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Abstract. In this paper we propose a new key establishment protocol enabling
any data aggregation protocol to be operated securely. This is accomplished by a
bidirectional key distribution scheme based on Forward Key Setup and Backward
Key Setup developed by using synchronized broadcast and multi-level key con-
cept. Our protocol, called SPDA(Security Protocol for Data Aggregation) is well
suited for any data aggregation algorithms and applications. Our analysis results
prove SPDA’s efficiency meaning that its communication cost is manageable.

1 Introduction

The issue of security in sensor networks has been addressed at various levels. In order to
prevent unauthorized entities from intercepting, decrypting, or hijacking data commu-
nications, data should be encrypted with either symmetric or asymmetric keys. The keys
must be protected and managed appropriately between the base station and all sensor
nodes and must satisfy several security and functional requirements. To support secured
data aggregation in sensor networks, there must be a key management scheme between
each sensor node and its correspondent data aggregation node. Thus, the collected data
are encrypted at each sensor node and then decrypted at the data aggregation node for
aggregation processing. This paper focuses on a simple key establishment for data ag-
gregation in sensor networks. The objective is to construct an efficient key management
for data aggregation mechanism that can give confidentiality and integrity against ma-
licious intruders. To eliminate the security loophole open to malicious intruders, we
present a mechanism to set up pair-wise symmetric keys for data aggregation opera-
tions. The core of a Security Protocol for Data Aggregation (SPDA) mechanism is the
bidirectional key setup scheme that stochastically makes a unique symmetric key be-
tween a sensor node and a correspondent aggregation node in the sensor network.

2 Related Works

So far the issue of security in sensor networks has been addressed at various levels. Se-
cure data aggregation schemes have been introduced in recent literatures [1] [2] [3] [4] [S].
In the papers [3] [4], the authors attempted to make data aggregation secure by de-
signing alternate data aggregation schemes such as pattern-based data aggregation and



reference-based data aggregation. They employed a kind of group key management
scheme, so a group header becomes an aggregator to perform the aggregation algo-
rithm. However, such schemes also have their limitations in performing specific data
aggregation algorithms and specific applications. In another work [2], Przydatek et al.
recently proposed secure information aggregation. Their scheme is also dedicated to
specific applications. Lee et al. [1] proposed a key management for data aggregation
and pointed out that the disadvantage of their scheme was that more data needed to be
passed through the key setup message and stored at each node. Worse yet, compromis-
ing a node allows an adversary to understand all data communications originating from
the node’s neighboring nodes. A similar paper to ours is proposed by Hu et al. [5], but
they don’t discuss key management issues in detail. Unlike other works, we provide
a security platform that conforms to any data aggregation scheme and any application
scenarios.

3 SPDA PROTOCOL

Our aim is to construct a key establishment mechanism which enable a node to have
a unique symmetric key agreed with the correspondent aggregator. Our idea is to al-
low each node to compute a key with seeds originating from both the Forward Key
and Backward Key sent by aggregators. Our design goal is to devise a simple key es-
tablishment scheme well suited to any data aggregation algorithm by using pre-defined
aggregators. Only aggregators have a data aggregation algorithm to perform and have
more security information for key generation. Throughout the paper, we use several
terms to describe the protocol as defined in Table 1.

Table 1. Glossary

Glossary Description

FKeySetup A protocol packet. Only the base station can generate the initial FKeySetup
packet. All the nodes start the operation by receiving a FKeySetup packet
firstly.

BKeySetup A protocol packet. Only the aggregators can generate their own BKeySetup
packets. All the sensor nodes create their own BKeySetup packet to send data
messages to aggregators.

FLK Forward Level Key. A key hint of the base station.

BLK Backward Level Key. A key hint of the aggregator.

PubK Public key of the base station. This public key is shared by all nodes.

SPK Secret key, partially selected bits of PubK.

PrvK Private key that the base station and aggregators share.

