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Abstract. As web documents proliferate fast, the need fo real-time computation
of change (edit script) between web documents increases. Though fast heuristic
algorithms have been proposed recently, the qualities of edit scripts produced
by them are not satisfactory. In this paper, we propose X-tree Difft+ which
produces better quality of edit scripts by introducing a tuning step based on the
notion of consistency of matching. We also add copy operation to provide users
more convenience. Tuning and copy operation increase matching ratio
drastically. X-tree Diff+ produces better quality of edit scripts and runs fast
equivalent to the time complexity of fastest heuristic algorithms.

1 Introduction

Computing change (edit script) between documents draws much attention from
Computer Science research community. It is because version management becomes
important, as Internet is crowded with excessive information. Version management is
based on the algorithm of computing change between web documents [10]. It is also
used in the real-time detection of hackers’ defacement attacks [14]. In this paper, we
present an efficient change detection algorithm X-tree Diff+ for tree-structured
documents such as HTML, XML documents. Difference (change) between documents
can be viewed as a sequence of edit operations (called edit script). Researches on
change detection for tree-structured data such as XML/HTML documents have been
carried out since late 1970s [1,2,3,4,5,6,7,8,9,10,11,12]. Early works focused on
computing the minimal cost edit script for tree-structured data [2,3,4]. The general
problem on change detection for tree-structured data is known as NP-hard [6]. So,
recently, heuristic algorithms have been proposed to meet the demand. XyDiff [10] is
designed for XML data warehouse and versioning. This algorithm uses hashing to
represent the contents and structure of subtrees, and the notion of weigh in matching
process. It achieves O(nlogn) complexity in execution time. X-Diff+ [11] uses
hashing to represent the contents and structure of subtrees. X-Diff+ computes the edit
distance between two documents, and produce reasonable good edit scripts. But the
time cost of X-Diff+ is not acceptable for real-time application. X-tree Diff [14] is
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designed to detect hackers’ defacement attacks to web sites. X-tree Diff is simple and
runs fast in O(n). XyDiff and X-tree Diff are quite efficient in execution time.
However, the quality of edit scripts produced by them is not good enough.

In this paper, we propose X-tree Diff+ based on X-tree Diff. It produces better
quality of edit scripts and run in O(n). We introduce the notion of consistency of
matching to tune ineffective matches. Also, we add Copy operation as a basic edit
operation. With these, X-tree Diff+ increases matching ratio and produce better edit
scripts. We present the change representation model in Section 2, and X-tree Diff+
algorithm in Section 3. We analyze the time complexity of X-tree Diff+ in Section 4.

2  The Model for Representing Changes in XML Documents

2.1 X-tree

X-tree is a labeled ordered tree. The logical structure of a node of X-tree consists of
nine fields shown in Figure 1. Label, Type and Value fields are used to represent an
element of XML documents. Index field is used to distinguish sibling nodes in X-tree
that have the same label, while nMD, tMD, iMD, nPtr and Op fields for matching
process in X-tree Diff+. iMD field is added in the X-tree in X-tree Diff+. A node in
an XML document is represented by an X-tree node. For each XML text node, the
value 0, the string “#TEXT” and the text content of the node are stored, respectively,
in the Type field, the Label field and Value field of the corresponding X-tree node.
For each XML element node, the value 1 and the name of the node is stored in the
Type field, the Label field of the corresponding node. For an XML element node with
a list of attributes, the list of each pair of attribute name and attribute value is stored
as a text in the Value field. For sibling nodes whose Label fields have the same value,
their Index fields are set to the numbers such as 1, 2, 3, ..., according to the left-to-
right order to distinguish these sibling nodes.

[ Label [ Type | Value | Index | nMD | tMD [ iMD [ nPtr | Op |

Fig. 1. Logical structure of a node of X-tree.

