
Hybrid Dissemination Based Scalable and Adaptive
Context Delivery for Ubiquitous Computing

Lenin Mehedy, Md. Kamrul Hasan, Young Koo Lee1, Sungyoung Lee, Sang Man
Han

Real Time & Multimedia Lab, Department of Computer Engineering,
Kyung Hee University, 449-701, Republic of Korea

{lenin, kamrul, sylee, i30000}@oslab.khu.ac.kr,
1yklee@khu.ac.kr

Abstract. Context delivery is an inevitable issue for ubiquitous computing.
Context-aware middlewares perform all the functions of context sensing, infer-
ring and delivery to context-aware applications. But one of the major issues for
these middlewares is to devise a context delivery scheme that is scalable as
well as efficient. Pure unicast or pure broadcast based dissemination can not
provide scalability as well as less average latency. In this paper we present a
scalable context delivery mechanism for context-aware middlewares based on
hybrid data dissemination technique where the most requested data are broad-
casted and the rest are delivered through unicast. Our scheme is adaptive in the
sense that it dynamically differentiates hot (most requested) and cold (less re-
quested) data according to request rate and waiting time. Inclusion of lease
mechanism and bandwidth division further allows us to reduce network traffic
and average latency. We validated our claim through extensive simulation.

1 Introduction

Context awareness is the ability to sense, interpret and respond to the situation of an
entity (e.g. user, application) [2]. Often, the term "Context-aware Computing" is used
synonymously to Mark Weiser’s revolutionary concept of Ubiquitous Computing [1]
as every future application will have context-awareness. Context-aware middleware
performs all the functions of context sensing, inferring and then delivers to smart
applications (see [4] for a survey). Thus every context-aware middlewares usually
have the following three main phases of execution: a) Acquisition of raw sensor data,
b) Context inference from the sensory data, c) Context delivery to applications. This
paper focuses on the context delivery mechanism for such middlewares.

Our work is motivated by the unavoidable need of scalable context delivery in
large smart environments (such as a corporate office, academic building, shopping
complex etc.) where numerous context-aware applications (we interchangeably use
client or receivers), running on mobile devices like PDA or stationary devices (desk-

1 Dr. Young Koo Lee is the corresponding author

top PC), frequently request for various contexts to the middleware. If the context
information of interest is same among different clients, traditional unicast (point to
point or pull based) connection-oriented data services are uneconomical because it
incurs a lot of unnecessary traffic from clients to server and vice versa. Even if the
current technology allows us to have high network bandwidth and server capacity,
most of it would be underutilized and wasted during non-peak periods. Broadcast (
push based) is an efficient and scalable dissemination method in a connection-less
mode to any number of clients with no significant performance degradation in terms
of access latency[5]; but a major concern for the success of such system is broadcast-
ing the right set of data. Because, broadcasting less important data may cause network
overload. On the other hand, in on-demand broadcast (pull-push) method, the server
aggregates the requests of clients and broadcast the data. But broadcasting the context
with lowest request rate (cold item) may also increase network traffic. So hybrid
approach combines the benefit of broadcasting hot context data (having higher re-
quest rate) and that of unicasting the cold context data (having lower request rate) [6].
Even with this suitable and scalable approach, we have the problem of differentiating
hot and cold context data and formulate a suitable delivery mechanism for quick
response time.

By the term “efficient delivery” we mean that the mechanism should cause less
network traffic, provide quick response time and deal with dynamic nature of ubiqui-
tous environment (i.e. clients appear and disappear in an unpredictable manner). Un-
availability of such comprehensive solution motivates us to propose a context deliv-
ery mechanism for context aware middlewares in ubiquitous computing domain that
is scalable as well as adaptive to request pattern. Our solution is an effort towards
developing a robust and comprehensive context delivery mechanism for the middle-
ware CAMUS (Context Aware Middleware for Ubiquitous System) [3], [17].

This paper is organized as follows: Section 2 describes related works. Section 3
explains the proposed method of context delivery. Section 4 presents the performance
evaluation and Section 5 concludes with some future works.

