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Abstract We are surrounded by an enormous amount of microprocessors. Their 

quantity outnumbers the human population by a factor of more than three. 

These microprocessors enable most technological artifacts to become intelligent 

“things that think” and a majority of these intelligent objects will be linked 

together to an “Internet of things”. This omnipresent virtual “organism” will 

provide ubiquitous computing to an amount which goes far beyond all presently 

existing systems. To master this emerging virtual organism, completely new 

paradigms of operation have to evolve. In this paper we present our vision of 

establishing self-coordination as the dominant paradigm of operation of future 

ubiquitous computing environments. This vision is looked at from four different 

points of view. First of all techniques to model self-coordinating distributed 

systems in an adequate manner is discussed. Then the principle of self-

coordination is applied to individual intelligent objects. In a next step such 

objects have to be arranged in a networked manner. Again the potential of self-

coordination, now applied to communication infrastructures is studied. Finally 

self-coordination is applied to next generation interfaces between human beings 

an artificial ones. In this paper we do not attempt to provide a complete 

discourse of the area. Instead of this we try to illustrate the four aspects 

mentioned above by proper examples. 

Keywords: Self-coordination, Organic Computing, ant-colony algorithms 

1   Introduction 

In the world of information technology it is no longer the computer in the classical 

sense where the majority of IT applications are executed; computing is everywhere. 

More than 20 billion processors have already been fabricated and the majority of them 

can be assumed to still be operational. These microprocessors enable most 

technological artifacts to become intelligent “things that think”. At the same time 

virtually every PC worldwide is connected via the Internet. This combination of 

traditional and embedded computing creates an artifact of a complexity, heterogeneity 

which is rarely manageable by classical means. Metaphorically speaking, the 

emerging ubiquitous computing environment may be treated as an organism made up 

of computers, networks, system software, applications, and, most importantly, human 

beings.  



This virtual organism as it exists today is still in a state of adolescence. Each of our 

technical artifacts with a built-in processor can be seen as a “Thing that Thinks”, a 

term introduced by MIT’s Thinglab. It can be expected that in the near future these 

billions of Things that Think will become an “Internet of Things”, a term originating 

from ETH Zurich. This means that (using the above metaphor) we will be constantly 

surrounded by a virtual “organism” of Things that Think.  

In order to deal with such kinds of ubiquitous computing environments, novel 

principles, methods, and tools to design such a virtual organism and its constituents 

are needed. A very promising solution may be seen in handing over a large amount of 

design activities to the system itself. This means that a large portion of decisions 

which traditionally take place in the design phase, now are handed over to the 

operational phase. Even more important, these decisions no are made by the system 

itself, based on information about its environment and its own nature. To a certain 

degree, the objects and the resulting virtual organism develop themselves. The bare 

size of the virtual organism to be handled makes any attempt of a centralized solution 

senseless. Instead of this, self-coordinating principles have to be established on the 

majority of the individual objects constituting the entire system, and even more 

important on the interconnection structure. In the sequel various aspects of 

introducing self-coordination as the basic paradigm of future ubiquitous computing 

environments are discussed.  

  In any scientific discipline it is hardly possible to deal with objects which can not 

be modeled. Therefore a well adapted modeling paradigm for self-coordinating, 

highly distributed systems is a major step towards establishing the paradigm of self-

coordination. This aspect will be discussed in section “Modeling”. Some main 

principles are explained before the basic ideas are illustrated by an example. 

 If the concept of self-coordination is to be applied to the entire field of ubiquitous 

computing environments, both the individual constituents and the network made out 

of theses objects should follow this paradigm. In section “Self-Coordinating Objects” 

basic principles are discussed, how future intelligent object can be empowered to act 

in a self-coordinating manner. Again an example of some already completed work is 

used to illustrate this principle. 

An even higher potential of self-coordination arises if the global interaction of such 

objects is envisioned. By analyzing solutions found in biological systems, especially 

in ant colonies, approaches can be looked for, how such communication structures 

and problem solving strategies can be handled by means of self-coordination. This 

topic is covered by section “Self-Coordinating Networked Objects”. Here again, 

results from previous work is used as example to illustrate the basic approach.  

