
Distributed Invocation of Composite Web Services

Chang-Sup Park1 and Soyeon Park2

1.Department of Internet Information Engineering,
University of Suwon, Korea

park@suwon.ac.kr
2.Department of Computer Science,

University of Illinois at Urbana-Champaign
soyeon@uiuc.edu

Abstract. Web services provide a useful means to integrate heterogeneous ap-
plications distributed over the Internet based on XML and Web technologies.
This paper presents an approach to execute hierarchically interacting web ser-
vices efficiently. We provide a system architecture which can distribute invoca-
tions of web services over service providers by exploiting intensional XML
messages embedding external web service calls. We also propose a greedy heu-
ristic algorithm to generate an efficient strategy of executing web service calls,
which can improve overall performance of distributed web service systems on
the Internet.

1 Introduction

Web services are emerging as a major technology for integration of heterogeneous
applications distributed over the Internet. They are self-contained, modular units of
application logic which provide business functionality to other applications via Inter-
net connections based on XML messages and Web protocols. Applications can be as-
sembled from a set of appropriate web services and do not need to be developed from
scratch. A new web service also can be composed of existing web services, which
function as both clients and servers to the other web services.

Successive composition of web services builds a hierarchical structure of interac-
tions among a large number of web services. By using intensional XML messages
containing calls to external web services, a web service can delegate the invocation of
a web service to the other one. XML-based SOAP message and protocol used for web
service invocation involve clients, as well as servers, considerable performance over-
head [5, 7]. Since the peer nodes have different capability and performance depending
on their computing resource and workload, and communication cost between a pair of
peer nodes are also different, it is desirable to select one which can execute the web
service invocation most efficiently.

This paper proposes a method for executing invocation of composite web services
efficiently which interact hierarchically and can return intensional results. The pro-
posed method effectively distributes the workload on activating and completing web
service calls by exploiting intensional XML data as input and output messages of web

services. We provide a cost-based optimization technique to enhance overall perform-
ance of the entire web service systems. We also utilize user agents to support various
kinds of web clients with different capabilities and constraints.

The paper is organized as follows. In Section 2, previous work on web service
composition and application of intensional data is provided. System architecture for
composite web services exchanging intensional data is presented in Section 3, and an
algorithm for generating an efficient invocation strategy for web services considering
intensional data is proposed in Section 4. Section 5 draws conclusion with some fu-
ture work.

2 Backgrounds and Related Work

Deployment of web services is supported by various standards including Web Service
Description Language (WSDL), Universal Description, Discovery, and Integration
(UDDI), and Simple Object Access Protocol (SOAP). These standards respectively
support definition of the functions and interfaces of web services, advertisement of
web services to the community of potential user applications, and binding for remote
invocation of web services [14]. Fig. 1 shows a set of suggested protocols and lan-
guages comprising web services technologies.

As a useful means to realize the service-oriented architecture paradigm in software
development, extensive researches and developments have been done on the web ser-
vices including web service composition, semantic description and discovery of web
services, and improvement of quality of services [4]. While the business logic of a
web service can be implemented in general procedural programming languages, spe-
cial languages have been proposed in industries which make use of process models to
describe web service composition effectively, such as Web Service Flow Language
(WSFL), XLang, Business Process Execution Language for Web Services
(BPEL4WS), and Web Service Choreography Interface (WSCI) [13]. Researches on
the semantic web such as DAML-S ontology language support automated discovery,
execution, composition, and interoperation of web service [10]. For enhancing quality

Fig. 1. Web service protocol stack

HTTP, SMTP, FTP, etc.

Security Reliable
Messaging

Transactions

Coordination

SOAP / XML

WSDL, DAML-S, Policy, Inspection

BPEL4WS, WSCI, DAML-S

UDDI, DAML-S

DAML+OIL, OWL

Transport

Encoding & Messaging

Quality of Service

Service Description

Publication & Discovery

Service Composition

Semantic Web Service

HTTP, SMTP, FTP, etc.