2 Related Work

To the best of our knowledge, the researches in context delivery of the middlewares
have not addressed so far the scalability issue where contexts are to be efficiently
delivered to large number of mobile or static clients in ubiquitous environment. The
most related research to ours is the Context Discovery Protocol (R-CDP) [13] that has
been implemented and evaluated in “Reconfigurable Context Sensitive Middleware”
(RCSM) [14]. The fundamental difference between R-CDP and our work is that R-
CDP uses broadcast to request for a context and the middleware unicast the data to
the requester, which is completely opposite to our mechanism as we use unicast for
request and combination of broadcast and unicast for delivery. We use the technique
of RxW algorithm [11] to prioritize the delivery where they use Refresh Priority that
is based on the divergence of contexts and energy consumption of “Provider”. We

also perform bandwidth division for hot and cold items for optimal average latency.
The similarity with their work is that the motivation of their Neighbor Validation
Beacons (NVB) is same as that of our Lease Renewal and we also have the way of
specifying the update threshold for context update notification. However, they do not
use context ontology for semantic interpretation. Moreover, R-CDP has not been
tested for scalability [13], which we believe an important performance issue for large
scale deployment of smart applications.

The idea of Hybrid data dissemination technique was first used in the Boston
Community Information System [8] by combining broadcast and interactive commu-
nication to provide most updated information to an entire metropolitan area. This
scheme is also adopted in [5], [6], [7], [8], [9], and [10] where the issue of mixing
push and pull web documents together on a single broadcast channel was examined.
But the document classification problem was introduced in [6] and later document
classification along with bandwidth division was resolved in [7]. We employ these
ideas of hybrid dissemination, scheduling, classification of data, bandwidth division
etc. for scalable and efficient delivery of context for ubiquitous computing environ-
ment. Though our approach is very similar to [7], but we differ in calculating the
popularity of an item not only on the total request but also on the longest waiting time
of any outstanding request according to RxW as RxW does not suffer from starva-
tion of request for cold item [11]. Moreover we also employ lease mechanism to
reduce the periodic request (polling).

3 Proposed Scheme

Before introducing our context delivery scheme, let us assume that the clients request
context information using context ontology for semantic interoperability (e.g. Contel
[12] [17]). We use hybrid dissemination scheme [6] for the context delivery in ubiq-
uitous environment. But this scheme introduces three inter-related data management
problems at the middleware: First: the middleware must dynamically classify the
requests between hot and cold context data and schedule the delivery according to
priority or popularity (Prioritization). Second, the middleware should divide dynami-
cally its bandwidth between unicast pull and multicast push for optimal use of band-
width to ensure low average latency (Bandwidth Division). Third, as the hot context
data are broadcast, some clients may receive the information passively in the sense
that they do not send any request for that data and we call them “passive client”.
Therefore, the middleware lacks a lot of invaluable information about the data re-
quirement and fails to appropriately estimate the hotness and coldness of data items
(Push Popularity Problem [7]). The average latency for a data item on the push
channel is half of the period of the broadcast cycle if we assume that the items are
broadcast sequentially. However, the latency for pulled items are totally different
because if an item i of size iS is queued at the server for transmission, the corre-

sponding queuing delay is either ()iO S or unbounded [7].

3.1 Message Format

All the clients request for context information according to the context ontology.
Clients specify the type of context (e.g. Temperature) and as well as the entity of
which this context is related (e.g. Room). “Lease Duration” and “Update Threshold”
are also to be specified if a client needs a context for a certain amount of time to
avoid polling. Thus the Request message contains the following information: Context
Type (CT), Entity Type (ET), Entity Id (EID), Lease Duration (LD) and Update
Threshold (UT) (see Table 1). If any client does not need periodical update notifica-
tion, it should specify the “Lease Duration” field and “Update Threshold” field as
zero. Reply message contains CT, ET, EID, value (V), Maximum Lease Duration
(MLD), Minimum Update Threshold (MUT) and Report Probability (RP). RP is dis-
cussed in section 3.4 in detail.

Table 1. Message Format
Type Content
Request {CT, ET, EID, LD, UT}
Reply { CT, ET, EID, V, MLD, MUT, RP }

3.2 Prioritization

The middleware enqueues the requests according to different context groups and
maintains the following information for each of the groups:

• Total Leased Request (TLR): Total number of leased requests for this spe-
cific context. This value is used in determining whether this data should be
scheduled for broadcast (hot item) or unicast (cold item).

• Leased Request List (LRL): This list contains the ids (IP address) and lease
durations of leased clients.