Finally, these intelligent objects that form a virtual organism are, in and of 

themselves, of no value. They need to be able to serve human needs. In the end, 

artificial assistants offering intelligent services have to come into existence. To 

achieve this level of service provisioning, a discipline that may be characterized as 

Anthropomatics (a term originating from the Univ. of Karlsruhe and used by the 

German Organic Computing initiative) has to evolve. Communication of human 

beings is not restricted to a bare intellectual level. In addition, emotions play an 

important role. If intelligent artifacts shall be accepted by humans as adequate 

communication partners and friendly servants, this aspect of emotions has to be 

considered as well. I.e. an intelligent artifact or some virtual “organism” must be able 



to express emotions (without having ones, of course) and to recognize emotions of 

human communication partners. In section “Self-Coordinated Anthropomatics” this 

aspect is exemplified using some previous work. 

 

2   State of the Art 

Modeling of self-coordinating distributed systems 

Some theoretical work has been published characterizing the emergence of global 

behavior patterns based on local rules. A prominent, currently extensively studied 

area is given by game-theoretical approaches initiated by Koutsoupias and 

Papadimitriou [12]. However, it is still unclear how local rules can be designed for a 

given target behavior, what their possibilities/restrictions in comparison to global 

rules are, and how to deal with real-time limitations.  

Concerning description techniques, methods, and tools needed for the practical 

construction of such systems, software engineering has developed model-based 

development and formal analysis techniques for analysis and transformation of 

requirements and system design down to executable code. However, they are more or 

less only applicable before the system is deployed – in no way do they address the 

inherent dynamics in problem-solving and reconfiguration of structures and 

algorithms or scalability properties needed here. The necessity to model systems 

where the constituents act strictly individually and only based on local information 

(i.e. in absence of any kind of global control), is reflected by the basic principle of 

Petri nets and derivatives.  

The initiatives Autonomic Computing [11], Organic Computing [20], and parts of 

the European Complex Systems Initiative [5, 7] are interesting attempts to attack the 

mentioned challenges. These initiatives use inspirations from biological systems, 

transferring such principles into the engineering domain. However, both initiatives 

rarely deal with the coordination paradigm and systems of highly dynamic structure 

are investigated only marginally. 

Self-coordinating objects 

Self-coordinating objects can be found in user-oriented IT-systems, IT-based 

games [KRP04], logistics, robotics, just to mention some examples. In the IT-area 

first systems following the self-x paradigms of Autonomic Computing have been 

reported in the area of servers and information systems. 

The various Robocup contests may serve as interesting experimental environments 

where self-coordinating “intelligent” agents have to be developed [17]. These agents 

have to act autonomously and in a team-oriented manner together with their team 



mates. Methods from various research traditions like artificial intelligence, cognition, 

smart sensors, mechatronics, ad-hoc networks, etc. have to be combined to obtain 

good results. 

  Various results concerning evolutionary virtual creatures have been published, 

e.g. [19, 13, 14]. Systems are reported that allow the creation and the evolution of 

virtual creatures that adapt to varying environments or that compete for rare 

resources. Even physical the realization of such creatures has been reported [14]. 

Self-coordinating Networked Objects 

Networking became an important area of systems-oriented research (e.g., self-

organization as typically found in MANETs [15]). New systems concepts such as 

cooperative networking or in-network processing have appeared, mostly in sensor 

networks (e.g., distributed source/network coding). Although algorithm theory has 

resulted in excellent solutions in the area of routing (e.g. [16]), self-coordinating 

techniques are applied as well. Based on Marco Dorigo’s pioneering work [6] various 

attempts have been made. In [9], e.g., the authors directly apply this technique to a 

reactive, hop-by-hop routing protocol. Approaches to build overlay networks with the 

aid of ant colony algorithms have been reported as well, e.g. [8]. Following this 

paradigm, highly adaptive and emergent network construction and optimization 

techniques can be established. 

Self-coordinating Anthropomatics 

In an aging population the development of interactive artificial assistants is of great 

relevance. In this field, one can observe the convergence of different research topics 

(e.g. machine learning, statistics, reasoning, neuroscience, computer science, and 

engineering) into a new field called Anthropomatics. Artificial assistants interact 

constantly with their human users; therefore they will be cognitive systems that can 

reason and learn from their experience. As they are aware of their own capabilities 

and reflect on their own behavior they can be seen as instances of Organic 

Computing. To make the interaction with humans more natural, these artificial 

assistants should be able to express emotions and to recognize emotions of their 

communication partners. This aspect has been identified long ago [2]. More recent 

publications address this aspect from various points of view [1, 3].  