Security Reliable
Messaging

Transactions

Coordination

SOAP / XML

WSDL, DAML-S, Policy, Inspection

BPEL4WS, WSCI, DAML-S

UDDI, DAML-S

DAML+OIL, OWL

Transport

Encoding & Messaging

Quality of Service

Service Description

Publication & Discovery

Service Composition

Semantic Web Service

of composite web services, L. Zeng et al. [15] proposed a general QoS model for web
services and an algorithm for selecting optimal web services in composition of a new
service. A. Mani and A. Nagarajan [9] specified various kinds of QoS requirements
for web services and techniques for satisfying them.

Recently, there have been proposed several approaches and applications exploiting
intensional data which embeds calls to external web services [2, 3, 8]. Active XML
[2] is a framework for data integration in a peer-to-peer environment which uses web
services exchanging intensional data called Active XML documents. Each peer node
provides Active XML services allowing clients to access the Active XML documents
stored in the peer’s repository. Active XML services can be specified as parameter-
ized queries over Active XML documents which contain calls to external web ser-
vices provided by other peers. Thus, they can be used to search, gather, and integrate
data distributed over the peer-to-peer nodes effectively [1].

3 System Architecture

Fig. 2 shows the execution environment of composite web services considered in this
paper. Composite web services interact with other web services available on the net-
work. Web services can be accessed and invoked from various user client devices.
They usually expect composite web services to complete execution and return exten-
sional data as a final result whose type was defined by WSDL since they often have
difficulties in materializing intensional data embedding service calls due to limitations
such as computing power and security constraints. To support such user clients, we
adopt software agents which execute independently of other web services and can
handle intensional data instead of the clients [6]. They receive service requests from

Fig. 2. System architecture

Agent Server

Agent

User Clients

Application Server

Composite
Web service

Composite
WS

PC

PDA

Mobile
Phone

User
Profile

UDDI Registry

WSDL

service
publishing

search

service call

request/
response

wired/
wireless
network

Internet
(WAN)

service call / extensional result

intensional
result

Component
Web services

Web service
Invocation

Planner

cost
reportcost

report
invocation

plan

access
information

Composite
WS

Composite
WS

…

Agent Server

Agent

User Clients

Application Server

Composite
Web service

Composite
WS

PC

PDA

Mobile
Phone

User
Profile

UDDI Registry

WSDL

service
publishing

search

service call

request/
response

wired/
wireless
network

Internet
(WAN)

service call / extensional result

intensional
result

Component
Web services

Web service
Invocation

Planner

cost
reportcost

report
invocation

plan

access
information

Composite
WS

Composite
WS

…

user clients, find and call appropriate web services, perform deferred invocation of
web services contained in intensional results, and deliver final results to the clients.
They are deployed at the location near to clients, which select and access an agent
through a wired or wireless communication network.

The UDDI registry manages description and access information of published web
services and provides clients with an interface to search them. The web service invo-
cation planner generates an efficient invocation strategy for web services using access
and cost estimation information of web services which are provided by the UDDI reg-
istry and the performance monitors in web service providers, respectively. The de-
tailed method is described in Section 4.

The architecture of the agent and web service providers is presented in Fig. 3.
Functions of the common components are as follows:

l The SOAP server handles encoding and decoding of SOAP messages sent to

and received from external web services.
l The web service/agent execution server performs creation and parsing of inten-

sional XML data exchanged with other web services. It may activate calls to
external web services contained in an intensional result returned from a web
service and integrate all the partial results into the final extensional or inten-
sional result. If a web service invocation plan is provided, it can be used to de-
termine the web service calls to be activated by the execution server.

l The performance monitor continuously checks the performance and workload
of a web service provider or agent server as well as communication costs with
other web services in order to estimate execution cost of web services invoca-
tion. The estimated costs are delivered to the web service invocation planner
and used to generate an optimized invocation plan for web services as shown in
Section 4.

