

Simulation Cost Reduction Strategies for Behavioral

Model Verification in Bayesian Based Stopping Rule

Kang Chul Kim
1
, Chang-Gyoon Lim

1
, Jae Hung Yoo

1
, Seok Bung Han

2

1
Department of Computing Engineering, Chonnam National University,

San 96-1, Dunduck-Dong, Yeosu, Chonnam, Korea,

kkc@chonnam.ac.kr
2
Department of Electronic Engineering, Gyeongsang National University,

Gajwa-Dong, Jinju, Gyeongnam, Korea

 hsb@nongae.gsnu.ac.kr

Abstract. This paper presents two additional strategies to reduce simulation

time for Bayesian based stopping rules in VHDL model verification. The first is

that a semi-random variable is defined and the data staying in the semi-random

variable range are skipped when stopping rule is running, and a turning point

that can partition a random variable into a semi-random and a genuine random

variable is chosen. The second is that the old values of parameters are kept

when phases of stopping rule change. 12 VHDL models are examined, and the

simulation results demonstrate that more than approximately 25% of clock

cycles are reduced when using the two proposed strategies with 0.6% branch

coverage rate loss.

Key Words : Verification, behavioral VHDL model, stopping rule, branch

coverage, semi-random variable

1. Introduction

As VLSI fabrication technology has rapidly developed, it is possible to implement

SoC(System on Chip) which comprises CPU, memory controller, bus controller, and

so on. However, the technologies for the design and the verification of complicated

chips have not developed rapidly, therefore, design verification of behavioral models

is becoming difficult and has become a critical and time-consuming process in

hardware design. Approximately 70% of the design effort in SoC, IP, ASIC, etc., has

been consumed in the verification process, and design and verification engineers work

together from the beginning of IC design [1,2,3].

It is impossible to know that the design being verified is indeed functionally

correct with 100% certainty. That is the reason code coverage is required to be used.

Many different types of coverage criteria have been defined including statement,

branch, block, expression, and path coverage[4,5,6]. Among these criteria, branch

coverage has been chosen as a good metric to verify hardware designs.

A large number of clock cycles should be consumed to verify a design by using

coverage metrics because random test patterns have been used in complex VHDL

models. Several examples demonstrate that 5 billion instruction simulation cycles can

be run to ensure fault-free chip before tapeout[7,8,9]. Therefore, techniques that can

seek the optimal stopping point should be developed and it is necessary to take

productive stopping rules and strategies to reduce verification time and cost in a

verification process.

This paper presents two additional strategies to reduce clock cycles for the

Bayesian based stopping rule in VHDL model verification. In the first strategy, a

semi-random variable is defined and the data located in the semi-random variable

range are skipped when the stopping rule is running. A turning point partitioning the

given random variable into a semi-random and a genuine random variable is chosen.

In the second, the old values of parameters are kept when the phases of stopping rule

change. More than approximately 25% of clock cycles are reduced using the two

proposed strategies with few losses of branch coverage.

In section Ⅱ, previous work is introduced, and proposed strategies are explained in

section Ⅲ. Section Ⅳ presents simulation results and discussions of the results.

Finally, conclusion of this paper is presented in section Ⅴ.

2. Bayesian based stopping rules

Many methods for testing software program have been developed[10,11,12]. Recently,

Poisson distribution and Bayesian estimation based stopping rules were introduced by

[10] and [13].

 [10] suggested a compounded counting process using empirical Bayesian

principles and introduced the stopping rule in verification of VHDL programs. The

key idea is to combine two probability distributions, that is, the number and the size

of interruption. The parameters of probability distributions are assumed random

variables by using Bayesian estimation.