• Max Lease Duration (MLD): Maximum lease duration among the leased du-
ration. This information is also sent along with the data to let the clients
know how long this data will be delivered. If any client is receiving the data
passively and wants to use longer than this time, it will renew the lease for
longer duration.

• Total Pending Request (TPR): This field denotes the total number of re-
quests that have been received but no delivery of the context has been done
yet. This field is reset to zero after each delivery of the context and incre-
mented after receiving of each new request for this context. The larger the
value of this field, the higher the priority of delivery of this context should
be.

• Pending Request List (PRL): This list is similar to LRL but contains the re-
questers’ ids (IP address) and requested lease duration of the pending re-
quests. After the delivery, the requests with lease duration greater than zero
will be added to the LRL and TLR will be updated accordingly.

• First Arrival Time (FAT): This is the arrival time of the first request which is
still pending. Longest waiting time (LWT) of any pending request for this
context is the difference of current time and FAT. FAT is reset to zero after

each delivery and set to the arrival time of the first request as it is queued.
The larger the value of this field, the higher the priority of this context
should be for delivery.

• Last Delivery Time (LDT): The most recent time when the context was de-
livered. The difference between current time and LDT is the longest waiting
time of the leased clients.

• Min Update Threshold (MUT): The minimum of update threshold values
among the requests. If the context is changed by this amount, it is then
scheduled for delivery.

• Candidate for Scheduling (CS): This is a binary value. If the amount of
change exceeds the Min Update Threshold (MUT), the value of this field be-
comes one (true) and implies that this data should be delivered. This field
becomes zero (false) with the next delivery of the context data.

To set the priorities of the requested context data, we use the total number of re-

quests (R) and longest waiting time of the outstanding request (W) for that item and it
is motivated by RxW algorithm [11]. In RxW algorithm, the item with higher R*W
value has higher priority. Thus we prioritize a data either because it is very popular or
because it has at least one long-outstanding request. We consider both Total Pending
Request (TPR) and Total Leased Request (TLR) when CS is one (true) to be the total
number of request (R), otherwise we only consider TPR to be the R value for the
context item (see equation 1). This is because TLR comes into account as soon as the
amount of change exceeds Min Update threshold (MUT) and CS becomes one (true).
Similarly, as long as CS is zero, difference of current time (CT) and FAT (First Arri-
val Time) is the value of longest waiting time (W); but as soon as CS becomes one,
the longest wait time (W) is the difference of CT and LDT (Last Delivery Time) as all
the leased requests have been waiting since LDT. Hence we define RxW with the
following equation:

() ()() ()()* * 1 (1)RxW TPR CS TLR CT FAT CS CS CT LDT= + − − + −

We calculate RxW value of each group (data item) and sort them in descending
order. We update the list each time a request comes and use the same data structure
proposed in [11] for efficient maintenance of such list. The RxW value of i th group
is denoted as popularity (or priority) ip in the following sections.

3.3 Bandwidth Division

The motivation of bandwidth division comes from the fact that the average latency
(L) of a data item is less when hot items are assigned to broadcast, cool items to uni-
cast pull and the bandwidth is divided appropriately between the two channels. We
used the bandwidth division algorithm similar to that is suggested for web server in
[7]. But, we use the prioritization described in section 3.2 rather than using the priori-
tization based on request rate only as it is used in [7]. The bandwidth division algo-

rithm uses the sorted list of items with decreasing order of popularity,
i.e. () 11p p i ni i≥ ≤ ≤+ , where n is the current size of the list. It is intuitive that if

item i is pushed, then j i≤ should also be pushed. So, the algorithm tries to parti-

tion the list at index k such that the push set { }1, 2, ..., k minimizes the latency L

given a certain bandwidth B . The optimal value *k is found by trying all possible

values of L and finally the algorithm determines the pull bandwidth
1

n
p Si ii k

α λ∑
= +

,

which leaves bandwidth
1

n
pushBW B p Si ii k

α λ= − ∑
= +

 for the push channel and

average latency for the pushed documents is then
1 2

k Si
i pushBW
∑
=

. Here λ and iS de-

note request rate and size of the item respectively. The algorithm runs in ()O n as it

performs binary search over all possible values of L and maintains an internal array
that stores the total size of each possible partition using binary tree techniques [7].