Fig. 3. Architecture of an agent server and a web service provider

to other
Web

Services

Agent Server Web Service Provider

Web Service

service call
/ result

SOAP Server

Web Service
Execution Server

Performance
Monitor

service call
/ result

Agent

SOAP Server

Performance
Monitor

Agent
Manager

WS
Finder User

Profiles

Context
Manager

Agent
Execution Server

to other
Web

Services

Agent Server Web Service Provider

Web Service

service call
/ result

SOAP Server

Web Service
Execution Server

Performance
Monitor

service call
/ result

Agent

SOAP Server

Performance
Monitor

Agent
Manager

WS
Finder User

Profiles

Context
Manager

Agent
Execution Server

Agent Server Web Service Provider

Web Service

service call
/ result

SOAP Server

Web Service
Execution Server

Performance
Monitor

service call
/ result

Agent

SOAP Server

Performance
Monitor

Agent
Manager

WS
Finder User

Profiles

Context
Manager

Agent
Execution Server

The agent server also has additional components:

l The context manager personalizes the use of web services by exploiting pre-

defined user profiles and context information.
l The web services finder uses semantic information of available web services to

select and bind appropriate services satisfying user requirements dynamically
when they are not statically bound or provided by clients.

l The agent manager manages system resources and the life-cycle of agent in-
stances in the agent server.

4 Web Service Invocation Strategy

In this paper, we assume that intensional XML data can be used as input parameters
and output results of the operations in web services. It means that the values of input
parameters or execution results can contain calls to other web services, whose caller
and invocation time are dynamically determined in run-time. To support the inten-
sional parameters and results, the methods for type definition and type checking of the
web service messages need to be extended [11].

The use of intensional data makes it possible that hierarchically interacting web
services are invoked and executed in many different ways. For example, a composite
web service can return to its caller an intensional result containing calls to a subset of
component web services, and for each deferred invocation the caller web service can
either execute it by itself or send it to its caller successively. In general, different in-
vocation plans have different execution costs since the peer nodes that can call a web
service have different performance, workload, and communication cost to the target
web service. Therefore, an optimization strategy is required to generate an efficient
invocation plan for involved web services.

In this section, we propose a method for generating a cost-efficient invocation plan
for web services to improve the overall performance of distributed execution of web
services. For global optimization of web service invocation, it is assumed that access
information and invocation costs of web services are available from the UDDI regis-
try and the performance monitor in each peer node, as described in Section 3. The op-
timization result is offered to all the peer nodes and used to determine whether to exe-
cute a service call or transmit intensional parameters/results to other web services.

4.1 Problem Definition

For the simplicity of description, it is assumed that there is no cycle in a sequence of
service calls and there exists only one invocation path between any pair of web ser-
vices. If we denote the set of finite number of vertices representing web services by
Vd, the set of directed arcs connecting two web services representing a service invoca-
tion by Ad, and the weighting function for an arc in Ad which gives service invocation
cost by Wd, the call relations among web services can be represented by a weighted

directed tree DT=(Vd, Ad, Wd) which is called the call definition tree for web services
in this paper.

Given a call definition tree DT, a directed acyclic graph DT*=(Vd, Ad
*, Wd

*), where
Ad

* is the transitive closure of Ad including weighted arcs for all the pair of vertices
connected by a path in DT, represents all the possible ways of invoking web services
in the intensional result passing approach. Fig. 4-(a) shows an example.

Considering intensional result passing, we have two observations related with the
invocation of web services. First, if a path exists between a pair of web services v and
w in DT, an execution instance is possible in which v calls w. In other words, given a
path (s1, s2, … , sn) in DT, if an intensional result containing a call to sn is returned
from sn-1 to s1 directly or indirectly, web service s1 can invoke web service sn. Second,
in a feasible execution instance for a given DT, each web service should be called
from one caller web service and the result should be returned to the caller. Specifi-
cally, if we let ET=(Ve, Ae , We) be a tree representing an invocation plan with inten-
sional result passing, there cannot exist two different vertices si and sj such that both
arcs (si, sk) and (sj, sk) are contained in Ae for all vertices sk in Ve . These imply that an
invocation plan for web services should be a spanning tree for DT*, as shown in Fig.
4-(b). Furthermore, we have the following theorem.

