
Low Power Hardware-Software Partitioning Algorithm
for Heterogeneous Distributed Embedded Systems

Tianyi Ma, Jun Yang, Xinglan Wang

Computer and Information Engineering of College
Harbin University of Commerce

150001, Harbin, China
ma_tian_yi@163.com

Abstract. Hardware-software partitioning is one of the most crucial steps in the
design of embedded systems, which is the process of partitioning an embedded
system specification into hardware and software modules to meet performance
and cost goals. A majority of former work focuses on the problem of meeting
timing constraints under minimizing the amount of hardware or minimizing
time under hardware area constraints. The trends towards energy-efficient
design of distributed embedded systems indicate the need for low power
hardware-software partitioning algorithms, which are not enough emphasized
so far. In this paper, we design tabu search on a chaotic neural network to solve
the low power hardware-software partitioning problem. By introducing chaotic
dynamics and utilizing the refractory effects of neurons as the tabu effects, the
realized tabu search gets partitioning result with lower energy consumption,
when compared with genetic algorithm.

Keywords: Hardware-software co-design, hardware-software partitioning, tabu
search, chaotic neural network, low power

1 Introduction and Related Work

Embedded systems have become omnipresent in wide variety of applications, such as
telecommunication systems, consumer electronics, and other mass products. Modern
embedded systems are often implemented as heterogeneous distributed systems. For
completing complex embedded system under rigorous time and cost constraints, the
hardware-software co-design of these, mostly, mixed software and hardware systems
is an inevitable necessity [1]. One of the most crucial steps in the hardware-software
co-design of embedded systems is hardware-software partitioning, that is, deciding
which components of the systems should be realized in hardware and which ones in
software [2]. Partitioning system specification into hardware and software, system
designers have to take into account conflicting requirements on performance, power,
cost, chip size, etc., and try to archive an optimal tradeoff. Hardware-software
partitioning lies at one of the highest level of abstraction for the design of embedded
systems, and drastically impacts the cost and performance of the whole system [3], so
a good system partitioning is essential for the overall quality of embedded systems. It

is also known that higher level of the design hierarchy where power is tackled, higher
is the power reduction possible [4]. So low power hardware-software partitioning will
consumedly reduce system power consumption.

Minimizing power consumption of embedded systems is a crucial task of modern
embedded systems, but low power hardware-software partitioning algorithms, which
are not enough emphasized in the past. However, the recent development of the
portable-application market has intensified the interest in system-level design
techniques for energy-efficient embedded systems.

Dave et al. proposed the first approach that targeted the reduction of power
dissipation throughout the co-synthesis process [5]. They used a constructive
algorithm to solve the classical multi-rate distributed system co-synthesis problem.
This work was extended to target low power embedded systems, hence low power
partitioning is only byproduct of their work.

Dick and Jha [6] reported a multi-objective genetic algorithm based co-synthesis
approach. This framework simultaneously partitions and schedules task graphs for
embedded systems. Their approach tries to obtain tradeoffs of different objectives,
and power consumption is also one of these optimized objectives.

 In [7], Henkel introduces a low-power hardware/software partitioning approach
for core-based systems. Their approach is based on the idea of mapping clusters of
operations/instructions to a core that yields a high utilization rate of the involved
resources and thus minimizing power consumption. Their approach is low power
hardware-software partitioning of embedded core-based systems, however, our work
is low power partitioning problem of distributed embedded systems. And moreover,
theirs is based on a fine-grained (instruction/operation-level), whereas, our approach
is coarse-grained (task/procedure-level).

