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Abstract. Hardware-software partitioning is one of the most crucial steps in the 
design of embedded systems, which is the process of partitioning an embedded 
system specification into hardware and software modules to meet performance 
and cost goals. A majority of former work focuses on the problem of meeting 
timing constraints under minimizing the amount of hardware or minimizing 
time under hardware area constraints. The trends towards energy-efficient 
design of distributed embedded systems indicate the need for low power 
hardware-software partitioning algorithms, which are not enough emphasized 
so far. In this paper, we design tabu search on a chaotic neural network to solve 
the low power hardware-software partitioning problem. By introducing chaotic 
dynamics and utilizing the refractory effects of neurons as the tabu effects, the 
realized tabu search gets partitioning result with lower energy consumption, 
when compared with genetic algorithm. 
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1   Introduction and Related Work 

Embedded systems have become omnipresent in wide variety of applications, such as 
telecommunication systems, consumer electronics, and other mass products. Modern 
embedded systems are often implemented as heterogeneous distributed systems. For 
completing complex embedded system under rigorous time and cost constraints, the 
hardware-software co-design of these, mostly, mixed software and hardware systems 
is an inevitable necessity [1]. One of the most crucial steps in the hardware-software 
co-design of embedded systems is hardware-software partitioning, that is, deciding 
which components of the systems should be realized in hardware and which ones in 
software [2]. Partitioning system specification into hardware and software, system 
designers have to take into account conflicting requirements on performance, power, 
cost, chip size, etc., and try to archive an optimal tradeoff. Hardware-software 
partitioning lies at one of the highest level of abstraction for the design of embedded 
systems, and drastically impacts the cost and performance of the whole system [3], so 
a good system partitioning is essential for the overall quality of embedded systems. It 



is also known that higher level of the design hierarchy where power is tackled, higher 
is the power reduction possible [4]. So low power hardware-software partitioning will 
consumedly reduce system power consumption.  

Minimizing power consumption of embedded systems is a crucial task of modern 
embedded systems, but low power hardware-software partitioning algorithms, which 
are not enough emphasized in the past. However, the recent development of the 
portable-application market has intensified the interest in system-level design 
techniques for energy-efficient embedded systems. 

Dave et al. proposed the first approach that targeted the reduction of power 
dissipation throughout the co-synthesis process [5]. They used a constructive 
algorithm to solve the classical multi-rate distributed system co-synthesis problem. 
This work was extended to target low power embedded systems, hence low power 
partitioning is only byproduct of their work.  

Dick and Jha [6] reported a multi-objective genetic algorithm based co-synthesis 
approach. This framework simultaneously partitions and schedules task graphs for 
embedded systems. Their approach tries to obtain tradeoffs of different objectives, 
and power consumption is also one of these optimized objectives.  

 In [7], Henkel introduces a low-power hardware/software partitioning approach 
for core-based systems. Their approach is based on the idea of mapping clusters of 
operations/instructions to a core that yields a high utilization rate of the involved 
resources and thus minimizing power consumption. Their approach is low power 
hardware-software partitioning of embedded core-based systems, however, our work 
is low power partitioning problem of distributed embedded systems. And moreover, 
theirs is based on a fine-grained (instruction/operation-level), whereas, our approach 
is coarse-grained (task/procedure-level). 

Peter et al. [8] proposed a simplified hardware-software partitioning formal model. 
Software implementation of a task is only associated with a software cost, which may 
be the running time, and hardware implementation of a task is associated with a 
hardware cost, which can be for instance area, energy consumption etc. The authors 
try to abandon details of the partitioning problem so as to solve the partitioning 
problem of large systems. They first took into account the partitioning problem of 
cost-constrained systems using integer linear programming, and subsequently dealt 
with the same problem using genetic algorithm. However the model is too simplified, 
so it may be difficult to be used for solving actual partitioning problem. In our work, 
we propose the applied formal model of partitioning problem under enlightening of 
their model, and use tabu search to look for the energy consumption minimum of 
hardware-software partitioning problem under system execution time constraint, 
hardware components’ area constraints and software processors’ memory constraints. 
By introducing chaotic dynamics and utilizing the refractory effects of neurons as the 
tabu effects, we realize the tabu search on a chaotic neural network. It can be seen 
from results of experiments that through reasonably designing the producing methods 
of candidate solutions, our algorithm is clearly superior to genetic algorithms.  