The iMD field represents ID attribute value for a node in XML documents. ID
attributes, if used with Label, can uniquely identify each node in an XML document.
The iMD, nMD and tMD fields are used for efficient comparison between two X-
trees 7 and 7', converted from two XML documents. The nMD field of an X-tree
node N contains the hash value for information of node N and the tMD field of node N
the hash value for information of the node N and its descendents. For the notational
simplicity, a field name of X-tree node is used as a function taking X-tree node as an
input and returning the corresponding field value. iMD(N), nMD(N) and tMD(N) are
defined as follows:

iMD(N) = hash(Label( 7 ) ® ‘ID attribute value’)
NMD(N) = hash(Label(N) ® Value(N)) tMD(N) = hash(nMD(N) (-nB tMD(C,(N)))
x=1



where @ is a string concatenating operator, n is the number of child nodes of node
N, and C,(N) returns Xth child node of node N. Note that tMD(N) reflects the structure
and contents of a subtree rooted at node N. Therefore, if the roots of two X-trees have
the same tMD, these trees are assumed to be identical.

2.2 Edit Operations and the notion of matching

Applying an edit script to the old version of an X-tree produces the new version from
the old version. In this paper, we consider five edit operations such as INS, DEL,
UPD, MOV, and COPY. These edit operations are defined as follows:

e DEL(N): delete a node N from X-tree T.

e INS(l, v, N, i): create a new node with the value | for the Label field and the value v
for the Value field, then insert the node to X-tree T as the ith child of node N.

o UPD(N, v’): update the Value field of a node N with the value v’.

e MOV(N, M, j): remove the subtree rooted at a node N from T, and make the
subtree being the jth child of M.

e COPY(N, M, j): copy the subtree rooted at a node N to the jth child of M.

Copy operation is added in X-tree Diff+. Copy operation is useful when same
subtrees are scattered in duplicate around an X-tree. It allows users to use copy
operations instead of a sequence of insert operations. In addition, we also use NOP in
matching process, a dummy operation for nodes with no change occurred. Matching
two nodes means that these nodes are made to correspond to each other with some
edit operation involved in the match. For a pair of matched nodes N;, N; with
operation e, it is said that that node N; are matched with node N; using edit operation
e. Also, it is represented by a triple (N;, Nj, €) or N; &, N;. When e is NOP, e is often
omitted. Let’s define several functions. For a node N, M(N) and P(N) return the
matching node and parent node of node N, respectively. ST(N) returns a subtree
rooted at node N. If tMD(N;) = tMD(N;), then matching between the subtree rooted at
N; and the subtree rooted at Nj may be represented as ST(N;)—=ST(N;).

3  X-Tree Diff+: Change Detection Algorithm

In this section, we explains X-tree Diff+. In Figure 2, X-tree 7 is an old version,

and X-tree 7' a new version. The number beside a node of these X-trees represents
the order of visiting the node in post-order traversal. These numbers are used to
identify each node in the tree. For example, 7, represent the leftmost node in 7 .

3.1 Preprocessing

Step 0 (Build up X-Trees): we convert XML documents into X-trees 7 and 7',
and generate hash tables. During this process, all the fields of X-tree nodes are



properly initialized. In addition, for each X-tree node, nMD, tMD and iMD values are
computed and stored in the nMD, tMD and iMD fields, respectively.
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Fig. 2. Examples of X-tree

Three hash tables O Htable, N Htable, and N_IDHtable are generated. Entries
for first two hash tables are of tuples consisting of the tMD and pointer of an X-tree
node, with tMD as the key. All the nodes with unique tMD value in 7' are registered to
N_Htable, while all the nodes with non-unique tMD in 7 are registered to
O Htable. N_IDHtable is an hash table for nodes with ID attributes in X-tree 7'. The
entry consists of iMD(as a key) of a node and a pointer to the node.