CK Combination key. This key is generated by forward and backward key setups
and is used by aggregators and sensor nodes.

he Hop Count. Logical hop count from the base station

bhc Backward Hop Count. Logical hop count from an aggregator




3.1 Definition of Keys and functions

Our approach to key generating functions is motivated by the need to establish a sym-
metric key of each node as efficient in communication cost as possible. Our idea of
key generation introduces symmetry of key with two asymmetric keys. Combining two
different keys produces a high probability of having a virtually unique key in the net-
work if each of the two different keys is not carelessly generated. One key is propagated
from the base station to sensor nodes. The other key is propagated from aggregators to
the base station. The keys are propagated by the relaying procedure of each node. The
relayed keys should not be easily guessed, so we suggest the use of a one-way hash
function as a key relaying function. Each sensor node receives two different keys from
two different neighboring nodes by relaying keys in opposite directions.
We define and use three types of crypto keys and two types of seed keys as below:

— Crypto key
e Public Key (PubK)
e Private Key (PrvK) of the base station and aggregator
e Sub-Public Key (SPK)
e Combination Key (CK)
— Seed key
e Forward Level Key (FLK)
e Backward Level Key (BLK)

All nodes maintain the public key (PubK) of the base station. This public key offers
data confidentiality of a broadcast message during announcement at the base station.
SPK is partially selected bits of PubK (i.e. most significant 64 bits of PubK) and is used
as a secret key among all nodes. The public key processing is costly; sensor node’s
public key processing is performed only during key establishment. Once a sensor node
finishes the key establishment, PubK and SPK are no longer used for data confidential-
ity so this public key mechanism does not significantly affect the network performance.
We choose 64 bits for a symmetric key and 512 bits for a public key, so the size of all
symmetric keys in this work is 64 bits. Combination Key (CK) is a core cryptographic
key in this protocol; it is computed in each node to use for sensed data message con-
fidentiality. Each CK for each sensor node has a high probability of being unique in a
network. Additionally, aggregators have the private key (PrvK) of the base station that
is pre-installed, so aggregators are said to have the same security power as the base sta-
tion and can also use this to establish secure channels to other aggregators. During the
key establishment, performing Forward and Backward Key Setup enables each sensor
node to compute its CK by itself and to use it for data encryption afterwards. Forward
Level Key (FLK) and Backward Level Key (BLK) are combined to generate the CK.
The first FLK is created only by the base station, whereas the generating BLK is started
by all aggregators. We are going to explain how to generate and propagate FLK and
BLK in the next subsection.

We suggest applying two one-way hash functions and a combining function to per-
form the protocol. All nodes have two key-generating functions and one key-combining
function as below:

— One-way function



e Forward Key Generating Function (FFunc)

e Backward Key Generating Function (BFunc)
— Combining function

e Combination Function (CFunc)

3.2 Key Establishment

Our key establishment is done in two stages, Forward Key Setup and Backward Key
Setup. The base station starts a key establishment phase by broadcasting a message en-
closing The Seed of Forward Level Key(F LK'), where [ is the level of the base station.
We now address the two key setup stages in greater detail, using Figure 1 to help explain
the Forward and Backward Key Setup protocol.
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Fig. 1. Network Illustration of Forward and Backward Key Setup




Forward Key Setup Key distribution for wireless sensor networks should not ignore
scalability. In order to achieve scalability, a flooding-based broadcast is commonly used
for distributing keys. The base station starts the Forward Key Setup stage by send-
ing a F' KeySetup packet containing the commitment code of the Forward Level Key
(FLK™, where n is a big enough number and the last element of the key chain. For no-
tation, we use superscript for hop count or level) to all adjacent nodes, which prevents
an adversary from compromising the base station. In the Forwarding Key Setup stage,
the concept of ‘level’ is important, meaning that those who have the same hop count
from the base station locate in the same level and have the same FLK. The format of
the first FKeySetup packet is shown below:

broadcast Neighbors . FKeySetUPO
EPM)K{FLKn |7‘L|G}

‘ESPK{ FLKO ‘ hCO}

Base Station

, where G is a gap value of hop-count assigned by the base station.