2 Problem Formalization 

2.1 Preliminary Definitions 

An embedded system application is specified as a set of communicating tasks, 
represented by a task graph ),( EGVGs . V is the set of graph vertices where vertex 

Vvi ∈ , ],1[ ni∈ , is the tasks of the systems that will be partitioned. Each vertex of 
task graph represents a function or a process, an atomic unit of functionality to be 
executed. EG  is the set of graph edges where each edge EGegij ∈  represents 
communication between vertex iv  and jv .  

The target architecture on which system tasks can be executed or implemented is 
captured using an architecture graph ),( CLPEGa , where nodes set PE  consists of 
processing components and edges set CL is composed of communication links. Every 
component PEPEp ∈ , ],1[ kp∈ , is processing elements which are probably 
heterogeneous, like general-purpose processors, ASIPs, FPGAs, and ASICs. For 
distinguishing software processors from hardware components, we define 

hs PEPEPE U= , },...,,{ 21 as sssPE =  denotes software processors set, consisting 
of different types and numbers of general-purpose processors or ASIPs; 

},...,,{ 21 bh hhhPE = denotes hardware components set, including different types and 
numbers of FPGAs or ASICs, and bak += .  

An infrastructure of communication links, },...,,{ 21 wcccCL = , consisting of buses 
and point-to-point connections, connects these components.  

Each task of the system specification might have multiple implementations, and 
therefore it can be potentially mapped to several components able to execute this task. 
In the task graph ),( EGVGs , each vertex Vvi ∈ , ],1[ ni∈ , is assigned to six aspects 
properties set, {{ ms

ie },  { nh
ie },  { ms

it }, { nh
it }, { ms

im }, { nh
ia }, ],1[ ni∈ }. ms

ie and 
ms
it respectively represents the software energy consumption and execution time for a 

given vertex iv  on a specified processor ms , ],1[ am∈ . nh
ie  and  nh

it  respectively 
represents the hardware energy consumption and execution time for a given vertex iv  
on a specified hardware unit nh , ],1[ bn∈ . Similarly, the software implementation of 
the function requires memory ms

im  on the processor ms  and the hardware 
implementation requires area nh

ia  on the hardware unit nh .  
Each edge EGegij ∈  is associated with two aspects properties set, {{ lc

ije }, 
{ lc
ijt }}. lc

ijt  denotes the time taken to transfer data through bus lc , ],1[ wl∈ , if iv  
and jv  are mapped to different processing elements which communicate by bus lc , 
and lc

ije represents energy consumption for completing the data transfer. For each 
possible task partitioning, all these attribute values are given in a technology library. 
These values are either based on previous design experience or on estimation 
techniques. 



2.2 Hardware-Software Partitioning Model 

Hardware-software partitioning P  can be defined as: },...,,,...,{:
11 ba hhss VVVVPV = , 

where VVVVV
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11
 and Φ=
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; the 
partitioning of graph edges are },...,{:
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The energy consumption model PE  of partition P : 
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The energy consumption model PE  is presented as the sum of three portions, the 
energy dissipation of executing tasks partitioned to all software processors, the energy 
dissipation of executing tasks implemented on all hardware components and that of 
all communications involved on all buses or point to point links, respectively. 

The time dissipation model PT of partition P  may be similarly constituted, so 
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The memory usage model ms
PM  of processor ms , ],1[ am∈ :  
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In the specified partition P , ms
PM  is the sum of memory request of all tasks 

mapped to the processor ms . 
The used hardware area model nh

PA  of hardware unit nh , ],1[ bn∈ :  
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In the specified partition P , nh
PA  is the sum of area usage of all tasks mapped to 

the hardware component nh .  

