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Abstract. Context delivery is an inevitable issue for ubiquitous computing. 
Context-aware middlewares perform all the functions of context sensing, infer-
ring and delivery to context-aware applications. But one of the major issues for 
these middlewares is to devise a context delivery scheme that is scalable as 
well as efficient. Pure unicast or pure broadcast based dissemination can not 
provide scalability as well as less average latency. In this paper we present a 
scalable context delivery mechanism for context-aware middlewares based on 
hybrid data dissemination technique where the most requested data are broad-
casted and the rest are delivered through unicast. Our scheme is adaptive in the 
sense that it dynamically differentiates hot (most requested) and cold (less re-
quested) data according to request rate and waiting time. Inclusion of lease 
mechanism and bandwidth division further allows us to reduce network traffic 
and average latency. We validated our claim through extensive simulation. 

1   Introduction 

Context awareness is the ability to sense, interpret and respond to the situation of an 
entity (e.g. user, application) [2]. Often, the term "Context-aware Computing" is used 
synonymously to Mark Weiser’s revolutionary concept of Ubiquitous Computing [1] 
as every future application will have context-awareness. Context-aware middleware 
performs all the functions of context sensing, inferring and then delivers to smart 
applications (see [4] for a survey). Thus every context-aware middlewares usually 
have the following three main phases of execution: a) Acquisition of raw sensor data, 
b) Context inference from the sensory data, c) Context delivery to applications. This 
paper focuses on the context delivery mechanism for such middlewares. 

Our work is motivated by the unavoidable need of scalable context delivery in 
large smart environments (such as a corporate office, academic building, shopping 
complex etc.) where numerous context-aware applications (we interchangeably use 
client or receivers), running on mobile devices like PDA or stationary devices (desk-
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top PC), frequently request for various contexts to the middleware. If the context 
information of interest is same among different clients, traditional unicast (point to 
point or pull based) connection-oriented data services are uneconomical because it 
incurs a lot of unnecessary traffic from clients to server and vice versa. Even if the 
current technology allows us to have high network bandwidth and server capacity, 
most of it would be underutilized and wasted during non-peak periods. Broadcast ( 
push based) is an efficient and scalable dissemination method in a connection-less 
mode to any number of clients with no significant performance degradation in terms 
of access latency[5]; but a major concern for the success of such system is broadcast-
ing the right set of data. Because, broadcasting less important data may cause network 
overload. On the other hand, in on-demand broadcast (pull-push) method, the server 
aggregates the requests of clients and broadcast the data. But broadcasting the context 
with lowest request rate (cold item) may also increase network traffic. So hybrid 
approach combines the benefit of broadcasting hot context data (having higher re-
quest rate) and that of unicasting the cold context data (having lower request rate) [6]. 
Even with this suitable and scalable approach, we have the problem of differentiating 
hot and cold context data and formulate a suitable delivery mechanism for quick 
response time. 

By the term “efficient delivery” we mean that the mechanism should cause less 
network traffic, provide quick response time and deal with dynamic nature of ubiqui-
tous environment (i.e. clients appear and disappear in an unpredictable manner). Un-
availability of such comprehensive solution motivates us to propose a context deliv-
ery mechanism for context aware middlewares in ubiquitous computing domain that 
is scalable as well as adaptive to request pattern. Our solution is an effort towards 
developing a robust and comprehensive context delivery mechanism for the middle-
ware CAMUS (Context Aware Middleware for Ubiquitous System) [3], [17].  

This paper is organized as follows: Section 2 describes related works. Section 3 
explains the proposed method of context delivery. Section 4 presents the performance 
evaluation and Section 5 concludes with some future works.  

2   Related Work 

To the best of our knowledge, the researches in context delivery of the middlewares 
have not addressed so far the scalability issue where contexts are to be efficiently 
delivered to large number of mobile or static clients in ubiquitous environment. The 
most related research to ours is the Context Discovery Protocol (R-CDP) [13] that has 
been implemented and evaluated in “Reconfigurable Context Sensitive Middleware” 
(RCSM) [14]. The fundamental difference between R-CDP and our work is that R-
CDP uses broadcast to request for a context and the middleware unicast the data to 
the requester, which is completely opposite to our mechanism as we use unicast for 
request and combination of broadcast and unicast for delivery. We use the technique 
of RxW algorithm [11] to prioritize the delivery where they use Refresh Priority that 
is based on the divergence of contexts and energy consumption of “Provider”. We 



also perform bandwidth division for hot and cold items for optimal average latency. 
The similarity with their work is that the motivation of their Neighbor Validation 
Beacons (NVB) is same as that of our Lease Renewal and we also have the way of 
specifying the update threshold for context update notification. However, they do not 
use context ontology for semantic interpretation. Moreover, R-CDP has not been 
tested for scalability [13], which we believe an important performance issue for large 
scale deployment of smart applications. 