Peter et al. [8] proposed a simplified hardware-software partitioning formal model.
Software implementation of a task is only associated with a software cost, which may
be the running time, and hardware implementation of a task is associated with a
hardware cost, which can be for instance area, energy consumption etc. The authors
try to abandon details of the partitioning problem so as to solve the partitioning
problem of large systems. They first took into account the partitioning problem of
cost-constrained systems using integer linear programming, and subsequently dealt
with the same problem using genetic algorithm. However the model is too simplified,
so it may be difficult to be used for solving actual partitioning problem. In our work,
we propose the applied formal model of partitioning problem under enlightening of
their model, and use tabu search to look for the energy consumption minimum of
hardware-software partitioning problem under system execution time constraint,
hardware components’ area constraints and software processors’ memory constraints.
By introducing chaotic dynamics and utilizing the refractory effects of neurons as the
tabu effects, we realize the tabu search on a chaotic neural network. It can be seen
from results of experiments that through reasonably designing the producing methods
of candidate solutions, our algorithm is clearly superior to genetic algorithms.

2 Problem Formalization

2.1 Preliminary Definitions

An embedded system application is specified as a set of communicating tasks,
represented by a task graph),(EGVGs . V is the set of graph vertices where vertex

Vvi ∈ ,],1[ni∈ , is the tasks of the systems that will be partitioned. Each vertex of
task graph represents a function or a process, an atomic unit of functionality to be
executed. EG is the set of graph edges where each edge EGegij ∈ represents
communication between vertex iv and jv .

The target architecture on which system tasks can be executed or implemented is
captured using an architecture graph),(CLPEGa , where nodes set PE consists of
processing components and edges set CL is composed of communication links. Every
component PEPEp ∈ ,],1[kp∈ , is processing elements which are probably
heterogeneous, like general-purpose processors, ASIPs, FPGAs, and ASICs. For
distinguishing software processors from hardware components, we define

hs PEPEPE U= , },...,,{ 21 as sssPE = denotes software processors set, consisting
of different types and numbers of general-purpose processors or ASIPs;

},...,,{ 21 bh hhhPE = denotes hardware components set, including different types and
numbers of FPGAs or ASICs, and bak += .

An infrastructure of communication links, },...,,{ 21 wcccCL = , consisting of buses
and point-to-point connections, connects these components.

Each task of the system specification might have multiple implementations, and
therefore it can be potentially mapped to several components able to execute this task.
In the task graph),(EGVGs , each vertex Vvi ∈ ,],1[ni∈ , is assigned to six aspects
properties set, {{ ms

ie }, { nh
ie }, { ms

it }, { nh
it }, { ms

im }, { nh
ia },],1[ni∈ }. ms

ie and
ms
it respectively represents the software energy consumption and execution time for a

given vertex iv on a specified processor ms ,],1[am∈ . nh
ie and nh

it respectively
represents the hardware energy consumption and execution time for a given vertex iv
on a specified hardware unit nh ,],1[bn∈ . Similarly, the software implementation of
the function requires memory ms

im on the processor ms and the hardware
implementation requires area nh

ia on the hardware unit nh .
Each edge EGegij ∈ is associated with two aspects properties set, {{ lc

ije },
{ lc
ijt }}. lc

ijt denotes the time taken to transfer data through bus lc ,],1[wl∈ , if iv
and jv are mapped to different processing elements which communicate by bus lc ,
and lc

ije represents energy consumption for completing the data transfer. For each
possible task partitioning, all these attribute values are given in a technology library.
These values are either based on previous design experience or on estimation
techniques.

2.2 Hardware-Software Partitioning Model

Hardware-software partitioning P can be defined as: },...,,,...,{:
11 ba hhss VVVVPV = ,

where VVVVV
ba hhss =UUUUU ,...,,...,

11
 and Φ=

ba hhss VVVV IIIII ,...,,...,
11

; the
partitioning of graph edges are },...,{:

1 wcc EGEGPEG = , where
EGEGEG

wcc ⊆UU,...,
1

 and Φ=
wcc EGEG II,...,

1
.