[13] observed the outcome of branch coverage at every testing clock cycle and

predicted the number of branches to be covered at time t. In this method, the number

to be covered is expressed by branch coverage random process Xt. Xt is divided into

two probabilities, interruption Nt, where one or more new branches are covered at

time t, and the size of the interruptions
tW . The conditional distribution functions of

the interruption occurrences,
tD , is defined. Next, a PMF(Probability Mass Function)

extraction experiments are conducted in order to estimate the best fitted distribution

function at every discrete time t, and Poisson probability distribution function is

chosen. Then
tW is defined to be a random process distributed as a Poisson process

with
tβ as

tW ~
)!1(

1

−

−
−

w

w
tte
ββ

. (1)

Here,
tβ is a random variable representing the parameter of the Poisson

distribution that should be estimated from the simulation history and is defined as

tβ =)(tgβ for constant β and a decreasing function g(t) and ∑
=

=
1:

)()(
jdj

jgtG .

The probability of having an interruption during the testing process, p(t), is

estimated for every discrete time t. This p(t) is decomposed into a shape function f(t)

and an amplitude value
tς , p(t)= tς f(t), where the

tς values can be determined

statically or dynamically based on the history of testing the behavioral model. The

gamma function of β is given by

1

)(
),;(−−

Γ
=Γ r

r

e
r

r β
γ

γβ γβ . (2)

Then, the statistical model for the branch coverage increase for a given history of

verification is derived. And Bayesian analysis is achieved by calculating the

likelihood function of the Bayesian parameter,
tβ , and given the verification history,

the coverage is expected at time t>T as

)(
ˆ

tG

nxr tt

+

−+
=
γ

β , (3)

)(
)(

1}|{ tg
tG

nxr
xWE tt

t
+

−+
+=
γ

r
. (4)

Finally, the total number of branches to be covered at future time t>T is predicted

as

)())(
)(

1(}|{
1

jfjg
tG

nxr
xxXE tt

t

Tj
Tt ς

γ +

−+
++= ∑

+=

r
. (5)

In some papers[14,15], a new test pattern is generated at every simulation cycle

and fed into a model, however [14] represents a new verification strategy. When data

bits have to be fixed for certain times, a pattern for a certain number of clock cycles is

used, that is, 1, 2, 4, 6 clock cycles are remained for each phase stage. The mixed

strategy of random testing improves branch coverage[16].

The methods of above papers have improved behavioral model verification. If a

few additional strategies are introduced, it is suggested that the verification cost can

be reduced much further. A numerical result of an experiment can be a random

variable when the value of it is not exactly expected. But the random variable used in

[13] has a predictable value for some clock cycles from the beginning point. It is

suggested that this random variable can be divided into two regions, that is, semi-

random and genuine random variables. If the data in the semi-random variable range

are skipped, the simulation time can be considerably reduced.

 [16] did not use the previous simulation results when simulation phase changed.

Bayesian estimation expects the future event by using the event estimated from the

history of previous simulations, so it is reasonable to make use of the previous results

in a current simulation.

In addition, [13] and [16] have the constraint that stops simulation when branch

coverage is zero for first 30 consecutive clock cycles in every phase, but sometimes

this can become a problem because the constraint can be of greater significance than

stopping rules, and ultimately make the simulation stop.

3. Proposed strategies for reducing simulation cost

The overall expected value of Xt is the sum of all the expected sizes of interrupts after

time T as showed in (5). Xt and Wt have been assumed to be random variables for all

clock cycles. If xT is large in (5), the expected value of Xt is large, that is, the larger

the sum of all coverage before time T, the longer the stopping point. Therefore the

sum of coverage before time T should be low in order to reduce the stopping point in

the time axis.

Table 1. Cumulative branch coverage vs. clock cycle

 B C(Branch Coverage)

S#

t
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1 35 35 58 47 47 69 58 47 35 58 49 93

2 53 92 111 94 94 153 111 94 92 111 92 166

3 54 95 123 102 102 156 123 102 95 123 127 218

4 58 111 123 133 133 178 123 133 111 123 129 228

5 68 140 126 145 145 210 126 145 140 126 132 231

6 68 143 139 146 146 214 139 146 143 139 136 238

7 68 148 142 146 146 216 142 146 148 142 139 239

8 68 151 170 146 146 222 170 146 151 170 139 239

9 68 151 172 154 154 222 172 154 151 172 144 244

10 68 152 182 159 159 222 182 159 152 182 148 249

The values of random variables are not known with certainty, that is, only a set of

possible time and probability of the random variables are known. In this paper, a

semi-random variable is defined as a variable of which value is certainly not known,

but all values of the variable are greater than the reference value. Table 1 presents

cumulative branch coverage for ten simulation clock cycles from the starting point for

12 sample VHDL models. Every branch coverage for a few clock cycles from t=1 is

comparatively large.