On receiving the FKeySetup packet, a node starts performing the protocol. The node
naively decrypts the packet with PubK and computes the MAC of the decrypted content
with SPK. The node then verifies the packet with two procedures, MAC comparison and
Commitment key validation. Firstly, the integrity and authenticity of the packet could be
validated by comparison of the computed MAC with the received MAC; however, MAC
comparison, with the syntax verification method is not enough, since a malicious node
that steals SPK is able to forge the whole packet by changing random bits of the content
and computing corresponding MAC with SPK. In such a case, MAC comparison could
not detect this abnormality. Commitment key validation solves the problem. Provided
that hc starts with 0 and increases by one, the node applies FFunc with FLK, ‘n —
G - he’ times to verify FLK™. Applying a gap value, GG, between two consecutive /¢
prevents an attacker having no G from generating the next FLK properly.

If the verification fails, the node stops the protocol; otherwise, the node becomes a
level-1 node and prepares its own FKeySetup packet based on application of FFunc for
the next Forward Level Key (FLK' = FFunc®(FLK"), meaning G times FFunc ap-
plication). After an appropriate time, all level-1 nodes transmit their FKeySetup packet
as below. Nodes that receive these kinds of packets for the first time become a part of
the network as level-2 nodes.

Level-1 nodes 27224 Neighbors : FKeySetup'

RELAY[Ep,,x{ FLK™ |n| G }]
‘ ESPK{ FLKl ‘ hCl }
| RELAY[M ACspx ( FLK™ |n |G )]

, where hel is he® + 1.
As a result of completion of the Forward Key Setup stage, all nodes including ag-
gregators have FLK', where [ is a relative hop distance from the base station.

Backward Key Setup Aggregators may start the Backward Key Setup stage right
after they receive a FKeySetup while sensor nodes wait to receive a Backward Key



Setup packet to start the Backward Key Setup stage. Backward Key Setup is performed
with unicast communication started by aggregators. Once each aggregator receives a
FKeySetup packet, it is ready to start the Backward Key Setup stage by generating the
BKeySetup packet as follows (For notation, we use subscript for node ID):

Aggregator i Lunicast, pes parent node j : BKeySetup;

Epui{ Seed; | bhe? | i | he; }
| ESPK{ BL.K;O | th? }
| MACspk( Seed; | bhe? | i | he; )

An aggregator, 7, chooses a random number as the Seed of the Backward Key, then
applies a one-way function once to make its BLK?. We suggest choosing an arbitrary
number for bhc instead of zero. This technique prevents an adversary who compromises
SPK from knowing the relative location of an aggregator by calculating bhc. The Seed
and bhc are encrypted with PubK and reported to an upper-level aggregator which will
use them to compute proper CKs of intermediate sensor nodes in the routing path be-
tween two aggregators. Assume that each node chooses one of its neighboring nodes as
the next hop node to reach the base station. An aggregator unicasts its BKeySetup to its
next hop node (say, node j).

On receiving this BKeySetup packet, sensor node j decrypts Egpr { BLK? | bhc? }
with SPK and makes its own B K eySetup;, which contains updated bhc; (= bhe) +1)
and BLK] (the output of BFunc(BLK})) as below:

unicast

Sensor Node j ———— Its parent node k : BK eySetup;

RELAY [Epypi{ Seed; | bhe? | i | he; }]
| ESPK { BLKJl ‘ thjl }
‘ RELAY[MACSPK( Seedi | bhcg | ) | hCi )}

Only aggregators having PrvK are capable of understanding all the contents of
the BKeySetup. Whenever an aggregator receives a BKeySetup packet, it decrypts the
whole packet with PrvK and then keeps the source ID, bhc?, and Seed; of the source
aggregator in the aggregator list.