The energy consumption model PE of partition P :

∑ ∑∑ ∑ ∑∑ ∈ ∈∈ ∈ ∈∈ ++= CLc EGeg
c
ijPEs PEh Vv

h
iVv

s
iP l lcij

l
sm hn nhi

n

msi
m eeeE (1)

The energy consumption model PE is presented as the sum of three portions, the
energy dissipation of executing tasks partitioned to all software processors, the energy
dissipation of executing tasks implemented on all hardware components and that of
all communications involved on all buses or point to point links, respectively.

The time dissipation model PT of partition P may be similarly constituted, so

∑ ∑∑ ∑ ∑∑ ∈ ∈∈ ∈ ∈∈ ++= CLc EGeg
c
ijPEs PEh Vv

h
iVv

s
iP l lcij

l
sm hn nhi

n

msi
m tttT (2)

The memory usage model ms
PM of processor ms ,],1[am∈ :

],1[, ammM
msi

mm
Vv

s
i

s
P ∈=∑ ∈ (3)

In the specified partition P , ms
PM is the sum of memory request of all tasks

mapped to the processor ms .
The used hardware area model nh

PA of hardware unit nh ,],1[bn∈ :

],1[, bnaA
nhi

nn
Vv

h
i

h
P ∈= ∑ ∈ (4)

In the specified partition P , nh
PA is the sum of area usage of all tasks mapped to

the hardware component nh .

2.3 Low Power Hardware-Software Partitioning Problem

Based on the above hardware-software partitioning model, the low power hardware-
software partitioning problem can be defined as:

)(PEMin , and 0TTP ≤ ,],1[,0 amMM mm ss
P ∈≤ ,],1[,0 bnAA nn hh

P ∈≤
0T is the time constraint of embedded system application which is taken from the

interval ∑ ∈Vv
s
i

s
i

s
ii

mttt)],...,,min(,0[21 , and msM 0 is memory amount dedicated by
processor],1[, amsm ∈ , similarly, nhA0 is hardware area amount of hardware
component],1[, bnhn ∈ .

For getting valid and low power hardware-software partitioning result, our
hardware-software partitioning heuristic algorithm is guided by the following cost
function, which minimizes energy consumption while simultaneously satisfying all
cost constraints. It takes the following form:

),0max(),0max(

),0max(min

00

0

TTPAAP

MMPEf

PtPEh
hh

Ph

PEs
ss

PsP

hn
nn

n

sm
mm

m

−+−

+−+=

∑

∑

∈

∈
 (5)

Where],1[, amP
ms ∈ ,],1[, bnP

nh ∈ and tP are adjusted coefficients, respectively
corresponding to every processor memory constraint, every hardware component area
constraint, and system execution time constraint.

Theorem 1. The low power hardware-software partitioning problem is NP-hard.
The problem is not in NP, since a given solution for the problem cannot be verified

in polynomial time to be the minimal power consumption. For specifying the NP-
hardness of our problem, we reference the complexity result of problem dealt with in
paper [8]. Arato etc., define the hardware-software partitioning problem, which
minimizes the system execution time under hardware cost constraint, and they prove
that the problem is NP-hard. Comparing with their problem, we define low power
hardware-software partitioning problem, which minimizes the system power
consumption under system execution time constraint, memory constraint of every
processor and area constraint of every hardware component. Thus, the proved NP-
hard problem in paper [8] is a special case of our problem, and hence, the problem in
our definition is also NP-hard.

3 Proposed Algorithm

We realize the tabu search on chaotic neural network (TS_CNN) by introducing
chaotic dynamics and utilizing the refractory effects of neurons as the tabu effects. In
the following, we use symbol nii ,,1, L= to denote task iv ,],1[ni∈ and use
symbol kjj ,,1, L= to denote processing element PEPE j ∈ ,],1[kj∈ . In the tabu
search, we produce candidate solutions for each current solution by changing the
assignments of tasks of specified number and keeping the others unchanged. The
different number of tasks to be re-assigned leads to the different size of the candidate
solutions. In this paper, we specify that the number of candidate solutions equals to

kn× for any size of tasks to be re-assigned. For the detail, we assume that the size of
tasks to be re-assigned equals to 1+S (10 −≤≤ nS), and then we obtain

kn× candidate solutions for every current solution.

