chars|Logic cells
(Gb/s) /char

Proposed architecture (¢ = 1)|Altera Stratix EP1540|2.25 5004]0.96
Proposed architecture (¢ = 2)|Altera Stratix EP1540|5.14 1568 |1.09
Gokhale et al. [3] Xilinx VirtexE-1000 [2.2 640 |15.2
Hutchings et al. [4] Xilinx Vertix-1000 0.248 8003 |2.57
Singaraju et al. [5] Xilinx Virtex2VP30-7 (6.41 1021 |2.2
Sourdis-Pnevmatikatos [6] Xilinx Spartan33-5000 (4.91 18000 |3.69
Moscola et al. [7] Xilinx VirtexE-2000 |[1.18 420 |19.4

5 Conclusion

A novel FPGA implementation of network intrusion detection based on shift-or
algorithm is presented in this paper. The proposed algorithm in the basic form
processes one character at a time, and contains only a ROM and a simple shift
register for each pattern matching. The throughput can be further enhanced by
processing multiple characters in parallel. Both the basic form and two-character
at a time of the proposed algorithm are implemented in our experiments. Com-
parisons with exsiting work reveal that our design is one of the cost-effective
solutions to the FPGA implementations of the network intrusion detection.

References

1. SNORT official web site http://www.snort.org.

2. Ramirez, T., Lo, C.D.: Rule set decomposition for hardware network intrusion
detection. in the 2004 International Computer Symposium (ICS 2004) (2004)

3. Gokhale, M., Dubois, D., Dubois, A., Boorman, M., Poole, S., Hogsett, V.: Granidt:
towards gigabit rate network intrusion detection technology. Proceedings of the
International Conference on Field Programmable Logic and Application (2002) 404—
413

4. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intrusion detection
with reconfigurable hardware. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (2002) 111-120

5. Singaraju, J., Bu, L., Chandy, J.A.: A signature match processor architecture
for network intrusion detection. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (2005) 235-242

6. Sourdis, I., Pnevmatikatos, D.N.: Pre-decoded cams for efficient and high-speed nids
pattern matching. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (2004) 258-267

7. Moscola, J., Lockwood, J.W., Loui, R.P., Pachos, M.: Implementation of a content-
scanning module for an internet firewall. Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines (2003) 31-38

8. Baeza-Tates, R., Gonnet, G.: A new approach to text searching. Communications
of the ACM 35 (1992) 74-82