 



3   Aspects of Self-Coordinating Ubiquitous Computing         

3.1 Modeling of self-coordinating distributed systems 

The volatility of the upcoming new pervasive and ubiquitous systems, the lack of 

global control, their emergent behavior, and their stringent requirements on 

dependability and security require a kind of new “System Theory for Self-

coordinating Systems” and, in particular, an improved understanding of coordination 

paradigms. 

Most of today’s methods are limited to essentially static cases where the behavior 

of the composed system can be predicted beforehand. In the future, however, we can 

instead endow generic components with more or less strict rules on how to behave, 

how to interact with other components, and even how to change these rules if 

necessary. These components need to act in a self-coordinated way to reach 

application goals in a volatile environment.  

Numerous completely new research questions arise to address these issues. As the 

entire research, basic and applied one, depends on adequate modeling techniques, in 

this paper only the modeling aspect is addressed.  

Models and Modeling Techniques  

Model-based design and development is widely accepted as the most promising 

way to master complexity in today’s system design. Certainly it will remain 

indispensable for the new types of systems. Unlike for traditional static systems, 

modeling realistic behavior of these systems is challenging. Most of the established 

techniques relay on the existence of global states. In highly distributed systems and 

especially in such ones that are based on local decisions without global control, global 

states do not exist at all or at least of no importance at all. Therefore modeling 

techniques are needed that are communication centric, that are not dependent on 

global states and that are based on local transitions. At the same time a profound 

mathematical foundation is required.  

Modeling techniques are necessary for expressing models and their dynamics at 

different abstraction levels based on sound semantic foundation and mathematical 

elegance. This technique needs a “calculus” to enable model manipulation, e.g., 

refinement between abstraction levels or verification.  Multi-dimensional modeling in 

an integrated manner, including non-functional and mobility aspects is an important 

part of such techniques. This requires languages operating on meta-level, integrating 

models written in different languages. A new dimension in the definition of language 

semantics is a consequence of this approach, i.e. the semantics of the meta-model 

depend on the semantics of the underlying models. Using such modeling techniques, 

realistic models have to be constructed for the dynamic volatile behavior of specific 

classes of systems. They must support application-oriented system as well as design 

and analysis of algorithms.  They should provide new ways to understand and  



abstract from properties of such systems, such as profiling methods that become the 

basis for generating formal models suitable for solid experimental and theoretical 

analysis, e.g., models for user movement that are not only amenable to simulation but 

also to mathematical analysis. The most demanding property, however, of such a 

modeling technique is the ability to describe self-modification in an elegant and easy 

to understand way. 

Example: Self Modifying Extended Predicate/Transition Nets 

The main properties requested for modeling self-coordinating ubiquitous 

computing environments can be summarized as: 

- Communication centric, 

- Local control, 

- Absence of global state, 

- Asynchronous, 

- Modeling support for complex systems, 

- Heterogeneity, 

- Support of self-modification. 

It can be observed that the first 4 properties are already present in case of Petri 

nets. Higher order Petri nets like Predicate/Transition nets even support the 

description of complex and heterogeneous systems, at least when hierarchy is added, 

as done by work at our group. Therefore it seems to be a good advice to follow the 

path of higher order Petri nets as the basis for the needed modeling technique. The 

main open gap is self-modification. As it will be shown, even this gap can be closed 

in an elegant manner. 

Petri nets are bipartite directed graphs PN = (P, T, f, g) augmented by a marking M 

and firing rules. The Petri net graph consists of a finite set of places P, a finite set of 

transitions T, directed edges f ⊆⊆⊆⊆  P x T from places to transitions and g ⊆⊆⊆⊆ T x P from 

transitions to places. Places model conditions. For this purpose they may be marked 

by tokens. Driven by specific firing rules a transition can fire based on the local 

marking of those places it is directly connected with. By firing, the marking of these 

places is modified. 

In the case of High-Level nets the tokens are typed individuals. The other net 

components are annotated accordingly: places with data types, edges with variable 

expressions and transitions with a guard and a set of variable assignments. Now a 

transition can fire only if the formal edge expressions can be unified with actually 

available tokens and this unification passes the guard expression of the transition. By 

firing, the input tokens are consumed and calculations associated with the transition 

are executed. By this new tokens are produced that are routed to output places 

according to variable expressions annotating the output edges of the transition. 