2.3 Low Power Hardware-Software Partitioning Problem  

Based on the above hardware-software partitioning model, the low power hardware-
software partitioning problem can be defined as: 

)( PEMin , and 0TTP ≤ , ],1[,0 amMM mm ss
P ∈≤ , ],1[,0 bnAA nn hh

P ∈≤  
0T  is the time constraint of embedded system application which is taken from the 

interval ∑ ∈Vv
s
i

s
i

s
ii

mttt )],...,,min(,0[ 21 , and msM 0  is memory amount dedicated by 
processor ],1[, amsm ∈ , similarly, nhA0  is hardware area amount of hardware 
component ],1[, bnhn ∈ . 

For getting valid and low power hardware-software partitioning result, our 
hardware-software partitioning heuristic algorithm is guided by the following cost 
function, which minimizes energy consumption while simultaneously satisfying all 
cost constraints. It takes the following form: 
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Where ],1[, amP
ms ∈ , ],1[, bnP

nh ∈  and tP are adjusted coefficients, respectively 
corresponding to every processor memory constraint, every hardware component area 
constraint, and system execution time constraint.  

Theorem 1. The low power hardware-software partitioning problem is NP-hard. 
The problem is not in NP, since a given solution for the problem cannot be verified 

in polynomial time to be the minimal power consumption. For specifying the NP-
hardness of our problem, we reference the complexity result of problem dealt with in 
paper [8]. Arato etc., define the hardware-software partitioning problem, which 
minimizes the system execution time under hardware cost constraint, and they prove 
that the problem is NP-hard. Comparing with their problem, we define low power 
hardware-software partitioning problem, which minimizes the system power 
consumption under system execution time constraint, memory constraint of every 
processor and area constraint of every hardware component. Thus, the proved NP-
hard problem in paper [8] is a special case of our problem, and hence, the problem in 
our definition is also NP-hard. 

3 Proposed Algorithm 

We realize the tabu search on chaotic neural network (TS_CNN) by introducing 
chaotic dynamics and utilizing the refractory effects of neurons as the tabu effects. In 
the following, we use symbol nii ,,1, L=  to denote task iv , ],1[ ni∈  and use 
symbol kjj ,,1, L=  to denote processing element PEPE j ∈ , ],1[ kj∈ . In the tabu 
search, we produce candidate solutions for each current solution by changing the 
assignments of tasks of specified number and keeping the others unchanged. The 
different number of tasks to be re-assigned leads to the different size of the candidate 
solutions. In this paper, we specify that the number of candidate solutions equals to 

kn×  for any size of tasks to be re-assigned. For the detail, we assume that the size of 
tasks to be re-assigned equals to 1+S ( 10 −≤≤ nS ), and then we obtain 

kn× candidate solutions for every current solution. 

3.1 Realizing tabu search by chaotic neural network 

Corresponding to the above kn× candidate solutions, we construct neural network by 
creating kn× neurons to realize the tabu search. Our approach includes both the tabu 
effect and chaotic dynamics, and it is realized by the following equations with an 
asynchronous updating: 

)()1( tt ijij ∆=+ βξ  (6) 
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When we produce candidate solutions by only changing the assignment of one 
task, namely, 0=S , variables S

ijij ζζ ,,1 L will be eliminated. Where β  is the scaling 
parameter for the gain effect; rK  is the decay parameter of the tabu effect; α  is the 
scaling parameter of the tabu effect; )(tij∆  is the gain of the objective function value 
and )()()( 0 tftft ijij −=∆ ; )(0 tf is the objective value of the current solution at time t 
and )(tfij is the value of the candidate solution at time t which is produced by 
assigning task i to component j , 1p to 1q ,… and Sp to Sq ; )(txij is the output of 
the thji ),(  neuron at time t , )(tijξ , )(tijη , )(1 tijζ ,…, )(tS

ijζ and )(tijγ are the 
internal state of the thji ),(  neuron at time t corresponding to the gain effect, the 
value of  mutual inhibitory connections, the tabu effect of the assignment of 1p to 

1q , … that of Sp to Sq  and that of i to j , respectively. W is the connection 
weights, and θ  is the positive bias.  