The idea of Hybrid data dissemination technique was first used in the Boston 
Community Information System [8] by combining broadcast and interactive commu-
nication to provide most updated information to an entire metropolitan area. This 
scheme is also adopted in [5], [6], [7], [8], [9], and [10] where the issue of mixing 
push and pull web documents together on a single broadcast channel was examined. 
But the document classification problem was introduced in [6] and later document 
classification along with bandwidth division was resolved in [7]. We employ these 
ideas of hybrid dissemination, scheduling, classification of data, bandwidth division 
etc. for scalable and efficient delivery of context for ubiquitous computing environ-
ment. Though our approach is very similar to [7], but we differ in calculating the 
popularity of an item not only on the total request but also on the longest waiting time 
of any outstanding request according to RxW  as RxW  does not suffer from starva-
tion of request for cold item [11]. Moreover we also employ lease mechanism to 
reduce the periodic request (polling).  

3   Proposed Scheme 

Before introducing our context delivery scheme, let us assume that the clients request 
context information using context ontology for semantic interoperability (e.g. Contel 
[12] [17]). We use hybrid dissemination scheme [6] for the context delivery in ubiq-
uitous environment. But this scheme introduces three inter-related data management 
problems at the middleware: First: the middleware must dynamically classify the 
requests between hot and cold context data and schedule the delivery according to 
priority or popularity (Prioritization). Second, the middleware should divide dynami-
cally its bandwidth between unicast pull and multicast push for optimal use of band-
width to ensure low average latency (Bandwidth Division). Third, as the hot context 
data are broadcast, some clients may receive the information passively in the sense 
that they do not send any request for that data and we call them “passive client”. 
Therefore, the middleware lacks a lot of invaluable information about the data re-
quirement and fails to appropriately estimate the hotness and coldness of data items 
(Push Popularity Problem [7]). The average latency for a data item on the push 
channel is half of the period of the broadcast cycle if we assume that the items are 
broadcast sequentially. However, the latency for pulled items are totally different 
because if an item i  of size iS  is queued at the server for transmission, the corre-

sponding queuing delay is either ( )iO S  or unbounded [7]. 



3.1 Message Format 

All the clients request for context information according to the context ontology. 
Clients specify the type of context (e.g. Temperature) and as well as the entity of 
which this context is related (e.g. Room). “Lease Duration” and “Update Threshold” 
are also to be specified if a client needs a context for a certain amount of time to 
avoid polling. Thus the Request message contains the following information: Context 
Type (CT), Entity Type (ET), Entity Id (EID), Lease Duration (LD) and Update 
Threshold (UT) (see Table 1). If any client does not need periodical update notifica-
tion, it should specify the “Lease Duration” field and “Update Threshold” field as 
zero. Reply message contains CT, ET, EID, value (V), Maximum Lease Duration 
(MLD), Minimum Update Threshold (MUT) and Report Probability (RP). RP is dis-
cussed in section 3.4 in detail. 

Table 1. Message Format 
Type Content 
Request {CT, ET, EID, LD, UT} 
Reply { CT, ET, EID, V, MLD, MUT, RP } 

3.2 Prioritization  

The middleware enqueues the requests according to different context groups and 
maintains the following information for each of the groups: 

• Total Leased Request (TLR): Total number of leased requests for this spe-
cific context. This value is used in determining whether this data should be 
scheduled for broadcast (hot item) or unicast (cold item).  

• Leased Request List (LRL): This list contains the ids (IP address) and lease 
durations of leased clients. 

• Max Lease Duration (MLD): Maximum lease duration among the leased du-
ration. This information is also sent along with the data to let the clients 
know how long this data will be delivered. If any client is receiving the data 
passively and wants to use longer than this time, it will renew the lease for 
longer duration. 

• Total Pending Request (TPR): This field denotes the total number of re-
quests that have been received but no delivery of the context has been done 
yet. This field is reset to zero after each delivery of the context and incre-
mented after receiving of each new request for this context. The larger the 
value of this field, the higher the priority of delivery of this context should 
be. 