3.2 X-tree Diff+ Algorithm

Step 1 (Match identical subtrees with 1-to-1 correspondence and match nodes
with ID attributes): First we repetitively find a pair of identical subtrees one

from 7 and another from 7', and match them using NOP. The algorithm in Figure 3

describes this process. N and M represent the roots of subtrees in 7 and 7',
respectively. At the end, the algorithm computes the list of matches, called M_List,
which is the input data for Step 2. Note that, after finding a match, we don’t visit their
subtrees for matching, due to the characteristics of tMD. For the details, refer to
[14,17]. The matches found in this process have one-to-one correspondence.



After having finished the previous sub-step, we try to match nodes with a same
iMD values. While traversing X-tree 7 in breadth-first order, if unmatched node with
ID attribute is found, then look up an entry in N_IDHtable with the same iMD value.
If the lookup succeeds, then match them with NOP.

Foreachnode Nin 7 {/* Visit each node of 7 in breadth-first order */
If any entry of O_Htable does NOT have the same tMD value that the node N has then {
If some entry of N_Htable has the same tMD value that the node N has then {
Retrieve the node M from N_Htable; Match the nodes N and M using NOP;
Add the pair (N, M) of nodes to M_List;
Stop visiting all the subtrees of the node N, then go on to nextnodein 7 ; }
Else Goontonextnodein 7 ; }
Else Go on to the next node in 7 ;
} // For

Fig. 3. Matching identical subtrees with one-to-one correspondence

In Figure 2, since both ST(zs) and ST(717) are unique in 7, they can be
matched with ST(z's) and ST(z"s) of X-tree 7', respectively. So matches such as
ST(7zs)—ST(z's) and ST(717 )—>ST(z"s) are produced. Also, one of ST(z12) and
ST( 72 ) can be matched with ST(z'» ). But since ST( 712 ) and ST( 72 ) are not unique
in the X-tree 7 , this match cannot be determined at this step.

/* Propagate each matching from M_List to its parents */
For matching (A, B) in M_List from Step 1 and 2 {
pA = Parent(A); pB = Parent(B)
While TRUE {
/* None of parents have been matched. */
If nPtr(pA) == NULL AND nPtr(pB) == NULL then {
If Label(pA) == Label(pB) then {
Match pA and pB using NOP; pA = Parent(pA); pB = Parent(pB);}
Else Break; }
Else Break;
} // While
+ // For

Fig. 4. Propagate matching upward

Step 2 (Propagate matching upward): In this step, we propagate matching from
matches found in step 1 upward to the roots. For each matching A—B determined in
step 1, we need to decide whether the parent (P(A)) of A can be matched with the
parent (P(B)) of B based on their labels. The algorithm is shown in Figure 4.

In the example shown in Figure 2, we propagate the matching zs—7's found in
step 1 upward. Since their parent nodes have the same label, a matching zi; — 7' is




made in this step. Again, since parent nodes of nodes in 71— z'n have the same
label, then a matching 7 —7's is determined. In similar way, from the matching
717 —'s from Step 2, 715 — 7' and 7 — 7'2 are produced.

Step 3 (Match remaining nodes downwards): In this step, downwards from the
roots, we attempt to match nodes remaining unmatched until Step 3 begins. While
visiting nodes in 7 in depth-first order, we repeat the following:

(1) Find a matched node A in 7 which has unmatched children. Let B be M(A), the
matching node of A. For A and B, let cA[1..S] denote the list of unmatched child
nodes of A, and cBJ[1..t] the list of unmatched child nodes of B, where s is the
number of unmatched child nodes of A and t is also similarly defined.

(2) For A, B, cA[1..s], and cB[1..t], perform the algorithm in Figure 5.

In the implementation of Step 3, two hash tables are used. When a node A is
found in 7 , all the unmatched child nodes CA[1..S] are registered to both hash tables,
where one hash table uses the tMD values of nodes as the key, and the other the Label
and Index values as the key. These hash tables are used to find matching for each

unmatched child node ¢B[j] of node Bin7'.

