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Abstract. A Speech and Character Combined Recognition Engine (SCCRE) is 

developed for working on Personal Digital Assistants (PDA) or on mobile de-

vices. In SCCRE, feature extraction from speech and character is carried out 

separately, but recognition is performed in an engine. The recognition engine 

employs essentially CHMM (Continuous Hidden Markov Model) structure and 

this CHMM consists of variable parameter topology in order to minimize the 

number of model parameters and reduce recognition time. This model also 

adopts our proposed SSMS (Successive State and Mixture Splitting) for gener-

ating context independent model. SSMS optimizes the number of mixtures 

through splitting in mixture domain and the number of states through splitting 

in time domain. When we applied our developed engine which adopts SSMS to 

speech recognition for mobile devices, SSMS can reduce total number of Gaus-

sian up to 40.0% compared with the fixed parameter models at the same recog-

nition performance. This leads that SSMS can reduce the size of memory for 

models to 65% and that for processing to 82%. Moreover, recognition time de-

creases 17% with SSMS model but still maintains the recognition rate. 
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1   Introduction 

There has been much interest in intelligent multimodal interfaces with the growth of 

mobile information devices. This is primarily motivated by a need for providing con-

venient user interface to small size of mobile devices such as PDA. In some custom-

ized PDAs, speech recognition and character recognition modalities have already 

offered, so as to maximize convenient user interfaces [1]. Such small mobile devices 

have employed two different engines for speech and character recognition so far. 

However, this recognition structure is not desirable for small size of mobile devices in 



terms of memory management and cost. One solution is to use of a unified processor 

for both speech and character recognition modalities. In this paper, our interest is 

focused on the SCCRE. 

Hidden Markov Model (HMM) is the most widely technique used in speech recog-

nition and it has been successfully applied in the recognition of Korean on-line hand-

writings [2]. Therefore, our SCCRE employs HMM as a basic model structure for 

construction of both speech and character recognition units, so as to be effectively 

applied to memory limited low cost devices. Especially, context independent CHMM 

of phoneme or grapheme (Korean character phone) is used as a basic recognition unit 

in SCCRE. The following conditions should be satisfied for CHMM based SCCRE to 

be effectively applied to customize mobile devices; 1) Combined recognition engine 

has to maintain recognition accuracy as in each individual system. 2) Real time proc-

essing should be achieved. For these reason, the size of CHMM should be minimized 

for real time processing.  

Usual CHMM has a fixed parameter model topology (i.e. a fixed number of states 

and a fixed number of mixtures). But this topology can not represent wide variety of 

distinctive features sufficiently in an individual recognition unit. In case of on-line 

character recognition, it is more effective to have a different number of states for the 

different units, for example "ㄱ(g)" and "ㄼ(rb)" have 2 and 6 states respectively[2]. 

For speech recognition, there have been similar trials. Several approaches such as 

parameter histogram, AIC (AKAIKE Information Criterion)[3], and BIC (Bayesian 

Information Criterion)[4] [10] have been proposed to reduce the number of parame-

ters with the smallest error rate. These approaches have variable parameter model 

which consists of variable number of states and variable number of mixtures. However, 

these approaches determine the number of states and mixtures for a recognition unit 

(phoneme or grapheme) without considering those of other units. This can lead to 

decrease the recognition rate. As these approaches have the same number of mixtures 

for all recognition units, a recognition unit that has a compact distribution must also 

have a complicated structure and this can cause real time processing difficult.  

Therefore, our main interest is focused on developing a method that selects a suit-

able number of states and a suitable number of mixtures in each individual recognition 

unit. In this work, a splitting algorithm of GOPDD (Gaussian Output Probability Den-

sity Distribution) is employed to decide model topology automatically. This algorithm 

is similar to SSS (Successive State Splitting)[5], which is often used in tied states 

context dependent models. But, our method is different from the SSS, as it splits the 

GOPDD in mixture domain not in context domain.  

This paper is organized as follows. The following section gives a brief review of 

SCCRE architecture with the preprocessing of speech and on-line character recogni-

tion. Section 3 presents the previous variable parameters models. Section 4 describes 

the proposed splitting method of GOPDD. Recognition results for SCCRE are given 

in Section 5. Finally, some conclusions are presented in Section 6. 