3.1 Realizing tabu search by chaotic neural network

Corresponding to the above kn× candidate solutions, we construct neural network by
creating kn× neurons to realize the tabu search. Our approach includes both the tabu
effect and chaotic dynamics, and it is realized by the following equations with an
asynchronous updating:

)()1(tt ijij ∆=+ βξ (6)

∑ ∑≠= ≠= +−=+ n
iaa

k
jbb abij WtxWt ,1 ,1)()1(η (7)

θαζ +−+−−=+ ∑ =
t
d qpqp

d
rij dtzdtxkt 0

1)}()({)1(
1111

，… …， (8)

θαζ +−+−−=+ ∑ =
t
d qpqp

d
r

S
ij dtzdtxkt

SSSS0)}()({)1(10 −≤≤ nS (9)

θαγ +−+−−=+ ∑ =
t
d ijij

d
rij dtzdtxkt 0)}()({)1((10)

)}1()1()1()1()1({)1(1 +++++++++=+ tttttgtx ij
S
ijijijijij γζζηξ (11)

)1/(1)(/εyeyg −+= (12)

When we produce candidate solutions by only changing the assignment of one
task, namely, 0=S , variables S

ijij ζζ ,,1 L will be eliminated. Where β is the scaling
parameter for the gain effect; rK is the decay parameter of the tabu effect; α is the
scaling parameter of the tabu effect;)(tij∆ is the gain of the objective function value
and)()()(0 tftft ijij −=∆ ;)(0 tf is the objective value of the current solution at time t
and)(tfij is the value of the candidate solution at time t which is produced by
assigning task i to component j , 1p to 1q ,… and Sp to Sq ;)(txij is the output of
the thji),(neuron at time t ,)(tijξ ,)(tijη ,)(1 tijζ ,…,)(tS

ijζ and)(tijγ are the
internal state of the thji),(neuron at time t corresponding to the gain effect, the
value of mutual inhibitory connections, the tabu effect of the assignment of 1p to

1q , … that of Sp to Sq and that of i to j , respectively. W is the connection
weights, and θ is the positive bias.

If 5.0)1(>+txij , the thji),(neuron fires and the task i is assigned to
component j , 1p to 1q , …, and Sp to Sq , respectively. Because many tasks are
required to re-assign to new components in one updating, all these assignments should
be memorized as tabu effect to avoid the same assignment to be carried out in the
range of tabu list size. Then, the tabu list consists of assignments of),(ji ,

),(11 qp , … and),(SS qp . Aiming at actual application, we introduce accumulated
variables)(tzij (nii ,,1, L= , kjj ,,1, L=) corresponding to assignments of i to
j , which are executed with firing of other neurons than the thji),(neuron even

though the corresponding thji),(neuron does not fire. And then)(tz
llqp should also

be prepared for memorizing the assignment of),(ll qp which does not correspond to
the label of a firing neuron, Sl ,,1L= . In the case of the new updating iteration t+1,
all variables)1(+tzij are reset to 0. For memorizing the assignment of lp to lq until
next updating of the th

ll qp),(neuron, the output of the thji),(neuron is added to
the accumulated output of the th

ll qp),(neuron. This procedure is realized as
follows: after the updating of the thji),(neuron, if the th

ll qp),(neuron is already
updated on this iteration t,)1(+txij is added to)1(+tz

llqp . Otherwise,)1(+txij is
added to)(tz

llqp , Sl ,,1L= .

For numerical calculation, Eq. (8), (9) and (10) can be reduced as follows:

Rtztxtkt qpqpqprij ++−=+)}()({)()1(
111111

1 αγζ (13)

Rtztxtkt
SSSSSS qpqpqpr

S
ij ++−=+)}()({)()1(αγζ (14)

Rtztxtkt ijijijrij ++−=+)}()({)()1(αγγ (15)

Where)1(rkR −=θ .