Pr/T–Nets are very powerful, offering the modeling power of Turing machines. To 

support easy modeling of highly complex systems in our research group we 

additionally added a hierarchy concept that combines hierarchy over places 

(following Harel’s hierarchy concepts for StateCharts [10]) and over transitions (in 

accordance with the concepts of Structured Nets by Cherkasova/Kotov [4]).  



Finally we added description means for timing to Pr/T–Nets. By this we obtained 

an elegant, adequate and powerful modeling means that serves as foundation of our 

entire work on design systems for distributed embedded systems. However up to now 

this modeling technique is adequate only for structurally static systems. Structurally 

dynamic systems demand for some further extensions that are to be described in the 

sequel. 

In the case of static systems the resulting system can be modeled in advance. In the 

case of a dynamically reconfigurable one, only the generating system of a set of 

potentially resulting systems can be provided. Obviously this is an even more 

demanding task. Resulting systems are modeled by extended Pr/T–Nets in our case. 

By reasons of intended elegance and in order to achieve a self-contained concept we 

decided to use an extension of these modeling means to describe the generation 

process as well [18]. 

For realizing dynamic reconfiguration, we propose to apply the mechanism of net 

refinement – usually only used during the specification of a system – at run-time. 

Technically, changes to the refinement of components are associated to the firing of 

certain transitions. For this purpose, we allow to annotate transitions with a rule for 

the refinement of other nodes in the surrounding Petri net specification.  

Usually it is not reasonable to specify rules applicable to arbitrary transitions. 

Therefore, restrictions on the application of a rule can be specified. On the one hand, 

a scope may be specified, that is a subnet in which the transformation may take place. 

On the other hand, attributes of the component, whose refinement is changed, can be 

specified in the guard of a transition. That way it is possible for instance, to specify 

precisely to which transition the transformation should be applied by specifying its 

fully qualified path name. 

Using refinements for net modifications combines two advantages. On the one 

hand, Petri net refinements are a thoroughly elaborated concept for developing a 

specification in a well-structured way. They allow for defining transformations that 

preserve certain relevant properties of the specification. On the other hand they are 

powerful enough for describing a variety of dynamic modifications. However, in 

some cases it is necessary to extend the limited set of refinement operations. We 

therefore offer a generic approach in addition to the one described above. We allow 

annotating transitions with rules as they are used in High-Level replacement systems. 

Annotating an arbitrary transition TMod of a Petri net N with this rule specifies that, 

after firing of TMod, a subnet Left of N is replaced by the net Right. As for the 

transitions annotated with refinement rules, also for transitions with replacement rules 

the firing rule is extended. In addition to the standard checking for fireability of 

transitions it is checked whether the left hand side of the rule is part of the current 

Petri net. During transition firing, the rule is executed in addition to the standard 

firing actions. 

  



3.2 Self-Coordinating Objects 

Numerous IT-based objects are enhanced by built-in intelligence. This means that a 

sense-decide-act loop is included in such systems. By exploring the environment 

using smart sensor functionalities decisions can be made how to behave in the current 

situation. These decisions depend not only on actual environmental information but 

also on a certain history of both, input from the environment and internal state. The 

latter means that the system has to have certain reflective capabilities. Based on this 

reflective knowledge, information from the environment including previous 

environmental reaction on activities of the system, and some global knowledge the 

system is able to learn and by this self-optimize its behavior.  Systems of this kind are 

emerging in the areas of smart user interfaces, in gaming, and in the field of 

mechatronics.  

Possible applications are robotics, driver assistant systems, advanced vehicle 

dynamics control, traffic systems with coordinated vehicle control, energy 

management, and route planning. Cognitive actuators with integrated smart sensors 

and inherent intelligence will take over major parts of the sense-decide-act loop. An 

intelligent actuator will be able to supervise itself and to take care of its health. All 

these constituents of embedded software have to be seen as a whole. Today’s 

reconfigurable hardware and the upcoming developments in this field allow making 

late decisions whether control algorithms have to be implemented in HW or SW. This 

distribution even may change at runtime, dependent on the actual value of various 

resources.  