Table 2. Branch coverage for 10 test patterns at the first two clock cycles.

 B C

S# S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

t

TP
t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2

1 35 16 35 57 58 53 47 47 47 47 69 84 58 53 47 47 35 57 58 53 49 42 93 73

2 35 17 35 60 58 49 47 44 47 44 69 77 58 49 47 44 35 60 58 49 49 41 93 93

3 35 18 35 59 58 55 47 43 47 43 69 76 58 55 47 43 35 59 58 55 49 59 93 92

4 35 14 35 59 58 51 47 46 47 46 69 76 58 51 47 46 35 59 58 51 49 58 93 90

5 35 15 35 56 58 46 47 44 47 44 69 83 58 46 47 44 35 56 58 46 49 47 93 83

6 35 16 35 56 58 48 47 45 47 45 69 83 58 48 47 45 35 56 58 48 49 46 93 66

7 35 15 35 56 58 53 47 45 47 45 69 83 58 53 47 45 35 56 58 53 49 51 93 83

8 35 11 35 57 58 47 47 45 47 45 69 84 58 47 47 45 35 57 58 47 49 44 93 73

9 35 17 35 60 58 56 47 44 47 44 69 77 58 56 47 44 35 60 58 56 49 56 93 84

10 35 12 35 60 58 53 47 44 47 44 69 77 58 53 47 44 35 60 58 53 49 42 93 76

Table 2 presents that the number of branch coverage with 10 test patterns is

comparatively high for first and second simulation clock cycles. Fig. 1 presents the

histogram of branch coverage in table 2. The probability that the size of interruption is

less than 10 is 0, and all the branch coverage is higher than 10 for the two consecutive

clock cycles.

Fig. 1 Histogram of branch coverage for first and second clock cycles

Table 3 presents branch coverage at each cycle for 10 clock cycles with the same

test pattern. For example, if the reference value has been chosen as 6, branch coverage

is 35 and 18 at t=1 and t=2 respectively for sample S1, so the branch coverage in the

time range between t=1 and t=2 defines a semi-random variable, and the branch

coverage in the time range for t>2 defines a genuine random variable.

Table 3. Branch coverage for each clock cycle

BC

CC S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1 35 35 58 47 47 69 58 47 35 58 49 93

2 18 57 53 47 47 84 53 47 57 53 43 73

3 1 3 12 8 8 3 12 8 3 12 35 52

4 4 16 0 31 31 22 0 31 16 0 2 10

5 0 29 3 12 12 32 3 12 29 3 3 3

6 0 3 13 1 1 4 13 1 3 13 4 7

7 0 5 3 0 0 2 3 0 5 3 3 1

8 0 3 28 0 0 6 28 0 3 28 0 0

9 0 0 2 8 8 0 2 8 0 2 5 5

10 0 1 10 5 5 0 10 5 1 10 4 5

The time is partitioned into two regions, TS and TR. TS is defined as TS={t1,

…,tk }, where tW (ti)≥Vr for all i=1,2,..,k. and the next tW (tk+1)<Vr, where Vr is a

reference value. Then the interval TR is defined as TR={tk+1, …,∞}, where tW (ti) can

take non-negative value for all i=k+1,…, ∞.