3.3 Combination Key Generating

The main purpose of Forward and Backward Key Setup is to allow a node to be able
to have a secret key agreed with an aggregator for data message confidentiality, which
is Combination Key (CK). Once a node generates CK, it could encode a data message
to give to an aggregator lightly and securely. Now we explain how each kind of node
computes its own CK. There are two sorts of nodes in the protocol, such as aggregator
and sensor nodes. Each kind of node does apply differently CK generation functions.
A sensor node which receives FLK and BLK uses them as inputs of CFunc as CK; =
CFunc(FLK;, BLK}). This key combination is quite unique in the network and also
can be computed with seeds of each key. All aggregators share PrvK and are able to
compute other aggregator’s CK generated with PrvK and their ID as below for aggrega-
tor i: CK; = CFunc(PrvK,1). The reason that an aggregator incorporates its ID into
CK is to differentiate CK of other aggregators. Having ID of other aggregators grants
an aggregator the CK generation of others.



3.4 Key Usage

Two different kinds of nodes build the first data message with three different message
fields usage, as below:

Node k 2<%, Aggregatori :

Eck, {Message} | Espi {k|0|k} | M ACcKk, (Message) for aggregators
or Eci, {Message} | Espxi {k|bhcglaggrIDy, } |
MACck, (MessagelbhcylaggrIDy, ) for sensor nodes
, where aggrlI Dy, is the source aggregator ID of bhc that node k receives.

When an aggregator receives the first data message from a node, it searches the
source ID, say k, in the aggregator list. If & is found in the aggregator list, the ID is used
to compute C' K. The aggregator figures out the generation of proper CK for sensor
nodes.

With aggrID, an aggregator can calculate the length of the path between two ag-
gregators and also locate the message source node with bhc. Therefore, the aggregator
is able to find the relative distance of the message source node from aggregators and
calculate its FLK and BLK, as illustrated in Figure 2.
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Fig. 2. Finding relative distance of a source node.

As mentioned above, CK calculation is done only once. After that, all nodes send
smaller sized messages as below:

Node k 2<%t Aggregator :

Eck, { Message } | k| MACck, (Message)

4 ANALYSIS

In this section, we show the performance of SPDA through approximate numerical
analysis and provide simulation results to validate our numerical analysis. We choose
communication cost as the performance metric because the number of communications
is critical in wireless sensor network. Communication cost is defined as the additional
number of communications per non-aggregator for Backward key setup. We first derive



the basic calculation of the number of nodes. During the Forward key setup, the tree-
structured network is formed level by level. The percentage of aggregators (denoted by
«) on each level is expected to be the same under uniform distribution. Let N ({) denote
the number of nodes on level . Thus, the number of aggregators, Nqg4(1), is o - N(1).
With a maximum level number of a network, A, the total number of nodes in a whole
network, Ty, and the total number of aggregators, 14,4, can be calculated respectively
as:

Now we calculate the probability of connections between aggregators. To find the num-
ber of non-aggregators between two aggregators along a routing path, we note that they
are all located on different levels. In other words, all routing connections between two
nodes are between two levels. For example, the percentage of aggregators on a level
that have aggregators as their parent nodes is « times the number of aggregators on the
level (cv - Nogq(1) where [ is the level number).

Not all nodes receive a BLK necessary to generate CK. In the tree-structured net-
work we target, some nodes are not destined to receive BLK because they are not lo-
cated in the routing path of any aggregators. We define a tail node as a node that has no
chance of receiving any BLK from any aggregators and does not contribute the network
security. The number of tail nodes contributes directly to the protocol performance as
a whole so the number of tail nodes should be found. The number of tail nodes can be
derived like this. Intuitively, all non-aggregators on the maximum level [ are tail nodes
because there is no possibility of getting them to receive a Backward key. In the same
way, some non-aggregators on level [ — 1 are going to be tail nodes since they are not
selected as parents by aggregators on level [. In the same way, the number of tail nodes
on a level with A, maximum level number, can be derived as:

Niit(D) = (1 —a)" 11 = @) N(1).