2   Speech and Character Combined Recognition Engine 

2.1   System architecture 

Fig. 1 shows combined recognition system architecture for working on PDA or on 

mobile devices. In this system, we assume that the character (cursive script) and 

speech inputs are taken through touch screen and microphone, respectively. The pre-

processing and the feature extraction are carried out on each modality, but provide the 

parameter observations to CHMM based combined recognition engine. Total 115 M-

mixture CHMM models are trained through labeling. The combined CHMM models 

consist of 48 phone-like units for speech and 67 graphemes for character. The recog-

nition is performed by using OPDP (One Pass Dynamic Programming) algorithm [7]. 

 

 

 

Fig. 1. System architecture  

2.2   Preprocessing 

39-order of MFCC (Mel Frequency Cepstral Coefficient) is extracted for speech rec-

ognition, where CMN (Cepstral Mean Normalization) is applied for taking account 

into environmental noise. The features for character recognition consist of 6-order of 

position parameters and 9-order of bitmap parameters. In the rest of this sub-section, 

we describe about preprocessing of Korean character briefly. 

Fig.2 shows the preprocessing steps of on-line character recognition. Assume that 

the handwriting inputs are obtained through touch screen and the sampling rate is set 

to higher than 100 sample per second for different devices. In order to make users 

freely in writing style and writing position, the preprocessing step is given as follows: 
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Fig. 2. Preprocessing of on-line character 

recognition 

Fig. 3. Extraction of bitmap parameter 

 

A) Smoothing 

Smoothing is carried out on the pen trajectory of the input character to reduce 

noises from input device. A smoothed point ix̂ is obtained by convolution, as given by 

miminini xCxCxCx +−− ⋅++⋅++⋅= ......ˆ 0  (1) 

Where mnnjforC j ,),1(,, Λ−−−= denotes the impulse responses of the smoothing 

filter, and 1++ mn  denotes the size of smoothing filter. 

 

B) Normalization 

To rule out the variation of writing styles, width, height, and starting positions of 

input words should be normalized to the reference geometry. In word-based recogni-

tion system, the pre-determined height for all input words is used for the normalization 

of width and height. In other words, the height of input words are scaled to the refer-

ence height and width of the words are adjusted with the same scaling factor used in 

the height normalization. The starting position is also adjusted into the fixed position 

to remove the variations of each input words. 

  

C)  Re-sampling 

Sampled data are re-sampled to yield a new sequence of data having equidistant in 

space to compensate different sampling rate and different writing speed. The follow-

ing equidistant re-sampling procedure is applied. The coordinate of a new sample 

( jpx , ipy ) is obtained by bi-linear interpolation as follows.  
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Where α  denotes the desirable distance in spaces.  

 

D) Feature extraction 

For each data point of the re-sampled sequence, a 15 dimensional feature vector is 

calculated, which consists of 2 local information features for absolute x and y posi-

tions, 2 local angle parameters, 2 curvature parameters, and 9 bitmap based global 

information features [8]. Fig. 3 shows an example of bitmap parameter extraction. The 

circles and the triangles denote the re-sampled sequences in case of α =5 and α =1. 

Distribution of points (re-sampled with α =1) within 3×3 window is used for extract-

ing bitmap parameter as show in this figure. 

3.   Conventional Variable Parameter Model  

This chapter gives brief reviews of general variable parameter model topology se-

lection methods with more details of ML and BIC algorithms.  

3.1   Variable parameter model selection topology 

In general, model selection is done by choosing the topology 
∧
T  such that. 
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∧

 (3) 

A common practice in Bayesian model selection is to ignore the prior over the 

structure )(TP (that is, assuming equal prior across all topologies) and using the evi-

dence )|( TXP  as the sole criterion for model selection such that. 
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 (4) 

Where MLθ is estimated model of θ using MLE (Maximum Likelihood Estimate). 

Note that (4) is written as the likelihood term and the penalty term ),( NkC which de-

pend number of training data N  and number of parameter k [4]. 



3.2   ML topology selection method 

ML topology selection method is to find the model, *θ , that maximizes the log likeli-

hood, so as to determine a suitable number of state and number of mixtures at each 

recognition unit. 
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Where iθ̂ is i-th model trained by the maximum likelihood estimate, and nX is n-th 

data, N  is the size of data set. Fig. 4 shows an example of log likelihood. The maxi-

mum values are circled. In case of Korean phoneme "aa", 5 states and 4 mixtures 

model, denoted as S5_M4, shows the maximum likelihood over the interval of 3 ~ 6 

states and 1 ~ 4 mixtures.  

