

A Programming Model for the Automatic Construction
of USN Applications based on Nano-Qplus

Kwangyong Lee1, Woojin Lee2, Juil Kim2, and Kiwon Chong2

1Ubiquitous Computing Middleware Team, ETRI, Daejeon, Korea
kylee@etri.re.kr

2Department of Computing, Soongsil University, Seoul, Korea
{bluewj, sespop}@empal.com, chong@ssu.ac.kr

Abstract. A programming model for the automatic construction of USN
applications based on Nano-Qplus is proposed in this paper. Nano-Qplus is a
sensor network platform developed by ETRI. Programs of nodes such as
sensors, routers, sinks and actuators in a sensor network are automatically
generated through the technique of this paper. Developers can implement USN
applications from models of sensor networks. The configuration information of
each node is automatically generated from a model. Then, the execution code is
automatically generated using the configuration information. Through the
technique of this paper, developers can easily implement USN applications
even if they do not know the details of low-level information. The development
effort of USN applications also will be decreased because execution codes are
automatically generated. Furthermore, developers can consistently construct
USN applications from USN models using the proposed tool.

1 Introduction

Recent advances in wireless communications and electronics have enabled the
development of lowcost, low-power, multifunctional sensor nodes. These sensor
nodes, which consist of sensing, data processing, and communicating components,
leverage the idea of sensor networks [1]. Ubiquitous sensor network (USN) is a
wireless network which consists of a lot of lightweight, low-powered sensors. A lot of
sensors which are connected to a network sense geographical and environmental
changes of the field. Through USN, things can recognize other things and sense
environmental changes, so users can get the information from the things and use the
information anytime, anywhere. The sensor networks can be used for various
application areas such as military, home, health, and robot.

However, it is difficult to construct USN applications. Resources of nodes in a
sensor network are limited and wireless communication between nodes is unreliable.
Nodes should also perform low-power operations. Developers should consider these
facts, so it is very difficult to construct USN applications. Therefore, it is need to
make developers can simply design USN applications by abstracting the details of
low-level communication, data sharing, and collective operations.

 * This work was supported by the Soongsil University Research Fund.

mailto:kylee@etri.re.kr
mailto:@empal.com
mailto:chong@ssu.ac.kr

Accordingly, a programming model for automatic construction from a model of USN
application is proposed in this paper. Programs of nodes such as sensors, routers,
sinks and actuators in a sensor network are automatically generated from an USN
model. Therefore, developers can easily develop USN applications even if they do not
know the details of low-level communication, data sharing, and collective operations.
The technique of this paper brings focus to USN application on a sensor network
platform known as Nano-Qplus [2, 3]. Nano-Qplus is a sensor network platform
developed by ETRI. It is a scalable and reconfigurable Nano-OS. It supports a variety
of scheduling methods and various energy-efficient power management schemes in
order to meet application specific goals.

2 Related Works

In this section, existing works for generation of USN applications are described. The
difference between existing works and the technique of this paper is also described.

Cheong et al. [4] have proposed TinyGALS which is a globally asynchronous and
locally synchronous model for programming event-driven embedded systems. This
programming model is structured such that all asynchronous message passing code
and module triggering mechanisms can be automatically generated from a high-level
specification. They have implemented the programming model and code generation
facilities on a wireless sensor network platform known as the Berkeley motes. Welsh
et al. [5] have simplified application design by providing a set of programming
primitives for sensor networks that abstract the details of low-level communication,
data sharing, and collective operations. Newton et al. [6] have proposed a functional
macroprogramming language for sensor networks, called Regiment. The goal of
Regiment is to write complex sensor network applications with just a few lines of
code.

Boulis et al. [7] have proposed a framework to define and support lightweight and
mobile control scripts that allow the computation, communication, and sensing
resources at the sensor nodes to be efficiently harnessed in an application-specific
fashion. Their framework, SensorWare, defines, creates, dynamically deploys, and
supports such scripts. The SensorWare architecture is based on a scriptable
lightweight run-time environment, optimized for sensor nodes that have limited
energy and memory.

Greenstein et al. [8] have proposes a new configuration language, component and
service library, and compiler that make it easier to develop efficient sensor network
applications. Their goal is the construction of smart application service libraries: high-
level libraries that implement concepts like routing trees and periodic sensing, and
that combine automatically into efficient programs. Their language, library, and
compiler are collectively called SNACK (Sensor Network Application Construction
Kit). Ramakrishna Gummadi et al. [9] have proposed Kairos. Kairos is a natural next
step in sensor network programming in that it allows the programmer to express, in a
centralized fashion, the desired global behavior of a distributed computation on the
entire sensor network. Kairos’ compile-time and runtime subsystems expose a small
set of programming primitives, while hiding from the programmer the details of

distributed-code generation and instantiation, remote data access and management,
and inter-node program flow coordination. Kairos is a simple set of extensions to a
programming language that allows programmers to express the global behavior of a
distributed computation. Kairos extends the programming language by providing
three simple abstractions.