• Pending Request List (PRL): This list is similar to LRL but contains the re-
questers’ ids (IP address) and requested lease duration of the pending re-
quests. After the delivery, the requests with lease duration greater than zero 
will be added to the LRL and TLR will be updated accordingly. 

• First Arrival Time (FAT): This is the arrival time of the first request which is 
still pending. Longest waiting time (LWT) of any pending request for this 
context is the difference of current time and FAT. FAT is reset to zero after 



each delivery and set to the arrival time of the first request as it is queued. 
The larger the value of this field, the higher the priority of this context 
should be for delivery. 

• Last Delivery Time (LDT): The most recent time when the context was de-
livered. The difference between current time and LDT is the longest waiting 
time of the leased clients. 

• Min Update Threshold (MUT): The minimum of update threshold values 
among the requests. If the context is changed by this amount, it is then 
scheduled for delivery. 

• Candidate for Scheduling (CS): This is a binary value. If the amount of 
change exceeds the Min Update Threshold (MUT), the value of this field be-
comes one (true) and implies that this data should be delivered. This field 
becomes zero (false) with the next delivery of the context data.  

 
To set the priorities of the requested context data, we use the total number of re-

quests (R) and longest waiting time of the outstanding request (W) for that item and it 
is motivated by RxW algorithm [11]. In RxW algorithm, the item with higher R*W 
value has higher priority. Thus we prioritize a data either because it is very popular or 
because it has at least one long-outstanding request. We consider both Total Pending 
Request (TPR) and Total Leased Request (TLR) when CS is one (true) to be the total 
number of request (R), otherwise we only consider TPR to be the R value for the 
context item (see equation 1). This is because TLR comes into account as soon as the 
amount of change exceeds Min Update threshold (MUT) and CS becomes one (true). 
Similarly, as long as CS is zero, difference of current time (CT) and FAT (First Arri-
val Time) is the value of longest waiting time (W); but as soon as CS becomes one, 
the longest wait time (W) is the difference of CT and LDT (Last Delivery Time) as all 
the leased requests have been waiting since LDT. Hence we define RxW with the 
following equation: 

( ) ( )( ) ( )( )* * 1                                      (1)RxW TPR CS TLR CT FAT CS CS CT LDT= + − − + −

We calculate RxW  value of each group (data item) and sort them in descending 
order. We update the list each time a request comes and use the same data structure 
proposed in [11] for efficient maintenance of such list. The RxW value of i th group 
is denoted as popularity (or priority) ip in the following sections. 

3.3 Bandwidth Division 

The motivation of bandwidth division comes from the fact that the average latency 
(L) of a data item is less when hot items are assigned to broadcast, cool items to uni-
cast pull and the bandwidth is divided appropriately between the two channels. We 
used the bandwidth division algorithm similar to that is suggested for web server in 
[7]. But, we use the prioritization described in section 3.2 rather than using the priori-
tization based on request rate only as it is used in [7]. The bandwidth division algo-



rithm uses the sorted list of items with decreasing order of popularity, 
i.e. ( ) 11p p i ni i≥ ≤ ≤+ , where n is the current size of the list. It is intuitive that if 

item i  is pushed, then j i≤  should also be pushed. So, the algorithm tries to parti-

tion the list at index k  such that the push set { }1, 2, ..., k minimizes the latency L  

given a certain bandwidth B . The optimal value *k  is found by trying all possible 

values of L  and finally the algorithm determines the pull bandwidth
1

n
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, 
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 for the push channel and 

average latency for the pushed documents is then 
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. Here λ and iS de-

note request rate and size of the item respectively. The algorithm runs in ( )O n  as it 

performs binary search over all possible values of L and maintains an internal array 
that stores the total size of each possible partition using binary tree techniques [7]. 

3.4 Push Popularity Problem 

As the data is broadcast, some clients may not need to send any explicit request. This 
will misguide the middleware to identify most requested item and thus it introduces 
the “push popularity problem”. We can not expect to solve this push popularity prob-
lem completely as it will require all the clients to send requests explicitly and hinder 
the benefit of broadcast. So, a portion of the clients that are passively accessing data 
should send requests even though the data is ensured to be delivered. The middleware 
sends a report probability (RP) with the data and client submits an explicit request for 
this data with probability RP. It is proved in [7] that RP should be set inversely pro-
portional to the predicted access probability for that data and the equation to calculate 
RP is: 

 
, 

                                            (2)
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Where β  is the difference of Maximum acceptable TCP connection and request ar-

rival rate, λ denotes aggregate request rate and ip denotes the priority (or popularity) 

of group i  based on total request and k denotes the current number of broadcast 
items. Here we notice that if βλ <kip , the probability will exceed one and hence we 
specified RP to be 0.2 as a default. It should also be noted that whenever the client 
sends a request, it sends a complete request with its desired update threshold (UT) 
and desired lease extension (LE). LE denotes the desired extension after the expiry of 



current MLD. The same request format is also used for lease renewal when the lease 
expires. 

