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Abstract. This paper presents two additional strategies to reduce simulation 

time for Bayesian based stopping rules in VHDL model verification. The first is 

that a semi-random variable is defined and the data staying in the semi-random 

variable range are skipped when stopping rule is running, and a turning point 

that can partition a random variable into a semi-random and a genuine random 

variable is chosen. The second is that the old values of parameters are kept 

when phases of stopping rule change. 12 VHDL models are examined, and the 

simulation results demonstrate that more than approximately 25% of clock 

cycles are reduced when using the two proposed strategies with 0.6%  branch 

coverage rate loss. 
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1. Introduction 
 

As VLSI fabrication technology has rapidly developed, it is possible to implement 

SoC(System on Chip) which comprises CPU, memory controller, bus controller, and 

so on. However, the technologies for the design and the verification of complicated 

chips have not developed rapidly, therefore, design verification of behavioral models 

is becoming difficult and has become a critical and time-consuming process in 

hardware design. Approximately 70% of the design effort in SoC, IP, ASIC, etc., has 

been consumed in the verification process, and design and verification engineers work 

together from the beginning of IC design [1,2,3]. 

It is impossible to know that the design being verified is indeed functionally 

correct with 100% certainty. That is the reason code coverage is required to be used. 

Many different types of coverage criteria have been defined including statement, 

branch, block, expression, and path coverage[4,5,6]. Among these criteria, branch 

coverage has been  chosen as a good metric to verify hardware designs. 

A large number of clock cycles should be consumed to verify a design by using 

coverage metrics because random test patterns have been used in complex VHDL 

models. Several examples demonstrate that 5 billion instruction simulation cycles can 

be run to ensure fault-free chip before tapeout[7,8,9]. Therefore, techniques that can 



 

seek the optimal stopping point should be developed and it is necessary to take 

productive stopping rules and strategies to reduce verification time and cost in a 

verification process. 

This paper presents two additional strategies to reduce clock cycles for the 

Bayesian based stopping rule in VHDL model verification. In the first strategy, a 

semi-random variable is defined and the data located in the semi-random variable 

range are skipped when the stopping rule is running. A turning point partitioning the 

given random variable into a semi-random and a genuine random variable is chosen. 

In the second,  the old values of parameters are kept when the phases of stopping rule 

change. More than approximately 25% of clock cycles are reduced  using the two 

proposed strategies with few losses of branch coverage. 

In section Ⅱ, previous work is introduced, and proposed strategies are explained in 

section Ⅲ. Section Ⅳ presents simulation results and discussions of the results. 

Finally, conclusion of this paper is presented in section Ⅴ. 

 

2. Bayesian based stopping rules 
 

Many methods for testing software program have been developed[10,11,12]. Recently, 

Poisson distribution and Bayesian estimation based stopping rules were introduced by 

[10] and [13]. 

 [10] suggested a compounded counting process using empirical Bayesian 

principles and introduced the stopping rule in verification of VHDL programs. The 

key idea is to combine two probability distributions, that is, the number and the size 

of interruption. The parameters of probability distributions are assumed random 

variables by using Bayesian estimation. 

[13] observed the outcome of branch coverage at every testing clock cycle and 

predicted the number of branches to be covered at time t. In this method, the number 

to be covered is expressed by branch coverage random process Xt. Xt is divided into 

two probabilities, interruption Nt, where one or more new branches are covered at 

time t, and the size of the interruptions 
tW . The conditional distribution functions of 

the interruption occurrences, 
tD , is defined. Next, a PMF(Probability Mass Function) 

extraction experiments are conducted in order to estimate the best fitted distribution 

function at every discrete time t, and Poisson probability distribution function is 

chosen. Then 
tW  is defined to be a random process distributed as a Poisson process 

with 
tβ  as 
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Here, 
tβ  is a random variable representing the parameter of the Poisson 

distribution that should be estimated from the simulation history and is defined as 