It is important to note that values of the size of interruption
tW s are comparatively

large for a few clock cycles from the beginning point even though the exact values of

tW s can not be predicted.
tW can be divided into two regions, that is,

tsW is a semi-

random variable in the first region of a random variable and
trW is a random variable

in the other region as

trtst WWW ||= . (6)

tsW in the first part of a random variable is so large that the data in the semi-

random variable range can be skipped when the stopping rule is running because tW s

are not predicted by the Poisson’s distribution function. The semi-random variable is

extremely important because the cumulative branch coverage in the semi-random

variable nearly reaches half the total coverage though the first region has a few clock

cycles. Therefore it is very important to make a reasonable choice for the turning

point at a random variable because it has a great effect on the stopping point.

The dark dashed line presents the probability of tW for S7 in Fig. 2[13]. If the

value of tW is greater than 6, the probability of Nt is quite low. It can be recognized

that the probability that the values of Wt are greater than 6 is very small in the genuine

random variable range, but the probability in the semi-random variable is always 1.

The reference or turning point is decided to be the first value of tW having the

frequency more than 1% at first from the beginning point. In Fig.2, tW of which

branch coverage is less than 6 at first is chosen as a turning point, which divides a

random variable into a semi-random and a genuine random variable. Depending on

behavioral models and test patterns, the branch coverage is randomly varied as the

number of clock cycle increases, therefore the position of the reference value can not

be fixed in time region. Instead, this is dynamically decided while simulation is

running.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9

Size of Branch ClumpSize of Branch ClumpSize of Branch ClumpSize of Branch Clump

F
re
q
u
e
n
c
y

F
re
q
u
e
n
c
y

F
re
q
u
e
n
c
y

F
re
q
u
e
n
c
y

Actual Histogram
Poisson 0.013

Geometric 0.043
Logarithmic 0.079

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9

Size of Branch ClumpSize of Branch ClumpSize of Branch ClumpSize of Branch Clump

F
re
q
u
e
n
c
y

F
re
q
u
e
n
c
y

F
re
q
u
e
n
c
y

F
re
q
u
e
n
c
y

Actual Histogram
Poisson 0.013

Geometric 0.043
Logarithmic 0.079

Fig. 2 Histogram fitting example of tW for S7

The first additional strategy is proposed as follows. The branch coverage in the

semi-random variable range tsW defined in (6) is skipped while the stopping rule is

running, then stopping point will become short because xT becomes lower in (5). As

the stopping point is shorter, the problem that total branch coverage becomes low

must be considered. But random test patterns are used in most behavioral model

verifications before testing a chip, and the increase in branch coverage rate abruptly

drops as the number of random test pattern increases beyond the turning point,

therefore it can be predicted that total branch coverage does not rapidly decrease

when the data in the semi-random region tsW is skipped.

The values of parameters obtained at the previous phases in (5) until time T are

reset when a new phase starts in [13]. But the Bayesian model predicts the expected

branch coverage using the previous branch coverage. The overall expected value of Xt

at any time t>T given the verification history up to time T is the sum of all the

expected sizes of interruptions after time T. Thus the second additional strategy is

proposed, where the old data obtained in the previous phase can be used as initial

values in the next phase.

Applying the new verification strategies to the stopping rule of the Bayesian model

can reduce clock cycles and improve performance of behavioral model verification.

4. Simulation results and discussions

In order to inspect the proposed algorithm, QuickVHDL simulator of Mentor

Graphics is used. Fig. 3 explains the overall simulation process. The random test

patterns are generated and the phase of test pattern is chosen, then simulation is

conducted with the VHDL sample program and input files. The branch coverage is

calculated during simulation, and the simulator decides whether the simulation

continues or quitting by branch coverage and the proposed strategies.

Branch Branch Branch Branch
CoverageCoverageCoverageCoverage

StoppingStoppingStoppingStopping
RuleRuleRuleRule

Phase SelectionPhase SelectionPhase SelectionPhase Selection
(Repeater)(Repeater)(Repeater)(Repeater)

Random TestRandom TestRandom TestRandom Test
Pattern GeneratorPattern GeneratorPattern GeneratorPattern Generator