 

 Fig. 4. Log likelihood, penalty and BIC of Korean phoneme "aa" 

3.3   BIC topology selection method 

BIC is defined as the sum of log likelihood and a penalty term. The penalty term de-

pends on the number of model parameters and the size of data set. BIC topology se-

lection method is to find the model, ∗∗θ , that maximizes BIC, so as to determine a 

suitable number of state and number of mixtures at each recognition unit.  
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Where ik  is the number of i-th model parameter and N is the size of the data set. 

Fig. 4 also shows that the S4_M3 model has the maximum BIC (sum of maximum 

likelihood and the penalty term).  



4.   Successive State and Mixture Splitting 

The acoustical characteristics of phonemes are greatly influenced by phoneme context, 

speaker characteristics, and the speaking rate of utterance. Many algorithms such as 

SSS-FREE, ML-SSS[10], DT(Decision Tree)-SSS[6] have been proposed for con-

structing context dependent models. Generally, it is known that the context dependent 

models perform better than the context independent models, but require much more 

memory for processing. Taking account into low cost, memory limited mobile device, 

context independent model is applied to SCCRE in this paper.  

Here, we propose a splitting algorithm, called SSMS (Successive State and Mixture 

Splitting), which splits the GOPDD for variable parameter context independent model.  

Unlike the SSS algorithm generating context dependent model, the SSMS con-

structs context independent models with suitable number of states and mixtures for 

each recognition units by splitting GOPDD. The SSS is done in time and context do-

mains, while the SSMS splits the GOPDD in time and mixture domain. The outline of 

the SSMS is illustrated in Fig. 5. The algorithm consists of three steps as follows. 

 

 

Fig. 6. The splitting examples in time and 

mixture domain 
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Fig. 5. Generation of a SSMS model 

 

Fig. 7. The splitting examples in time and 

context domain 

Step 1: Train initial models 

Two different initial models should be constructed for speech and handwritten charac-

ter, respectively. For speech, HMM with context-independent three states and one 

mixture is used as the initial model and context-independent two states and one mix-

ture is used for character, so as to well represent up to the simple grapheme with the 

shortest length. 

Step 2: Find GOPDD for splitting 



For each state S(i) with M-mixture GOPDD, the normalized distribution size id  is 

calculated.  S(m) will be the state to split which gives the maximum id  among all 

samples. 
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Where, k denotes the dimension of the feature vector, 'imimλλ  represent weight coef-

ficients, in denotes the number of training sample assigned to the state, 2
ikσ denotes 

the k-th variance of all samples. 
 

Step 3: Split the GOPDD. 

The selected state in step 2 is then split in time and mixture domain respectively. The 

Baum-Welch algorithm is applied to the split states in each domain in order to find 

maximum likelihood path. Fig. 6 shows a simple splitting example of SSMS. Where 

the large circle denotes one state and small circle denotes one GOPDD in correspond-

ing state. In this example, the second state on upper line is split by SSMS. The lower 

left corner shows that the state can be split into two states with the same number of 

mixtures. In the lower right corner, two mixtures in the state can be split into three 

mixtures. The original SSS algorithm split the states in both context and time domain 

as described in Fig. 7. Note that all split states have one mixture. 

Step2 through Step 3 are repeated until M-mixture reaches the specified number. 

Because the model generated by the three steps of SSMS has suitable number of states 

and each state has appropriate number of mixtures, the proposed algorithm can be 

regarded as to be more general for generating variable context independent model. In 

addition, this algorithm allows more effective memory managements, in terms of the 

number of states and mixtures, than the fixed parameter model. 

5.   Experiments 

5.1 Performance tests 

452 KPBWs (Korean Phoneme Balanced Words) uttered by 38 male are used for 

constructing SI (speaker independent) model in speech recognition, and on-line cur-

sive handwritten characters by 10 writers for character recognition. Table 1 shows the 

analysis conditions of SCCRE. 

To show the effectiveness of variable parameter model using SSMS, we compare it 

with conventional fixed parameter model and DT-SSS HM-Nets (Hidden Markov 

Network)[6]. SI word recognition rate with fixed parameter model and variable pa-



rameter model using SSMS is shown in Fig. 8. As the figure indicates, the recognition 

accuracy increases as the number of GOPDD increases. The dotted line indicates the 

recognition performance by SSMS model, and straight-line indicates the recognition 

performance by fixed parameter models having number of states from 3 to 6. The 

recognition rate by SSMS model increases faster than other fixed models to the maxi-

mum recognition rate of 98.2%.  