3.4 Push Popularity Problem

As the data is broadcast, some clients may not need to send any explicit request. This
will misguide the middleware to identify most requested item and thus it introduces
the “push popularity problem”. We can not expect to solve this push popularity prob-
lem completely as it will require all the clients to send requests explicitly and hinder
the benefit of broadcast. So, a portion of the clients that are passively accessing data
should send requests even though the data is ensured to be delivered. The middleware
sends a report probability (RP) with the data and client submits an explicit request for
this data with probability RP. It is proved in [7] that RP should be set inversely pro-
portional to the predicted access probability for that data and the equation to calculate
RP is:

,

 (2)
0.2,

if p kip ki
otherwise

RPi

β λ β
λ


>





=

Where β is the difference of Maximum acceptable TCP connection and request ar-

rival rate, λ denotes aggregate request rate and ip denotes the priority (or popularity)

of group i based on total request and k denotes the current number of broadcast
items. Here we notice that if βλ <kip , the probability will exceed one and hence we
specified RP to be 0.2 as a default. It should also be noted that whenever the client
sends a request, it sends a complete request with its desired update threshold (UT)
and desired lease extension (LE). LE denotes the desired extension after the expiry of

current MLD. The same request format is also used for lease renewal when the lease
expires.

4 Performance Evaluation

In order to establish the potential of our proposed context delivery mechanism, we
have built a simulation model of the proposed system and evaluated using the simula-
tion tool OMNET++ [16]. All the graphs presented here are generated using the
PLOV tool of OMNET++.

4.1 Simulation Model

In our client-server model the server (our middleware) acts as a data server and deliv-
ers self identifying context data items of equal size either by broadcast or unicast
upon explicit request. The clients request an item according to Zipf distribution [15]
and the time of requests is exponentially distributed with mean M , where M

1 is the
average request rate of each client. We present the analysis of average latency and
network traffic of the proposed system in the following sub-sections. Table 2 presents
all the simulation parameters. Here the pull over-provisioning factor α and the toler-
ance factor ε are used by the bandwidth division algorithm described in [7].

Table 2: Simulation Parameters

Parameter Value
Total Client 3000
Total Item, N 50
Size of Each Item 200 bytes
Zipf parameter Θ 1.5
System Bandwidth 512,000 bits/sec
Exponential mean M 12
α 2
ε 0.005
Lease Duration of a client 10~ 100 ms (uniform)
Lease Renewal Probability 0.7
Update Threshold 0.5~2 unit (uniform)

4.2 Average Latency

Let ()kG be the average latency (avgT) if the k most popular items are broadcasted.

The function ()kG is a weighted average of the average latency of pushed items

1 2
Tpush

k Si
i pushBW

= ∑
=

 and the average latency for the pulled

items







 ∑

=
−∑

=
−

=
k

i i
N

i i
pullT

11

1

λλµ
 , where iλ is the Poisson request rate for each

item i [6], [7]. Our result is shown in Fig 1. Notice that the minimum of ()kG is to
the left of the intersection (at k=10) of the push and pull curves though theoretically it
should be on the right side of the intersection [6]. The minimum of ()kG occurs at a
relatively small value of k and precedes the intersection due to two complementary
reasons. First, the most popular items are chosen for push and are also those to which
a Zipf distribution gives substantially more weight. So, if an item is delivered using
broadcast, it will also have the largest impact on the globally average delays. As the
numbers of the most popular items are small and are broadcasted first, the overall
minimum delay occurs for small values of k . Second, pull delays are actually mini-
mized at the points k ′ where the pull-curve flattens out. However k ′ precedes the
intersection in our graph, and so the overall minimum occurs before that intersection.

Fig 1: Relation of average latency of Push and Pull as the number of broadcast items changes
according to our experiments. Here the intersection of pushT and pullT occurs at 10=k

and before k=3, pullT grows arbitrarily large.

4.3 Network Traffic

Fig 2 and Fig 3 presents our simulation result regarding network traffic. Here we can
see in Fig 2 that in the beginning of time, the number of request is high. But as the
server starts to deliver items, the number request decreases due to two reasons. First,
the replies contain the maximum lease period and minimum threshold value for the
context items and the clients do not need to send explicit request again until the lease
expires. Second, as the most popular items are broadcast, the clients that also need the
data do not send request but uses the data passively. But we can see some spikes in
the request graph because of the lease renewal requests and the requests sent by the
passive clients due to Report Probability as we have already discussed. Here we see

that incorporation of lease mechanism and threshold reduces overall network traffic
from client as well as from server (Fig 3).