StopStopStopStop

VHDL SimulatorVHDL SimulatorVHDL SimulatorVHDL Simulator

VHDL ModelVHDL ModelVHDL ModelVHDL Model

Input FileInput FileInput FileInput File

Interface FileInterface FileInterface FileInterface File

Branch Branch Branch Branch
CoverageCoverageCoverageCoverage

StoppingStoppingStoppingStopping
RuleRuleRuleRule

Phase SelectionPhase SelectionPhase SelectionPhase Selection
(Repeater)(Repeater)(Repeater)(Repeater)

Random TestRandom TestRandom TestRandom Test
Pattern GeneratorPattern GeneratorPattern GeneratorPattern Generator

StopStopStopStop

VHDL SimulatorVHDL SimulatorVHDL SimulatorVHDL Simulator

VHDL ModelVHDL ModelVHDL ModelVHDL Model

Input FileInput FileInput FileInput File

Interface FileInterface FileInterface FileInterface File

Branch Branch Branch Branch
CoverageCoverageCoverageCoverage

StoppingStoppingStoppingStopping
RuleRuleRuleRule

Phase SelectionPhase SelectionPhase SelectionPhase Selection
(Repeater)(Repeater)(Repeater)(Repeater)

Random TestRandom TestRandom TestRandom Test
Pattern GeneratorPattern GeneratorPattern GeneratorPattern Generator

StopStopStopStop

VHDL SimulatorVHDL SimulatorVHDL SimulatorVHDL Simulator

VHDL ModelVHDL ModelVHDL ModelVHDL Model

Input FileInput FileInput FileInput File

Interface FileInterface FileInterface FileInterface File

Branch Branch Branch Branch
CoverageCoverageCoverageCoverage

StoppingStoppingStoppingStopping
RuleRuleRuleRule

Phase SelectionPhase SelectionPhase SelectionPhase Selection
(Repeater)(Repeater)(Repeater)(Repeater)

Random TestRandom TestRandom TestRandom Test
Pattern GeneratorPattern GeneratorPattern GeneratorPattern Generator

StopStopStopStop

VHDL SimulatorVHDL SimulatorVHDL SimulatorVHDL Simulator

VHDL ModelVHDL ModelVHDL ModelVHDL Model

Input FileInput FileInput FileInput File

Interface FileInterface FileInterface FileInterface File

Branch Branch Branch Branch
CoverageCoverageCoverageCoverage

StoppingStoppingStoppingStopping
RuleRuleRuleRule

Phase SelectionPhase SelectionPhase SelectionPhase Selection
(Repeater)(Repeater)(Repeater)(Repeater)

Random TestRandom TestRandom TestRandom Test
Pattern GeneratorPattern GeneratorPattern GeneratorPattern Generator

StopStopStopStop

VHDL SimulatorVHDL SimulatorVHDL SimulatorVHDL Simulator

VHDL ModelVHDL ModelVHDL ModelVHDL Model

Input FileInput FileInput FileInput File

Interface FileInterface FileInterface FileInterface File

Branch Branch Branch Branch
CoverageCoverageCoverageCoverage

StoppingStoppingStoppingStopping
RuleRuleRuleRule

Phase SelectionPhase SelectionPhase SelectionPhase Selection
(Repeater)(Repeater)(Repeater)(Repeater)

Random TestRandom TestRandom TestRandom Test
Pattern GeneratorPattern GeneratorPattern GeneratorPattern Generator

StopStopStopStop

VHDL SimulatorVHDL SimulatorVHDL SimulatorVHDL Simulator

VHDL ModelVHDL ModelVHDL ModelVHDL Model

Input FileInput FileInput FileInput File

Interface FileInterface FileInterface FileInterface File

Fig. 3. Simulation process

12 VHDL models are examined to compare the effectiveness of proposed

strategies with stopping rule of [14]. Table 4 presents the information of sample

VHDL models.