Theorem 1. Assume that web services are executed with intensional results and let
Pd(v, w)= (s1, s2, … , sn) (s1=v, sn=w) be the path from v to w (v≠w) over the call defi-
nition tree DT. In all invocation trees representing execution instances of service in-
vocation, ET=(Ve, Ae, We), if (si, sj)∈Ae then (sk, sl)∉Ae for some vertices k and l such
that k < i < l < j or i < k < j < l (1 ≤ i, j, k, l ≤ n) o

(a) Web services call definition tree DT and DT* (b) An invocation instance
Fig. 4. An example of call definition and invocation of web services

Fig. 5. An invocation plan infeasible for intensional result passing

…
Sj SmSi Sk

…… …
Sj SmSi Sk

……

Fig. 5 shows an infeasible instance of service invocation which is described in

Theorem 1. An optimal invocation plan for web services returning intensional results
can be defined based on the above properties. Given a call definition tree DT= (Vd, Ad,
Wd) for a set of web services, let G be a set of spanning trees for DT* which satisfy the
following condition: for all vertices v and w having a path Pd(v, w)=(s1, s2, … , sn)
(s1=v, sn=w) in DT, if (si, sj)∈ Ae then (sk, sl)∉Ae such that i < k < j < l or k < i < l < j
(1 ≤ i, j , k, l ≤ n). If we define

∑
∈

=
Aa

aWTW)()(

for a weighted tree T=(V , A, W), a tree T0 such that

))(()(0 TWMinTW
T

′=
Γ∈′

is called the optimal invocation plan for the given web services.
On the other hand, intensional parameters containing calls to other web services

can be also utilized when data dependency exists between the input and output of a
pair of web services invoked from the same web service. For example, assume that a
web service A invokes other web services B and C. If the input value of C depends on
the result of B, an execution instance is possible in which A invokes C with an inten-
sional input parameter containing a call to B and C invokes B on behalf of A before it
executes its own business logic. Thus, data dependencies among component web ser-
vices and service calls with intensional parameters make various ways of service in-
vocation possible. This subsequently derives the same kind of optimization problem
as the one with the intensional result passing.

4.2 The Proposed Method

A naïve solution for the optimization problem described in Section 4.1 is to search the
solution space exhaustively by enumerating all the possible invocation plans and se-
lect the one with a minimum execution cost. While the method always results in the
optimal solution, it requires huge amount of execution time in investigating all the
possible solutions. For example, considering the vertices in the given call definition
tree in the increasing order of their depth, we can generate all the invocation plans for
the set of vertices whose depths are no deeper than k from the ones for the set of ver-
tices whose depths are no deeper than k-1. This enumeration process takes exponen-
tial time in the number of web services, which means that it is not efficient enough to
be applicable for a large number of web services rapidly growing over the Internet.
We can use a heuristic search method such as A* algorithms [12] in order to avoid an
exhaustive search by pruning an irrelevant part of the search space. However, the
worst-case performance cannot be improved from the exhaustive search method.

We propose a greedy algorithm shown in Fig. 6 to produce an efficient invocation
plan for the given web services in a more efficient way. To generate an invocation
tree, it searches the vertices in the call definition tree in a breadth-first manner. For
each vertex visited during search, it selects a vertex as its caller and inserts an arc
connecting them in the current invocation tree. For a visited vertex w, only the ances-

tor vertices of w can be its caller, which are on the actual invocation path Pe(r, v) from
the root vertex r to the parent vertex v of w in the invocation tree. We select one of
them by considering the costs of invoking the descendent web services of w as well as
the cost of invoking w. Specifically, denoting the set of descendent vertices of w by
Desc(w), we select as the caller of w a web service u in Pe(r, v) which makes the value
of

),(),(
)(

*

),(

* ∑
∈

∈
+

wDescx
d

urPt
d xtWMinwuW

minimal, as shown in Fig. 7. This requires that for the vertices in Desc(w) we should
find their callers with minimum costs from a different set of ancestor vertices in Pe(r,
u) repetitively, which are determined by the position of the vertex u on the path Pe(r,
v). Therefore, the time complexity of finding the caller of w is O(|Desc(w)|⋅l2) where l
is the length of Pe(r, v). The algorithm can be improved to O(|Desc(w)|⋅l) by using
more memory space. Specifically, we can avoid a lot of comparisons by considering
the vertex u on the path Pe(r, v) in the increasing order of depth, storing the selected
minimum-cost callers and their costs for the descendent vertices in Desc(w) for a spe-
cific position of the vertex u, and reusing the stored information in the next step with
the next position of the vertex u. As a result, if we denote the number of web services
by n, the overall optimization algorithm can be executed in

)log()|)(|(2
1

nnfiwDesch

i
i Ο=⋅⋅Ο ∑ = .