4   Performance Evaluation 

In order to establish the potential of our proposed context delivery mechanism, we 
have built a simulation model of the proposed system and evaluated using the simula-
tion tool OMNET++ [16]. All the graphs presented here are generated using the 
PLOV tool of OMNET++. 

4.1 Simulation Model 

In our client-server model the server (our middleware) acts as a data server and deliv-
ers self identifying context data items of equal size either by broadcast or unicast 
upon explicit request. The clients request an item according to Zipf distribution [15] 
and the time of requests is exponentially distributed with mean M  , where M

1 is the 
average request rate of each client. We present the analysis of average latency and 
network traffic of the proposed system in the following sub-sections. Table 2 presents 
all the simulation parameters. Here the pull over-provisioning factor α  and the toler-
ance factor ε  are used by the bandwidth division algorithm described in [7].  

 
Table 2: Simulation Parameters 

Parameter Value 
Total Client 3000 
Total Item, N 50 
Size of Each Item 200 bytes 
Zipf parameter Θ  1.5 
System Bandwidth  512,000 bits/sec 
Exponential mean M   12 
α  2 
ε  0.005 
Lease Duration of a client 10~ 100 ms (uniform) 
Lease Renewal Probability 0.7 
Update Threshold 0.5~2 unit (uniform) 

4.2 Average Latency 

Let ( )kG  be the average latency ( avgT ) if the k  most popular items are broadcasted. 

The function ( )kG  is a weighted average of the average latency of pushed items 

1 2
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 and the average latency for the pulled 
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 , where iλ is the Poisson request rate for each 

item i [6], [7]. Our result is shown in Fig 1. Notice that the minimum of ( )kG  is to 
the left of the intersection (at k=10) of the push and pull curves though theoretically it 
should be on the right side of the intersection [6]. The minimum of ( )kG  occurs at a 
relatively small value of k  and precedes the intersection due to two complementary 
reasons. First, the most popular items are chosen for push and are also those to which 
a Zipf distribution gives substantially more weight. So, if an item is delivered using 
broadcast, it will also have the largest impact on the globally average delays. As the 
numbers of the most popular items are small and are broadcasted first, the overall 
minimum delay occurs for small values of k . Second, pull delays are actually mini-
mized at the points k ′  where the pull-curve flattens out. However k ′  precedes the 
intersection in our graph, and so the overall minimum occurs before that intersection. 

 

 
Fig 1: Relation of average latency of Push and Pull as the number of broadcast items changes 
according to our experiments. Here the intersection of pushT  and pullT  occurs at 10=k  

and  before k=3, pullT grows arbitrarily large. 

4.3 Network Traffic 

Fig 2 and Fig 3 presents our simulation result regarding network traffic. Here we can 
see in Fig 2 that in the beginning of time, the number of request is high. But as the 
server starts to deliver items, the number request decreases due to two reasons. First, 
the replies contain the maximum lease period and minimum threshold value for the 
context items and the clients do not need to send explicit request again until the lease 
expires. Second, as the most popular items are broadcast, the clients that also need the 
data do not send request but uses the data passively. But we can see some spikes in 
the request graph because of the lease renewal requests and the requests sent by the 
passive clients due to Report Probability as we have already discussed. Here we see 



that incorporation of lease mechanism and threshold reduces overall network traffic 
from client as well as from server (Fig 3).  

 

 
Fig 2: Number of request and reply with change of time using our approach. The number of 
reply denotes total number of broadcast and unicast items. 

 
Fig 3: Number of requests in our approach and in pure pull approach. Simulation results show 
that our approach causes fewer requests as it avoids polling and uses lease mechanism. 

5   Conclusion and Future Work 

In this paper we present a scalable context delivery mechanism for context-aware 
middlewares based on hybrid data dissemination technique where the most requested 
data are broadcasted and the rest are delivered through unicast. Bandwidth division 
and lease mechanism are two notable properties of our approach that reduce average 
latency and network traffic respectively. Correlation of contexts, real time delivery, 
predictive broadcast, secure delivery etc. are some of the interesting approaches to 
extend this work. 
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