If 5.0)1( >+txij , the thji ),(  neuron fires and the task i is assigned to 
component j , 1p  to 1q , …, and Sp  to Sq , respectively. Because many tasks are 
required to re-assign to new components in one updating, all these assignments should 
be memorized as tabu effect to avoid the same assignment to be carried out in the 
range of tabu list size. Then, the tabu list consists of assignments of ),( ji , 

),( 11 qp , … and ),( SS qp . Aiming at actual application, we introduce accumulated 
variables )(tzij ( nii ,,1, L= , kjj ,,1, L= ) corresponding to assignments of i to 
j , which are executed with firing of other neurons than the thji ),(  neuron even 

though the corresponding thji ),(  neuron does not fire. And then )(tz
llqp  should also 

be prepared for memorizing the assignment of ),( ll qp  which does not correspond to 
the label of a firing neuron, Sl ,,1L= . In the case of the new updating iteration t+1, 
all variables )1( +tzij  are reset to 0. For memorizing the assignment of lp to lq until 
next updating of the th

ll qp ),(  neuron, the output of the thji ),(  neuron is added to 
the accumulated output of the th

ll qp ),(  neuron. This procedure is realized as 
follows: after the updating of the thji ),(  neuron, if the th

ll qp ),(  neuron is already 
updated on this iteration t, )1( +txij is added to )1( +tz

llqp . Otherwise, )1( +txij is 
added to )(tz

llqp , Sl ,,1L= .  



For numerical calculation, Eq. (8), (9) and (10) can be reduced as follows: 
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Where )1( rkR −=θ . 

4 Experiment Results 

The algorithm has been implemented in C, and tested on a Pentium IV 3.0GHz PC 
with 256MHz memory. Since TS_CNN is a heuristic rather than an exact algorithm, 
we had to determine both its performance and the quality of the solutions, empirically. 
For this purpose, we compared it with genetic algorithm (GA) [8], which is universal 
for hardware-software partitioning and may be used for solving low power 
partitioning problem. And then the approach [8] is based on heterogeneous distributed 
embed systems as same as ours. 

For general partitioning problem, there does not exist a widely accepted 
benchmark. We use a real-world GSM encoder task graph to test our approach, which 
consists of 53 tasks and 81 edges and is taken from [9].  

The mapped target architecture in our experiments consists of one general 
processor and two ASICs, and these processing elements are connected through a bus, 
forming a heterogeneous distributed embedded system.  The properties of these 
processing elements are listed in Table 1. 

Table 1. Target architecture description. 

Frequency (KHz) Memory (byte) General Processor 25000 2575860 
HW-Component Frequency (KHz) Area (mm2) 

ASIC0 2500 18374 
ASIC1 2500 50000 

Frequency (KHz) Average Power ( wµ ) 
66000 4881.648 

Package Size (b) Package Overhead (b) 
Bus 

8 33 
 
For detecting the influence for system power consumption when simultaneously 

change several tasks mapping schemes for producing candidate solutions of current 
solutions, we select 9 different values of parameter S , 1=S , 2=S , …, 9=S  for 
experiments and compare the results. According to the producing way of candidate 
solutions given in above section, we can obtain 353×  candidate solutions of each 



current solution in the every iteration of applying tabu search. For comparing with 
GA on the same condition, we set the population size of genetic algorithm equal to 
159. The crossover possibility and mutation possibility are set to 0.9 and 0.5, 
respectively. 