Fig 2: Number of request and reply with change of time using our approach. The number of
reply denotes total number of broadcast and unicast items.

Fig 3: Number of requests in our approach and in pure pull approach. Simulation results show
that our approach causes fewer requests as it avoids polling and uses lease mechanism.

5 Conclusion and Future Work

In this paper we present a scalable context delivery mechanism for context-aware
middlewares based on hybrid data dissemination technique where the most requested
data are broadcasted and the rest are delivered through unicast. Bandwidth division
and lease mechanism are two notable properties of our approach that reduce average
latency and network traffic respectively. Correlation of contexts, real time delivery,
predictive broadcast, secure delivery etc. are some of the interesting approaches to
extend this work.

Acknowledgement. This work was supported by IITA Professorship for Visiting
Faculty Positions in Korea from Ministry of Information and Communications.

Reference

1. Weiser, M.: The Computer for the 21st Century. In: Scientific America, Sept. 1991, pp.
94-104; reprinted in IEEE Pervasive Computing, 2002, pp. 19-25

2. Dey, A.K, Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In Proc. of the 2000 Conference on Human Factors in Computing Systems,
The Hague, The Netherlands, (April 2000)

3. Hung, N.Q., Shehzad, A., Kiani, S.L., Riaz, M., Lee, S.Y.: Developing Context-Aware
Ubiquitous Computing Systems with a Unified Middleware Framework. In: Proc. of Em-
bedded and Ubiquitous Computing: EUC 2004, LNCS Volume 3207, Springer-Verlag
(2004), pp. 672 – 681

4. Baldauf, M., Dustdar, S.: A Survey on Context-aware systems. Int. J. of Ad Hoc and
Ubiquitous Computing, forthcoming

5. Acharya, S., Franklin, M., Zdonik, S.: Balancing push and pull data broadcast. In ACM
SIGMOD, (May 1997)

6. Stanthatos, K., Roussopoulos, N., Baras, J. S.: Adaptive data broadcast in hybrid net-
works. In the 23rd Int. Conf. on VLDB, 30(2), (Sep. 1997)

7. Beaver, J., Morsillo, N., Pruhs, K., Chrysanthis, P. K.: Scalable Dissemination: What's
Hot and What's Not. In the Seventh Int. Workshop on the Web and Databases (WebDB
2004), Paris, France, June 17-18 (2004)

8. Gifford, D.: Polychannel Systems for Mass Digital Communications. CACM, 33(2):141-
151, (Feb. 1990)

9. Hall, A., Taubig, H.: Comparing push- and pull-based broadcasting or: Would “microsoft
watches” profit from a transmitter? Lecture Notes in Computer Science, 2647 (Jan. 2003)

10. Triantafillou, P., Harpantidou, R., Paterakis, M.: High performance data broadcasting
systems. Mobile Networks and Applications, 7 (2002) 279–290

11. Aksoy, D., Franklin, M.: RxW: A scheduling approach for large-scale on-demand data
broadcast. IEEE/ACM Transactions On Networking, 7(6) (Dec. 1999) 846-860

12. Shehzad, A., Hung, N.Q., Pham, K.A., Lee, S.Y.: Formal Modeling in Context Aware
Systems. In Proc. of Workshop on Modeling and Retrieval of Context, CEUR, ISSN 613-
0073, Vol-114, Germany (2004)

13. Yau, S.S, Chandrasekar, D., Huang, D,: An Adaptive, Lightweight and Energy-Efficient
Context Discovery Protocol for Ubiquitous Computing Environments. In the 10th IEEE
International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

14. Yau, S.S, Karim, F, Wang, Y, Wang, B., Gupta, S.: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing. IEEE Pervasive Computing, 1(3), July-September
(2002), pp.33-40.

15. Wentian Li, References on Zipf's Law. URL: http://www.nslij-genetics.org/wli/zipf/
16. OMNET++, URL: http://www.omnetpp.org/index.php
17. Shehzad, A., Hung N.Q., Anh, K.P.M. , Riaz, M., Liaquat, S., Lee, Y.K, Lee, S.Y:

Middleware Infrastructure for Context-aware Ubiquitous Computing Systems. CAMUS
Technical Report (TR-V3.2). February 2005. http://oslab.khu.ac.kr/camus