 

Example: Self-Emerging Virtual Creatures 

Imagine a virtual creature that can adapt itself to become able to match a certain 

objective. There is some research into this direction, e.g. as reported in [3, 13, 14]. In 

the latter case (the Golem project) even physical realizations of such virtual creatures 

are looked at. In a thesis at our lab, Tim Schmidt concentrated on an automated design 

procedure for such creatures. The basic principle can be characterized by an 

evolutionary algorithm where all constituents of such a virtual creature (morphology, 

dynamics, sensing, and control) are object to this evolutionary process. Even more 

than other work, Tim Schmidt provides a powerful simulation environment that 

allows observing and evaluating the evolutionary process easily during the design 

process. 

The virtual creatures considered are formed by a tree structure of cubic solids 

connected by joints. Number, shape, and dimensioning of the solids are object to 

evolution. The joints may allow any degree of movement in all three axles. Joints may 

be located at any location on the surface of the solids. The only actuators are motors 

inside the joints. They may provide movements at any speed into any direction within 

an assignable limit. Sensors, too, may be located at any location on the surface of 

solids. They just sense contacts between solids and other solids or between solids and 

the environment. 

The control system of these creatures is a distributed one. It consists of a set of 

Limited Recurrent Neural Networks. There is a local controller per joint. It controls 

the rotation of the two connected solids relatively to each other. The controllers 

observe the values gathered by the relevant sensors. In addition the various controllers 



communicate in order to provide their control services. So a completely self-

coordinating system is obtained.  

Construction of the virtual creatures takes place using a genetic algorithm. The 

morphology of creatures is coded using Binary String Covering. The leaf nodes of a 

creature (all creatures are tree-structured) are coded by constants while the inner node 

coding is calculated by application of appropriate functions. Based on such a gene 

coding, the usual genetic operations like mutation and crossover are applied. The 

resulting creatures are evaluated concerning the respective objective. Promising 

creatures form the next generation of the population. 

 

3.3 Self-Coordinating Networked Objects  

The most dramatic change in systems’ nature comes up if services are provided by 

networks in the most general sense. In history any kind of traffic (i.e. networking) 

was one of the most important driving factors in enhancing culture and technology. 

Therefore it can be expected that omnipresent and seamless networking of technical 

artifacts will have a comparable impact on modern technology. The service-providing 

entities are usually considered as autonomous and cooperating towards a common 

goal, but competition and selfishness of various kinds is also present. There is a wide 

range of “helper” disciplines engaged to improve such services; for example, 

optimization theory has found its application in virtually every kind of network. In 

most cases, a central resource planning is usually not feasible, nor is a static planning 

– perturbations in network structure and requests have to be accounted for and 

corrected.  

Services and networks need to be composed. Networks usually do not exist in 

isolation; rather, they come in contact with each other. A team of soccer playing 

robots [17] may serve as an example. The natural computing architecture of future 

ubiquitous computing systems is that of a distributed, concurrent, and communicating 

set of processing nodes (sensors, actuators, controller units). To meet the demands of 

high reliability and hard real-time processing of such complex heterogeneous 

networks, integrated software/hardware architectures have to be explored together 

with optimally matching operating system services. Self-coordination is mandatory 

for resource-efficient design and management of such distributed controller 

architectures. Operating systems themselves will become network-based. I.e. the 

whole set of offered services will no longer be provided by each single instance of the 

OS by a cluster of instances as a whole. The same techniques to migrate application 

software from one computing node to another can also be applied to the OS. This 

turns such a network-based OS into a volatile, self coordinating artifact. 

 

Example: Self-Coordinating Operating Systems / Communication Structures 
Ordinary operating systems (OS) are forced to provide all services that might be 

asked for by any application as the set of possible application over the OS’s lifetime is 

not predictable. In embedded systems, usually exactly these services are provided that 

are really needed by the set of (a priori known) applications. This saves a lot of 



resources, especially concerning memory. In the case of self-coordinating systems, 

however, the set of possible applications is no longer fixed and cannot be predicted 

off-line. In order to avoid the overhead of general purpose operating systems, 

techniques of self-adaptation, now applied to the OS are used. An extreme approach 

into this direction is Paderborn University’s NanoOS. This OS is especially tailored 

towards swarms of tiny nodes, e.g. sensor networks. The basic idea of NanoOS is to 

use an entire swarm of instances running on top of a swarm of nodes as the service 

provider. This means that a broad band of services is available, however not 

necessarily entirely on a specific node. Rarely requested services may be distributed 

sparsely over the network. When such a service is requested and it is not available at 

the location of request it may be activated remotely on another node of the respective 

cluster. A cluster in this context is defined as the set of OS instances that provides the 

entire set of services.  