Through initial extensive experiments, we select a group of tabu search algorithm 
parameters, which are reasonable and can be combined to produce preferable 
solutions. The final parameters we select are the following: 

8.0=rk , 1=α , 2=β , 001.0=ε , 0001.0=W , 001.0=R . The system time 
constraint is taken from the interval ∑ ∈Vv

s
i

s
i

s
ii

mttt )],...,,min(,0[ 21 , we select 
∑ ∈× Vv

s
i

s
i

s
ii

mttt )],...,,min(5.0 21  as the system execution time constraints. 
Based on initial experiments, we respectively run TS_CNN 100 times according to 

different parameter S . For impartially comparing the influence of different parameter 
S , the above each experiment is run on the basis of same initial values and same 
iteration size 200. For reviewing the performance of our approach, we also execute 
genetic algorithm 100 times according to above population pool size and parameters. 

We compute the mean of 100 times experiments of every S , for thoroughly 
comparing the influence of different parameter S  for objective function value. 
Then, we also compute the mean of 100 times random experiments of GA. As a 
whole, we not only compare the influence of different parameter S for TS_CNN 
approach, but also we compare TS_CNN with GA for detecting the performance 
of our approach. 

Mean of energy function value for different methods are list in Figure 1. We 
found that when 6=S , that is to say, the number of tasks to be re-assigned for 
producing candidate solutions equals to 7, the obtained mean of energy function 
value is the lowest, and that becomes larger with the movement of the parameter 
S  towards the two opposite directions. From Figure 1, it can also be seen that the 
mean obtained by genetic algorithm is far worse than that by the tabu search with 

94 ≤≤ S , which indicates that tabu search on chaotic neural network can find 
average lower power consumption solution than GA.  

The distributions of energy function value when 6=S  are given in Figure 2, 
accompanying with the power consumption distribution from GA. Distribution 
curves display the number of solutions whose energy values f  belong to the 
following eight open intervals, respectively, f<6, 6<f<7, 7<f<8, 8<f<9, 9<f<10, 
10<f<20, 20<f<30 and f>30. As shown in Figure 2, the distribution of energy 
values with TS_CNN all concentrates on the former five intervals, and there are 
no solutions belonging to 10>f , whereas, there are 11 solutions of belonging to 

10>f with GA. The distribution characteristic illustrates that all the solutions 
produced by TS_CNN more approach global optimization than GA, which accord 
with the result obtained from mean curve. Even if in the former part of the figure 
2, there are more solutions to fall in the intervals 6<f  and 76 << f  with 
TS_CNN of 6=S  than those of GA, which further proves that we can obtain 
more solutions of lower energy function values by tabu search with 6=S . 

The performance enhancement of our approach should owe to the complex 
dynamics of chaotic neural network, which avoid search to be trapped in 
undesirable local minima. In addition, the fact that TS_CNN can produce average 



better solution than GA also illuminates that the tabu effect implemented by 
refractory effect of neurons is effective. 
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Fig. 1.  The mean value of random 100 time experiments of different parameter S  
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Fig. 2.  Solutions distribution comparison of GA and TS_CNN with 6=S  

5 Conclusions and Future Work 

In this paper, we have introduced a new formal model for the low power hardware-
software partitioning problem. This model has made it possible to investigate the 
optimization objective and constraints of the problem formally. Moreover, we have 
presented a tabu search on a chaotic neural network, which is a novel approach for the 



low power hardware-software partitioning of heterogeneous distributed embedded 
systems. In our empirical tests on a task graph of real-world GSM encoder, we find 
that the algorithm obviously outperforms genetic algorithm by properly producing 
candidate solutions of current solutions. For the specified example, when the number 
of tasks to be re-assigned equals to 7, the obtained mean of energy function value is 
the lowest. We attribute the better low power partitioning result to these facts that our 
formal model is valid, and the novel idea of designing tabu search on a chaotic neural 
network is fit to solve the problem. 

Our future plans include more tests of the algorithm using other real-world 
examples and hypothetical examples. And we prepare to extend the algorithm and 
compare it with other heuristic algorithms, e.g., simulated annealing. 
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