Developers who use the technique of Cheong et al. [4] should write high-level
specifications in order to generate sensor network applications. Developers who use
the technique of Welsh et al. [5] should develop sensor network applications using the
given APIs. Developers who use the techniques of Newton et al. [6], Greenstein et al.
[8] and Greenstein Ramakrishna Gummadi et al. [9] should develop sensor network
applications using the given languages. Developers who use the technique of Boulis et
al. [7] should write script codes in order to generate sensor network applications. On
the other hand, developers who use the technique of this paper can automatically
generate sensor network applications from models of the applications. They only
write USN models using a tool. Therefore, they can easily develop sensor network
applications. But, the technique of this paper supports only sensor network
applications based on Nano-Qplus platform.

3 A Programming Model for the Automatic Construction of USN
Applications

A programming model to construct USN applications based on Nano-Qplus is
presented in this section. It is compared to the existing programming models for USN
applications. Moreover, the modeling & design of an application using a tool is
presented. The algorithm for automatic construction of the application is also
presented.

3.1 Concepts of the USN Programming

Figure 1 presents the concept of USN programming described in existing works [4, 5,
6, 7, 8, 9].

Fig.1. The concept of USN programming in the existing works

A modeling is done and a simple program based on the model is written using the
high level language or the simple script. Then the code is automatically generated
according to the program. It is important that the program is written using the high
level language or the script. The high level language or the script helps users to
construct applications, even though they do not know the details of low-level
information of USN. A specification-level language, a script language, or APIs were
proposed in order to abstract the low-level information in the related works. However,

users should learn the proposed language, the script language or APIs in order to
develop USN applications using these techniques.

A technique to complement the existing techniques for the construction of USN
applications is proposed in this paper.

Fig.2. The concept of USN programming in this paper

Figure 2 presents the concept of USN programming proposed in this paper.
Developers can implement USN applications by automatically generating execution
code of each node in the sensor networks after they do modeling and design the
sensor networks using a tool. The execution code is automatically generated from the
model. Therefore, users can construct USN applications without learning a language
or APIs.

3.2 The Modeling & Design of USN applications

The following is the process for the modelling & design of USN applications.
Step 1 – Write an USN model for an USN application using a tool.
Step 2 – Set up attribute values of nodes in the model using a tool.
Step 3 – Generate the model information using XML in order to automatically
generate the configuration information of nodes.
Step 4 – Generate configuration information of nodes from the XML in order to
automatically generate execution codes of nodes.

Figure 3 presents the process for the modelling & design of USN applications.

Fig.3. The process for the modelling & design of USN applications

The tool presented in figure 4 is proposed in this paper in order to model and design
of USN applications. The user can write a diagram for an USN model and set attribute

values of each node in the model using the tool. The tool generates a XML file which
stores the model information. Figure 5 shows the XML file generated by the tool.

Fig.4. The modeling & design using a tool

Fig.5. An example of a XML file generated by the tool

The tool generates .config files from the XML file. The .config files store the
configuration information of nodes, and the files are used to automatically generate an
USN application. The following is the process for transformation XML to
configuration information.

Step 1 – Parse the XML file. Parser generates the parsing tree based on the XML
file.
Step 2 – Get the information of each node from the parsing tree.

Step 3 – Generate the configuration information of each node. The information
of the parsing tree is transformed to the configuration information. As a result of
transformation, .config file for source code generation of each node is generated.

Figure 6 presents the process of transforming XML to configuration information.

Fig.6. The process of transforming XML to configuration information

The configuration information showed in figure 7 has been automatically generated
by the tool in order to generate the source code of a node.

Fig.7. An example of automatically generated configuration information of a node

3.3 The Automatic Construction of USN applications

The following is the process for generating source code to control each node.

Step 1 – Read Config_Info(.config) file in order to get the attribute values of a
node.
Step 2 – Parse Config_info(.config) file and find out selected modules. Then read
headers, data and function codes from the DynamicTemplate class according to the
selected modules and save them to the template.
Step 3 – Read main code from the HashTable_Main class based on selected
modules and save it to the template.

Fig.8. An algorithm for generating USN application

Figure 8 presents the algorithm for generating source code of each node. Headers,
data and function codes are generated by calling the functions of the
DynamicTemplate class according to the type of the target node.