Table 4. Sample VHDL programs used in simulation

Sample Description # of code line #of branch

S1 16 megabit byte-wide top boot 150ns 1880 373

S2 CMOS syncBIFIFO 256x36x2 4657 251

S3 SyncFIFO with bus-matching 1024x36 5015 302

S4 SyncFIFO 2048x36 4667 225

S5 SyncFIFO 2048x36 4710 225

S6 CMOS syncBIFIFO 1024x36x2 4949 296

S7 SyncFIFO with bus-matching 1024x36 4963 302

S8 SyncFIFO 2048x36 4777 225

S9 CMOS syncBIFIFO 512x36x2 4752 251

S10 SyncFIFO with bus-matching 512x36 4973 302

S11 SyncBIFIFO with bus-matching 512x36x2 5498 399

S12 SyncBIFIFO with bus-matching 1024x36x2 5770 470

Table 5 presents 3 kinds of simulation results obtained while the proposed stopping

rule is run with branch coverage of each clock cycle. In Table 5, SB is the result for

static Bayesian estimator in [13]. SBF is the result for the proposed estimator, which

is identical to SB except for two differences. The first is that the data of branch

coverage that is greater than 6 from the beginning time are not used for the simulation

because they stay in the semi-random variable range, and the second is that the result

of previous phase in (5) has been used in the next phase simulation whenever phases

change under the same condition of SB. Estimator SB30 is same to SBF except that

the constraint that makes the simulation stop in a current phase is added to SBF

whenever each branch coverage for 30 consecutive test patterns from an arbitrarily

starting point is zero.

Compared to SB, clock cycles are reduced to 24.6% and 59.1% and branch

coverage are reduced to 0.6% and 1.5% for SBF and SB30, respectively. Most

branches are detected in the semi-random variable range and the coverage rate

decreases as the number of clock cycles increases and the increase in coverage rate

becomes very slow after the turning point. SB30 and SBF have 3 and 2 additional

constraints compared to SB respectively as discussed in section Ⅲ, but obtain much

better results than SB.

Table 5. Simulation results of SB, SB30 and SBF

SB[13] SB30 SBF
Sample

CC BC CC BC CC BC

S1 1854 128 530 128 1460 128

S2 631 199 493 204 1461 206

S3 808 232 495 231 485 231

S4 673 192 485 192 482 192

S5 789 195 485 195 482 195

S6 2249 273 490 247 489 249

S7 809 232 495 231 496 231

S8 2181 208 649 203 1456 208

S9 631 199 493 204 1461 206

S10 808 232 495 231 496 231

S11 1982 245 596 245 1460 247

S12 2080 364 628 348 1462 360

SUM 15,495 2,699 6,334 2,659 11,690 2,684

Estimator SB1 is the same as SBF, but the simulation does not stop even though

the branch coverage is zero for 30 successive clock cycles from the starting point of

phase Φ1, Φ2, Φ3, 4Φ. Simulation results of SB and SB1 for 4 phase stages are

presented in table 6. Here, the branch coverage of Φ0 are results obtained before the

turning point, that is, they are in a semi-random variable region, therefore the branch

coverage is skipped while the stopping rule is operating. Let 30ZBC be zero branch

coverage for 30 consecutive clock cycles from the beginning point. The numbers in

CC column of SB are ones of clock cycles consumed for each phase, but the numbers

in CC column of SB1 means cumulative clock cycles for each phase including Φ0.

The total clock cycles of SB are much less than one of SB1 in S9 because the

simulation of S9 under SB stops by 30ZBC constraints in phase Φ2, Φ4, but SB

suffers from a drawback that the cumulative branch coverage is relatively low. The

cumulative clock cycles of SB in S1 and S12 is much larger because they are not

affected by 30ZBC constraint. SB1 in S1, S9, and S12 has no 30ZBC constraint, but

the cumulative clock cycles are 1462 on average with good branch coverage. It can be

concluded that the stopping points are decided by the proposed strategies.