Table 1. Analysis conditions for speech/character data 

 Speech Character 

Preprocessing 

8kHz sampling, 16bits 

16ms hamming window 

5ms frame shift 

100 samples/sec 

smoothing 

size/position normalization  

distance re-sampling 

Feature 

12 MFCCs 

12 delta MFCCs 

12 delta delta MFCCs 

1 power, 1 delta power 

2 absolute X,Y positions 

2 angles 

2 curvatures 

9 modified bitmaps 

DB KLE Korean words KAIST Korean written characters 

Model M mixture variable parameter CHMM 
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Fig. 8. Comparison of recognition rates between SI fixed parameter models from 3 states(S3) to 

6 states(S6) and SI variable parameter model by SSMS( Where, no. of GOPDD= no. of phones 

x no. of states x no. of mixtures) 

Table 2. Number of GOPDD of each model reaching to the maximum recognition accuracy of 

98.2% 

Model S3 S4 S5 S6 SSMS 

#GOPDD 2115 2256 1645 1692 987 

 



Table 2 shows the number of GOPDD of each model that reaches to the maximum 

recognition accuracy of 98.2%. In this table, we can find that the number of GOPDD 

is 1,692 for the fixed parameter model and 987 for SSMS model to reach 98.2% of 

recognition rate. Therefore, SSMS models have 40% fewer parameters than the fixed 

model. For running in PDA, fixed parameter model has size of 630Kbyte and requires 

a memory of 3.42Mbyte; SSMS model has size of 410Kbyte and requires a memory of 

2.81Mbyte, leading that SSMS can reduce the size of memory for models to 65% and 

that for processing to 82%. Moreover, recognition time decreases 17% with SSMS 

model but still maintains the recognition rate.. Moreover, recognition time decrease 

17% with SSMS model but still maintain the recognition rate. Table 3 shows exam-

ples of model topology by SSMS that achieves maximum recognition results. In case 

of phoneme "g", the number of state is 5 and the first state has 4 mixtures, the second 

four, the third 7…etc. 

Table 3. Examples of model topology by SSMS Model 

Phone 
# Total 

state 
1 2 3 4 5 6 

g 5 4 4 7 5 6 - 

gg 6 7 4 4 3 3 2 

aa 3 3 7 8 - - - 

ih 3 4 9 11 - - - 

Table 4. DT based SSS (#GOPDD) ( #M: number of Mixture, #S: number of State ) 

#M 

#S  
1 2 4 

300 95.28 (300) 97.42 (600) 98.08 (1200) 

1000 98.01 (1000) 98.67 (2000) 98.97 (4000) 

2000 98.75 (2000) 98.75 (4000) 99.19 (8000) 

 

Table 4 show the recognition rates of the context dependent model using DT based 

SSS. The results show that the context dependent model provides better recognition 

rate than the context independent models. Note that the DT based context dependent 

model requires, however, more than 1,000 of GOPDD, to achieve the recognition rate 

of 98.2%. 

6.   Conclusions  

This paper describes an on-line SCCRE working on PDA or on mobile devices. In the 

SCCRE, feature extraction for speech and for character is carried out separately, but 

recognition is performed in an engine.  

Usual CHMM has a fixed parameter model topology (i.e. a fixed number of states 

and a fixed number of mixture models), but can not represent wide variety of distinc-

tive feature parameters sufficiently in an individual recognition unit.  Therefore, it 



would be better if variable parameter model is used to reduce the number of parame-

ters while maintaining the recognition rate.  

SSMS method was proposed for generating the variable parameter model automati-

cally. The proposed allows reducing effectively the number of mixtures through split-

ting in mixture domain instead of in context domain. The experimental results indicate 

that the proposed model have the same recognition rate of the best fixed parameter 

model, with only 60% parameters of the fixed model. This leads that SSMS can re-

duce the size of memory for models to 65% and that for processing to 82%. Moreover, 

recognition time decreases 17% with SSMS model but still maintains the recognition 

rate. This means that the proposed SSMS is suitable for applying in compact mobile 

devices such as PDA.  
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