Fig.9. DynamicTemplate class

The DynamicTemplate class used in the algorithm is presented in figure 9. The class
includes setType(), setModuleName(), getHeader(), getData() and getFunction() to
generate the program for each node. These functions use the moduleTemplate field in
order to get source codes. The DynamicTemplate class generates the proper source

code using the moduleTemplate field dynamically because the codes of headers, data
and functions are dependent upon the type of node and module.
The type of the moduleTemplate field is “String”, and the initial value is
“&1_&2_&3”. Strings such as “&1”, “&2” and “&3” are dynamically replaced
according to the type of module and node. When the type of each node is determined,
the string “&1” is replaced with the type through the setType() method. The string
“&2” is replaced with the name of a module provided by Nano-Oplus through the
setModuleName() method. The string “&3” is replaced with “H” (means Header),
“D” (means Data) or “F” (means Function) based on the type of required module. For
example, the value of the moduleTemplate field is replaced as follows by calling
functions of the DynamicTemplate class if the type of a node is SINK and
Zigbee_Simple module for radio frequency communication of the node is selected.

setType(“SINK”); à “SINK_&2_&3”
 setModuleName(“Zigbee_Simple”); à “SINK_Zigbee_Simple_&3”
getHeader(“Zig_Simple”) à “SINK_Zigbee_Simple_H”
getFunction(“Zig_Simple”) à “SINK_Zigbee_Simple_F”

“SINK_Zigbee_Simple_H” is the name of a file which contains header codes of the
Zigbee_Simple module for a sink node, and “SINK_Zigbee_Simple_F” is the name of
a file which contains function codes of the Zigbee_Simple module for a sink node.

The main function code of each node is generated by the HashTable_Main class.
The HashTable_Main class generates the main function code using the hash table
presented in table 1. The key of the hash table is the name of a module provided by
Nano-Qplus. The main function code is generated according to the type of selected
module using the key value of the hash table.

Table 1. Structure of hash table for the main function code

Key Value
Zigbee_Simple “mlme_start_request(MY_MAC_ADDRESS,

rf_recv_data)”
Zigbee_MAC “mlme_ll_link_start(NULL, rf_recv_data)”
Zigbee_MAC_StarMesh “mlme_ll_link_start(NULL, rf_recv_data)”
Scheduler_FIFO “(*start)((void *)0);”
Scheduler_PreemptionRR “uint8_t int_handle;

int_handle = thread_disable_int();
thread_enable_ints(int_handle);
pthread_create(NULL, rf_recv_data);
start_threads();”

4 Case Study with Light Sensing System

An USN application for Light Sensing System such as figure 10 has been developed
using the proposed technique in this paper. The Light Sensing System is composed of
sensor nodes which sense light data, router nodes which transmit the received data to
other nodes, a sink node which is connected to the monitoring system and determines
the action command, and a light bulb which contains an actuator to turn the light bulb
on.

A USN model was designed for the Light Sensing System. In the model, sensor nodes
sense light data and transmit the data to router nodes. The router nodes receive the
data and transmit it to the sink node. The sink node receives the data, computes it and
transmits it to the actuator node. The actuator node performs an action according to
the threshold value.

Fig.10. Block diagram of Light Sensing System

The system of figure 10 was developed after the application was automatically
generated from the designed model. Result that applies, sensing light data was
forwarded from sensor node to router node and router node sent forwarded data to
sink node. An action command according to the light value was forwarded from sink
node to router node and router node sent forwarded the action command to actuator.
Actuator turned the light bulb on or off according to the action command.

Figure 11 is the source code of sink node automatically generated based on the
configuration information presented in figure 7.

Fig.11. An example of automatically generated code

5 Conclusion

A programming model for the automatic construction of USN applications based on
Nano-Qplus is proposed in this paper. Developers can implement USN applications
by automatic generation of execution code of each node in the sensor networks after
they make models of the sensor networks. The configuration information of each node
is automatically generated from a model. Then, the execution code is automatically
generated using the configuration information. The modelling tool to make an USN
model and generate the configuration information of each node is proposed in this
paper. The templates and an algorithm for automatic code generation are also
presented. Through the technique of this paper, developers will easily implement
USN applications even if they do not know the details of low-level communication,
data sharing, and collective operations. The development effort of USN applications
also will be decreased because execution codes are automatically generated.
Furthermore, developers can consistently construct USN applications from USN
models using the proposed tool.

References

[1] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci, “A Survey
on Sensor Networks,” IEEE Communications Magazine, Volume 40 Issue 8, pp.102-114,
August 2002.

[2] Kwangyong Lee et al., “A Design of Sensor Network System based on Scalable &
Reconfigurable Nano-OS Platform,” IT-SoC2004, October 2004.

[3] ETRI Embedded S/W Research Division, “Nano-Qplus,” http://qplus.or.kr/
[4] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: a programming model for

eventdriven embedded systems,” SAC, 2003.
[5] M. Welsh and G. Mainland, “Programming sensor networks using abstract regions,” NSDI,

2004.
[6] R. Newton and M. Welsh, “Region streams: Functional macroprogramming for sensor

networks,” DMSN, 2004.
[7] A. Boulis, C. Han, and M. B. Srivastava, “Design and implementation of a framework for

efficient and programmable sensor networks,” MobiSys, 2003.
[8] B. Greenstein, E. Kohler, and D. Estrin, “A sensor network application construction kit

(SNACK),” SenSys, 2004.
[9] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan, “Macro-

programming Wireless Sensor Networks Using Kairos,” LNCS 3560, pp. 126–140, 2005.

http://qplus.or.kr/