The total number of tail nodes in network is

h

h
Tiait = Z Niait(i) =Y (1= )" 7"(1 = a)N(i).

i=1

We suggest three scenarios for aggregator’s BLK forwarding to reduce the number of
tail nodes in a network. We categorize three different scenarios for the behavior of an
aggregator: (1) An aggregator unicasts a BLK to only its parent node(Say, Scenario I).
(2) An aggregator unicasts a BLK to all its parent level nodes, not to just the parent
node(Scenario II). (3) An aggregator unicasts a BLK to all its neighbor nodes except its
child level nodes(Scenario III).

In an ideal case, just one Backward key is sufficient for the computation of a non-
aggregator’s CK. However, a node may be expected to relaying several Backward keys
to the upper level in SPDA. Note that Backward key setup communication commences
from an aggregator and ends at another aggregator. In order to count the number of



additional communications for Backward key distribution, we first find the sum of all
intermediate non-aggregators that relay the Backward key for aggregators. t,, represents
the number of aggregators in the network that travel through n, the number of non-
aggregators, to reach another aggregator. ¢,, can be derived with o and N, 44 as below.

h
to = ZaNagg(l) + Nagg(1)
=2

h

t1 = Z(l — )aNagg(l) + (1 — a)Nagy(2)
1=3

h
ti= Y (1—0a)aNag(l) + (1 = @) Nagg(i + 1)
1=i+2
(1 — a)2aNyg4(4), for instance, represents the case when that many aggregators
on level 4 send a Backward key; there are 2 non-aggregators relaying the key until the

key reaches an aggregator. Therefore, the total number of additional communications
necessary for Backward key setup of all non-aggregators is calculated thus:

h—1 h h—1
Torwara =p- 3 _(i-t:) =p-» (i-( > (1=a)a®N(1))+a(l—a)'N(i+1)).
i=0 i=0 1=i+2

, where p is the scenario factor. For scenario I, pis 1. p is going to be 0.3N and 0.7N for
scenario II and scenario III, respectively. IV is the average number of neighbors. 0.3V
is the approximate average number of parent level nodes per an aggregator and 0.7 N is
the approximate average number of parent and sibling level nodes per an aggregator.

In conclusion, the average number of forwarding communication per each non-
aggregator, Aforwards, 1

Tfo’rward

Afo’r‘ward = T
non

, where Th,op, is T — Tog9 — Thail-

Now we can calculate the communication cost if we know the network parameters,
such as the average number of neighbor nodes(/V), the average number of sensor nodes
in a level(IV (1)), the number of aggregators(c), and the maximum number of levels(h).
The results of numerical analysis and simulation are shown in Figure 3(a) and 3(b). We
set the average number of neighbors, N with 10 and maximum number of level in a
network, h with 14 for numerical analysis. We see the numerical results is similar to the
simulation results.

S CONCLUSION

In this paper we proposed SPDA, a security protocol for data aggregation, to offer a
lightweight key establishment and adaptability of any aggregation algorithms for large-
scale tree-structured sensor networks. The protocol provides data integrity and confi-
dentiality by applying a secret key mechanism established with a key generation and
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Fig. 3. Communication Cost

distribution scheme. The concept of Forward and Backward Key establishment that
plays a key role is presented. By using the protocol, a network administrator is able to
build secure networks for data aggregation. In SPDA, a sensor node generates its own
crypto-key, CK, realizing its uniqueness in a network with a high probability.

There are two main points concerning the proposed protocol. First, SPDA is totally
‘distributed’; i.e. there is no central manager for the protocol, such as a cluster-head
or group-head. Hence, it is advantageous for scalability and also adding or deleting
a sensor node is easy. Second, SPDA is independent of a data aggregation algorithm.
Any data aggregation algorithm could be used together with this protocol. Aggrega-
tors should be pre-defined before deployment, at the expense of aggregation efficiency.,
however.
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