1 Greedy Algorithm
2 Input: a call definition tree DT = (Vd, Ad, Wd)
3 Output: an invocation tree for DT
4 begin
5 Let Q be a queue to store nodes in DT. Q := ∅ ;
6 Let ET = (Ve, Ae, We) be the result invocation tree. ET := ({r}, ∅ , ∅);
7 while Q ≠ ∅ do
8 v := Dequeue(Q);
9 Let (s1, s2, … , sn) be the sequence of nodes in Pe(r, v) in ET.
10 for each child node w of v in DT do

11 Find u such that)),(()),((
)(

*

),(

*

),(







+′= ∑

∈ ′∈∈′ wDescx
durPtdvrPu

xtWMinwuWMinu
ee

.

12 Ve := Ve ∪ {w}; Ae:= Ae ∪ {(u, w)}; We:= We ∪ {Wd
*((u, w))};

13 Enqueue(Q, w).
14 end for;
15 end while;
16 return ET;
17 end.

Fig. 6. A greedy algorithm

5 Conclusion and Future Work

This paper addressed the problem of finding a cost-optimal invocation plan for hierar-
chically interacting composite web services which can exchange intensional data con-
taining calls to other web services. Considering a large number of ways of invoking
web services possible in such environment, we proposed a heuristic algorithm to
generate an efficient invocation strategy for web services. It can enhance the overall
performance of web services by distributing tasks involved in the activation and
completion of the web services effectively over the participating peer nodes.

Future work includes performance evaluation of the proposed method and devel-
opment of a distributed optimization algorithm for guaranteeing autonomy of the web
services. We also plan to study on the efficient invocation strategies for web services
exploiting both intensional parameters and results.

References

1. Abiteboule, S., Benjelloun, O. Milo, T., Manolescu, I., Weber, R.: Active XML: A Data-
Centric Perspective on Web Services. Technical Report, No. 381. GEMO, INRIA Futurs
(2004)

2. Active XML. http://activexml.net/
3. Apache Jelly: Executable XML. http://jakarta.apache.org/commons/jelly/
4. Curbera, F., et al.: The Next Step in Web Services. Communications of the ACM, 46(10)

(2003) 29-34
5. Davis, D., Parashar, M.: Latency Performance of SOAP Implementations. Proc. of the 2nd

IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2002)
(2002) 407-412

6. Jennings, N., Wooldridge, M.: Software Agents, IEE Review, 42(1) (1996) 17-20
7. Kohlhoff, C., Steele, R.: Evaluating SOAP for High Performance Business Applications:

Real-Time Trading Systems. Proc. of WWW'03 (2003)
8. Macromedia Coldfusion MX. http://www.macromedia.com/

Fig. 7. Selection of the caller of w in the proposed greedy algorithm

r
v

w

ET Desc(w)

Pe(r, u)
x

u
t

Wd
*((t, x))

Wd
*((u, w))

r
v

w

ET Desc(w)

Pe(r, u)
x

u
t

Wd
*((t, x))

Wd
*((u, w))

9. Mani, A., Nagarajan, A.: Understanding Quality of Service for Web Services. IBM develop-
erWorks (2002)

10. McIlraith, S. A., et al.: Semantic Web Services. IEEE Intelligent Systems, 16(2) (2001) 46-
53

11. Milo, T., Abiteboul, S., Amann, B., Benjelloun, O., Dang Ngoc, F.: Exchanging Intensional
XML Data. Proc. of ACM SIGMOD Conference (2003)

12. Nilsson, N. J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers, Inc.,
San Francisco, CA (1998)

13. Solanki, M., Abela, C.: The Landscape of Markup Languages for Web Service Composi-
tion. Technical Report, De Montfort Univ. (2003)

14. Tsalgatidou, A., Pilioura, T.: An Overview of Standards and Related Technology in Web
Services. Distributed and Parallel Databases, 12(2) (2002) 135-162

15. Zeng, L., et al.: Quality Driven Web Services Composition. Proc. of Int’l Conf. on WWW
(2003) 411-421