Of course the distribution of services over the network is crucial. In the case of 

NanoOS ant colony algorithms are applied to approach an optimal distribution of 

services. Whenever a service is requested remotely all nodes on the path from the 

requesting node to the providing one is marked by “pheromone”. Services now have a 

tendency to move into the direction of the highest “pheromone” concentration. 

Similar techniques are used to provide a self-coordinating communication structure 

in between the nodes of such a swarm. Ant colony algorithms are used to construct a 

less dense (and therefore less power consuming) backbone net. Again special ant 

colony algorithms are used to adapt the network dynamically to any kind of 

distortion. Shortest paths can be found using Dorigo’s “classical” algorithm 

simulating the nest – food source behavior of ants. 

3.4 Self-coordinating Anthropomatics 

The term anthropomatics describes a scientific field that uses methods of 

computer, electrical, and mechanical engineering to develop models of interaction of 

humans with artificial agents, artifacts, servants, or assistants. Future technical 

systems will learn about the user and the environment without the user’s explicit input 

to the machine. Recognition of the intention of the user by analyzing prior actions and 

his/her emotions together with the generation of intuitive feedback will constitute 

more enjoyable man-machine interaction. Methods for natural communication, 

emphasizing higher-level cognitive functions have to be applied. The coordinated 

combination of these techniques will allow humans to communicate in a situation-

specific and context-sensitive manner with artificial assistants that are endued with 

cognitive capabilities.  

The recognition of speech can be enhanced by the extensive use of vision to 

analyze gestures and postures of the user. To enhance haptic communication with 

cognitive systems, advanced sensors will have to be designed. A flexible electronic 

skin, e.g., could give robots an almost-human sense of touch. The processing of the 

input of olfactory sensors will allow a further step into total immersion technologies. 

The resulting vicarious interactive participation in activities and the carrying out of 

physical work will bring benefits to a wide range of users. Examples include 



emergency and security services, entertainment and education industries, and those of 

restricted mobility such as the disabled or elderly.  

 

Example: Expression and Recognition of Emotions 

Human beings communicate not only based on pure facts but also express and 

recognize emotions. This additional communication “channel” seems to be extremely 

efficient. Therefore any communication which does not include this aspect is 

experienced as un-natural by humans. A human-centric man – machine 

communication therefore should include the aspect of emotions. The problem, 

however is, that obviously a machine has no emotions at all. But this does not mean 

that a machine cannot express emotions. What is needed is an internal model of 

emotions and how they can be stimulated. 

C-LAB, the cooperation between Paderborn University and SIEMENS, has 

developed MEXI. This is an artificial head that is able to express emotions like joy, 

demand for contacting humans, desire to play, anger. Of course MEXI does not have 

such emotions. But is carries an internal model of them and is able to express the 

respective modeled emotional state by properly moving mouth, eyes, ears, or the 

entire head. The internal model includes rules, how basic emotions are triggered by 

specific stimuli from the outside and on the other hand how they fade away by a 

decay process. Elementary emotions then are overlaid to result in complex ones. 

Human emotions are not only triggered by external stimuli but also by cyclic 

moods or drives. In MEXI, this cyclic behavior is modeled as well. The resulting 

values provide an additional overlay level. By this an even more realistic expression 

of emotions is obtained. 

If we have a model of emotions and if we know how they are expressed by facial 

patterns, this can also be used to recognize emotions of humans. From psychology the 

basics are known. Relatively few patterns are sufficient to conclude rather precisely 

which emotional state a person is in. In the case of C-LAB’s research, a combination 

of facial patterns and speech is used for analysis. 

4   Summary 

Self-coordination will play a dominant role in future IT systems which will consist 

of billions of interconnected things that think. Completely new approaches are needed 

to design and operate such intelligent IT environments. Substantial theoretical 

research is necessary to develop a “System Theory of Self-coordinating Systems”. On 

the other hand real systems of this kind have to be developed, built, and investigated. 

Both, self-coordinating objects and networks made out of them have to be studied. 

Finally the human being has to remain the central point of consideration. Preliminary 

results are already available. Some examples of such already existing approaches 

have been shown in the paper. 
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