4 Experiment Results

The algorithm has been implemented in C, and tested on a Pentium IV 3.0GHz PC
with 256MHz memory. Since TS_CNN is a heuristic rather than an exact algorithm,
we had to determine both its performance and the quality of the solutions, empirically.
For this purpose, we compared it with genetic algorithm (GA) [8], which is universal
for hardware-software partitioning and may be used for solving low power
partitioning problem. And then the approach [8] is based on heterogeneous distributed
embed systems as same as ours.

For general partitioning problem, there does not exist a widely accepted
benchmark. We use a real-world GSM encoder task graph to test our approach, which
consists of 53 tasks and 81 edges and is taken from [9].

The mapped target architecture in our experiments consists of one general
processor and two ASICs, and these processing elements are connected through a bus,
forming a heterogeneous distributed embedded system. The properties of these
processing elements are listed in Table 1.

Table 1. Target architecture description.

Frequency (KHz) Memory (byte) General Processor 25000 2575860
HW-Component Frequency (KHz) Area (mm2)

ASIC0 2500 18374
ASIC1 2500 50000

Frequency (KHz) Average Power (wµ)
66000 4881.648

Package Size (b) Package Overhead (b)
Bus

8 33

For detecting the influence for system power consumption when simultaneously

change several tasks mapping schemes for producing candidate solutions of current
solutions, we select 9 different values of parameter S , 1=S , 2=S , …, 9=S for
experiments and compare the results. According to the producing way of candidate
solutions given in above section, we can obtain 353× candidate solutions of each

current solution in the every iteration of applying tabu search. For comparing with
GA on the same condition, we set the population size of genetic algorithm equal to
159. The crossover possibility and mutation possibility are set to 0.9 and 0.5,
respectively.

Through initial extensive experiments, we select a group of tabu search algorithm
parameters, which are reasonable and can be combined to produce preferable
solutions. The final parameters we select are the following:

8.0=rk , 1=α , 2=β , 001.0=ε , 0001.0=W , 001.0=R . The system time
constraint is taken from the interval ∑ ∈Vv

s
i

s
i

s
ii

mttt)],...,,min(,0[21 , we select
∑ ∈× Vv

s
i

s
i

s
ii

mttt)],...,,min(5.0 21 as the system execution time constraints.
Based on initial experiments, we respectively run TS_CNN 100 times according to

different parameter S . For impartially comparing the influence of different parameter
S , the above each experiment is run on the basis of same initial values and same
iteration size 200. For reviewing the performance of our approach, we also execute
genetic algorithm 100 times according to above population pool size and parameters.

We compute the mean of 100 times experiments of every S , for thoroughly
comparing the influence of different parameter S for objective function value.
Then, we also compute the mean of 100 times random experiments of GA. As a
whole, we not only compare the influence of different parameter S for TS_CNN
approach, but also we compare TS_CNN with GA for detecting the performance
of our approach.

Mean of energy function value for different methods are list in Figure 1. We
found that when 6=S , that is to say, the number of tasks to be re-assigned for
producing candidate solutions equals to 7, the obtained mean of energy function
value is the lowest, and that becomes larger with the movement of the parameter
S towards the two opposite directions. From Figure 1, it can also be seen that the
mean obtained by genetic algorithm is far worse than that by the tabu search with

94 ≤≤ S , which indicates that tabu search on chaotic neural network can find
average lower power consumption solution than GA.

The distributions of energy function value when 6=S are given in Figure 2,
accompanying with the power consumption distribution from GA. Distribution
curves display the number of solutions whose energy values f belong to the
following eight open intervals, respectively, f<6, 6<f<7, 7<f<8, 8<f<9, 9<f<10,
10<f<20, 20<f<30 and f>30. As shown in Figure 2, the distribution of energy
values with TS_CNN all concentrates on the former five intervals, and there are
no solutions belonging to 10>f , whereas, there are 11 solutions of belonging to

10>f with GA. The distribution characteristic illustrates that all the solutions
produced by TS_CNN more approach global optimization than GA, which accord
with the result obtained from mean curve. Even if in the former part of the figure
2, there are more solutions to fall in the intervals 6<f and 76 << f with
TS_CNN of 6=S than those of GA, which further proves that we can obtain
more solutions of lower energy function values by tabu search with 6=S .