Forjin[l..t] { /* For each cB[j] */
If there is a CA[i] where tMD(CA[i]) = tMD(cBJ[j]) then
Match ST(cA[i]) with ST(cB[j]) using NOP;
Else If there is a CA[i] where Label(cA[i]) = Label(cB[j]) and Index(CA[i]) = Index(cB[j]) then
Match cA[i] with ¢B[j] using NOP;
} }// For

Fig. 5. Match remaining nodes downwards

In the example in Figure 2, while visiting nodes in 7 in the depth-first order, we
first find an matched node 715 where z'w= M(71:). Nodes 7ziand z'mw have
unmatched child 7 and 7', respectively. Because these children have the same
label, then a mach 7. — 7' is made. Similarly, node 7. has unmatched
children(z7,7s,71u) while node 7'w have unmatched children(z'7, 7' ). First of all,
because node 77 and node 7' have the same label and index values, then a match
77 — ' is generated. Also, from this match (z; —17"), 7s —r's is produced,
because all text nodes have the same label (TEXT). Second, sincezs and z's have
the same tMD, therefore a match ST(7s )—ST(z') is produced. Similarly, we can
easily derive matches such as 7is —>7's, 714 — 7', ST(725)—>ST(7's ).

Step 4 (Tune existing matches): we analyze the quality of matches and tune some
ineffective matches. The quality of matching for a node N is analyzed in terms of how
much a match of N is consistent with matches of children of N. For a node N, we
define the number (P#) of positive children’s matches, the number (N#) of negative
children’s matches, and the degree of consistency of matching Con#( N) as follows:

P#(N) = the number of child Cy satisfying [P(M(C«(N))) = M(N) ]

N#(N) = the number of child Cy satisfying [P(M(C«(N))) # M(N) ]
Con#(N) = P#(N) /the number of children matched = P#(N)/(P#(N)+N#(N))




P#(N) implies the number of children satisfying that the parent of the matching node
of a child of node N is equal to the matching node of node N, while N#(N) shows the
number of children not satisfying the same condition. Con#(N) implies the fraction of
children contributing positive effects to the current match of N. In order to tune
ineffective matches, we need to know alternative matches for a node. The list of
alternative matches for a node (IAM) is defined as follows.

IAM (N) = {<K, the number of child C;i> | Label(N)=Label(K) A K #M(N) A
K=P(M(C; (N))) for some child C;(N) }

With IAM (N), we can find a node that can be matched with node N, and also the
number of children contributing positive effect to this possible match, which is called
the supporting degree for the match. Among the set of pairs represented by 1AM (N),
let fN(N) denote the node with highest supporting degree and fV(N) the supporting
degree. The tuning process begins with traversing 7 in post-order. The algorithm is
presented in Figure 6.

Foreachnode Nin 7 // traverse in post-order
If Con#(N) < 0.5 then {
Compute IAM (N);
If fV(N) > P#(N) + P#( fN(N)) then
{Revoke the current match of N; Revoke the current match of fN(N); Match N with fN(N);}
}

Fig. 6. Algorithm for Step 4
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Fig. 7. An example for Step 4(tuning existing matches)

Figure 7 shows parts of two X-trees. Doted lines represent existing matches.
Tables show P#, N#, Con# for nodes 7:s and 725 . Note that Con#(z1s ) < 0.5. Since
from the IAM( 715 ), fN(z1s )=7"s and V(715 )=3 > P#(71s ) + P#(72 ), we replace

715 ’s current match (715 — 7'is ) with new one (715 — 7' ).
Step 5 (Match remaining identical subtrees with move and copy operations):

Among unmatched nodes in 7 and 7'. Among them, we try to match identical
subtrees, which have not been matched in Step 1, with move and copy operations.