Table 6. Comparison of SB and SB 1 for S1,S9, and S12

S1 S9 S12

SB SB1 SB SB1 SB SB1

PH
CC BC CC BC CC BC CC BC CC BC CC BC

Φ0 2 53 2 92 4 228

Φ1 94 121 88 121 99 183 88 177 112 336 90 336

Φ2 188 1 161 122 60 0 161 182 60 0 163 336

Φ3 120 0 306 122 292 16 308 192 324 10 308 346

Φ4 1452 6 1460 128 180 0 1461 206 1584 18 1462 360

TOT 1854 128 1460 128 631 199 1461 206 2080 364 1462 360

It is difficult to obtain 100% branch coverage because random test patterns are

applied to the simulator. The effect of semi-random variable is hidden because some

simulation results have 30ZBC so that the simulation stops by 30ZBC constraints.

Simulation results of Table 5 that do not have 30ZBC in phase Φ4 are selected and

represented in Table 7 again to consider the effect of the proposed strategies. The

simulation results of SBF reduce 2259 clock cycles with losses of 2 branch coverage

because SBF skips the branch coverage detected in the Wts region.

Table 7. Comparisons of SB and SBF without constraint of 30ZBC

SB SBF

Sample CC BC CC BC

S1 1854 128 1460 128

S8 2181 208 1456 208

S11 1982 245 1460 247

S12 2080 364 1462 360

SUM 8097 945 5838 943

5. Conclusion

This paper proposes strategies that can be used to reduce clock cycles in behavioral

model verification. The techniques are applied to 12 sample programs and the

simulation results demonstrate that a large number of clock cycles are reduced with a

few losses in branch coverage. In the future, finding the trade-off of branch coverage

vs. consumption of clock cycle and an efficient turning point that can further reduce

the number of simulation clock will be studied.

References

1. Frank Vahid, Tony Givargis. : EMBEDDED SYSTEM DESIGN : A Unified

Hardware/Software Introduction. John Wiley & Sons, Inc. (2002)

2. Samiha Mourad, Yervant Zorian. : Principles of Testing Electronic Systems. John

Wiley & Sons, Inc. (2000)

3. Janick Bergerson.: Writing testbenches : functional verification of HDL model.

Kluwer Academic (2003)

4. Jjm Lipman.: Covering your HDL chip-design bets. EDN, (Oct. 22, 1998) 65-70

5. Brian Barrera, “Code coverage analysis-essential to a safe design,” Electronic

Engineering, (Nov. 1998) 41-43

6. Kevin Skahill, “A designer’s guide to VHDL design and verification,” Engineering

Software, (Feb. 1996) 149-158

7. A. Von Mayrhauser, et. Al., “On choosing test criteria for behavioral level hardware

design verification”, IEEE International Hign Level Design Validation and Test

Workshop, Berkeley, CA, (2000)

8. A. Hajjar, Chen T, Improving the efficiency and quality of simulation-based model

verification using dynamic Bayesian criteria, Quality Electronic Design, Proceedings

International Symposium, (March 2002) 304-309

9. J. Gately, “Verifying a million gate processor”, Integrated System Design, (1997)

19-24

10. M. Sahinoglu, A. Von Mayrhauser, A. Hajjar, T. Chen, C. Anderson, “ On the

efficiency of a compound Poisson stopping rule for mixed strategy testing”, IEEE

Aerospace conference, Track 7, (Mar. 1997)

11. W. Howden, “ Confidence-based reliability and statistical coverage estimation”,

Proceedings on the international symposium on software reliability engineering, (Nov.

1997) 283-291.

12. S. Chen, S. Mills, “A binary markov process model for random testing”, IEEE

transactions on software engineering, v22, n3, (Mar. 1996) 218-223

13. Amjad Fuad A. Hajjar, “Bayesian Based Stoping Rules for Behavioral VHDL

Verification”, Ph. D Dissertation, Fall 2000.

14. R. Ramchandani, D. Thomas, “Behavioral test generation using mixed integer

nonlinear programming”, International test conference, (1994) 958-967

15. G. Hayek, C. Robach, “From specification validation to hardware testing: a

unified method”, International Test conference, (1996) 885-893

16. T. Chen, M. Sahinoglu, A. Mayrhauser, A. Hajjar, A. Anderson, “Achieving the

quality for behavioral models with minimum effort”, 1
st
 international symposium on

quality in electronic design, (Mar. 2000)