The performance enhancement of our approach should owe to the complex
dynamics of chaotic neural network, which avoid search to be trapped in
undesirable local minima. In addition, the fact that TS_CNN can produce average

better solution than GA also illuminates that the tabu effect implemented by
refractory effect of neurons is effective.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 GA

Different parameter S

Th
e

m
ea

n
of

 th
e

po
w

er
 c

on
su

m
pt

io
n

(µ
J)

Fig. 1. The mean value of random 100 time experiments of different parameter S

0

5

10

15

20

25

30

35

40

f<6 f<7 f<8 f<9 f<10 f<20 f<30 f>30

The distribution interval

Th
e

nu
m

be
r o

f t
he

 so
lu

tio
ns

TS_CNN

GA

Fig. 2. Solutions distribution comparison of GA and TS_CNN with 6=S

5 Conclusions and Future Work

In this paper, we have introduced a new formal model for the low power hardware-
software partitioning problem. This model has made it possible to investigate the
optimization objective and constraints of the problem formally. Moreover, we have
presented a tabu search on a chaotic neural network, which is a novel approach for the

low power hardware-software partitioning of heterogeneous distributed embedded
systems. In our empirical tests on a task graph of real-world GSM encoder, we find
that the algorithm obviously outperforms genetic algorithm by properly producing
candidate solutions of current solutions. For the specified example, when the number
of tasks to be re-assigned equals to 7, the obtained mean of energy function value is
the lowest. We attribute the better low power partitioning result to these facts that our
formal model is valid, and the novel idea of designing tabu search on a chaotic neural
network is fit to solve the problem.

Our future plans include more tests of the algorithm using other real-world
examples and hypothetical examples. And we prepare to extend the algorithm and
compare it with other heuristic algorithms, e.g., simulated annealing.

References

1. Wayne, W.: Hardware-software codesign of embedded systems. Proceedings of the IEEE,
vol. 82, no. 7 (1994)

2. Arató, P., Mann, Z.A., Orbán, A.: Algorithmic aspects of hardware/software partitioning.
ACM Transactions on Design Automation of Electronic Systems, vol. 10, no. 1, (2005) 136-
156

3. Mann, Z.A., Orbán, A.: Optimization problems in system-level synthesis. Proceedings of the
3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, Tokyo
(Japan)(2003)

4. Jha, N.K.: Low power system scheduling and synthesis. In: Proc. Int. Conf. Computer-Aided
Design, (2001) 259-263

5. Dave, B. P., Lakshminarayana, G., Jha, N. K.: COSYN: Hardware-software co-synthesis of
heterogeneous distributed embedded systems. IEEE Trans. On VLSI Systems, vol. 7,
1999(92–104)

6. Dick, R. P., Jha, N. K.: MOGAC: A multiobjective genetic algorithm for the hardware-
software co-synthesis of distributed embedded systems. IEEE Trans. Computer-Aided
Design, vol. 17 (1998)

7. Henkel, J.: A Low Power Hardware/Software Partitioning Approach for Core-Based
Embedded Systems. In: Proceedings of the 36th ACM/IEEE conference on Design
automation conference, (1999) 122-127

8. Arato, P., Juhasz, S., Mann, Z.A., Orban, A., Papp, D.: Hardware/software partitioning in
embedded system design. In: Proceedings of the IEEE International Symposium on
Intelligent Signal Processing (2003)

9. Schmitz, M.T.: Energy Minimisation Techniques for Distributed Embedded Systems.
Ph.D.dissertation, University of Southampton University, United Kingdom (2003)