In order to achieve this task, we find unmatched nodes from 7 and 7' in
breadth-first order traversal, and produce two hash tables, S Htable for 7 and

T Htable for 7'. The entry structure for these hash tables is (tMD value t, a list of
nodes (LN)) where tMD value is a hash key and the list of nodes (LN) have the same
tMD value t. The matching process proceeds as follows.

(1) For each entry (h_key,, T_LN,) in T_Htable, look up S_Htable with h_key,,.
If this lookup fails, then go on to the next entry in T Htable. (2) In case of the
successful lookup, from the list of nodes S_LN, of the entry looked up in S_Htable
and the list of nodes T_LN,, get pair (N, M) of nodes with the same position in both
list and match ST(N) with ST(M). Suppose the length of T_LN, be InT and that of
S_LNg InS. If InS < InT, we match the first m nodes from S_LN, with the first InS
nodes from T_LN,, respectively. Then match the last node in InS with the rest of
nodes in T_LN, using Copy operation. In case of InS > InT, we match the first InT
nodes from S_LN, with the first InT nodes from T LN, using move operation
respectively. Then leave the rest of nodes in S_LN, unmatched.

4 Algorithm Analysis and Experiments

In this section, we present the time complexity of X-tree Difft and the result of
experiments. |T| denotes the number of nodes in tree T. In this paper, since Steps 0-
3 are similar to those in X-tree Diff, we just show that the time complexity of Steps 0
—31is O(|Toig | +1Thew I) - For the details, refer to the paper [17].
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Fig. 8. Measuring the execution time for each algorithm.
In Step 4, we traverse all the nodes in 7 in post-order way. When a node N is

visited, we compute P#(N), N#(N), Con#(N), IAM(N). The cost of computing these
functions, revoking a match and rematching is O(1). All the nodes in 7 are



counted once as a child during the traversal. Therefore, the cost of Step 4 is also
O(| Ty ). Step 5 requires traversing 7 and 7', and also building hash tables
S Htable and T Htable. This task costs O(|Toiq | +|Thew |). Matching process using
these hash tables costs also O(| Tgig | +|Thew |) in worst case implying all the nodes in
both X-trees are considered. The time cost of Step 5is O(| Tyiq |+ Trew ) -
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Fig. 9. Matching ratio of each algorithm.

The cost of generating edit scripts is also to O(|Tyq |+ ]| Thew ) [14]. In
conclusion, the time cost of X-tree Diff+, even in worst case, is O(| Toig |+ Tnew ) - It

is equal to that of fastest heuristic algorithms for tree-structured documents. Figure 8
shows the execution time in matching nodes for X-tree Diff, XyDiff, and X-tree
Diff+. Y-axis in the graph represents the total execution time except Step 0. The lines
for X-tree Diff and X-tree Difft are linear, as we analyzed above. In the aspect of
efficiency, X-tree Diff is the best, X-tree Diff+ next, XyDiff last. The test data is
produced by Synthetic XML Data Generator[15,16]In Figure 9, we show the
matching ratio which is the ratio of the number of matched nodes to total number of
nodes. The matching ratio of X-tree Diff+ is much higher than those of other two
algorithms. It is because of introducing tuning step and copy operation.

5 Conclusion

In this paper, we propose X-tree Diff+, which is fast and produces reasonably good
quality of edit scripts. The time complexity of X-tree Diff+ is O(n) in worst case.
Its matching ratio is much higher than existing heuristic algorithms. X-tree Diff+



introduces tuning step and copy operation. Even though X-tree Difft is heuristic
algorithm, X-tree Diff+ uses a systematic approach for tuning; based on the notion of
consistency of matching between a parent and its children, analyze the degree of
consistency of matching for each node in terms of P#, N#, Con#, then tune ineffective
matches. Introducing copy operation provides users convenience. Because users get
used to use copy operation in editing software, it is awkward not to support copy
operation in existing algorithms. In addition, copy operation increases matching ratio
a lot. With systematic tuning step and copy operation, the quality of edit scripts that
X-tree Diff+ produces is better.
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