tβ = )(tgβ  for constant β  and a decreasing function g(t) and ∑
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The probability of having an interruption during the testing process, p(t), is 

estimated for every discrete time t. This p(t) is decomposed into a shape function f(t) 

and an amplitude value 
tς , p(t)= tς f(t), where the 

tς  values can be determined 



 

statically or dynamically based on the history of testing the behavioral model. The 

gamma function of β is given by  
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Then, the statistical model for the branch coverage increase for a given history of 

verification is derived. And Bayesian analysis is achieved by calculating the 

likelihood function of the Bayesian parameter, 
tβ , and given the verification history, 

the coverage is expected at time t>T as 
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Finally, the total number of branches to be covered at future time t>T is predicted 

as 

)())(
)(

1(}|{
1

jfjg
tG

nxr
xxXE tt

t

Tj
Tt ς

γ +

−+
++= ∑

+=

r
.     (5) 

In some papers[14,15], a new test pattern is generated at every simulation cycle 

and fed into a model, however [14] represents a new verification strategy. When data 

bits have to be fixed for certain times, a pattern for a certain number of clock cycles is 

used, that is, 1, 2, 4, 6 clock cycles are remained for each phase stage. The mixed 

strategy of random testing improves branch coverage[16].  

The methods of above papers have improved behavioral model verification. If a 

few additional strategies are introduced,  it is suggested that the verification cost can 

be reduced much further. A numerical result of an experiment can be a random 

variable when the value of it is not exactly expected. But the random variable used in 

[13] has a predictable value for  some clock cycles from the beginning point. It is 

suggested that this random variable can be divided into two regions, that is, semi-

random and genuine random variables. If the data in the semi-random variable range 

are skipped, the simulation time can be considerably reduced. 

 [16] did not use the previous simulation results when simulation phase changed. 

Bayesian estimation expects the future event by using the event estimated from the 

history of previous simulations, so it is reasonable to make use of the previous results 

in a current simulation.  

In addition, [13] and [16] have the constraint that stops simulation when branch 

coverage is zero for first 30 consecutive clock cycles in every phase, but sometimes 

this can become a problem because the constraint can be of greater significance than 

stopping rules, and ultimately make the simulation stop.   

 

3. Proposed strategies for reducing simulation cost 
 

The overall expected value of Xt is the sum of all the expected sizes of interrupts after 

time T as showed in (5). Xt and Wt have been assumed to be random variables for all 

clock cycles. If xT is large in (5), the expected value of Xt is large, that is, the larger 

the sum of all coverage before time T, the longer the stopping point. Therefore the 



 

sum of coverage before time T should be low in order to reduce the stopping point in 

the time axis. 

 
Table 1. Cumulative branch coverage vs. clock cycle 

 B C(Branch Coverage) 

S# 

t 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1 35 35 58 47 47 69 58 47 35 58 49 93 

2 53 92 111 94 94 153 111 94 92 111 92 166 

3 54 95 123 102 102 156 123 102 95 123 127 218 

4 58 111 123 133 133 178 123 133 111 123 129 228 

5 68 140 126 145 145 210 126 145 140 126 132 231 

6 68 143 139 146 146 214 139 146 143 139 136 238 

7 68 148 142 146 146 216 142 146 148 142 139 239 

8 68 151 170 146 146 222 170 146 151 170 139 239 

9 68 151 172 154 154 222 172 154 151 172 144 244 

10 68 152 182 159 159 222 182 159 152 182 148 249 

 

The values of random variables are not known with certainty, that is, only a set of 

possible time and probability of the random variables are known. In this paper, a 

semi-random variable is defined as a variable of which value is certainly not known, 

but all values of the variable are greater than the reference value. Table 1 presents 

cumulative branch coverage for ten simulation clock cycles from the starting point for 

12 sample VHDL models. Every branch coverage for a few clock cycles from t=1 is 

comparatively large.  

 

Table 2. Branch coverage for 10 test patterns at the first two clock cycles. 

 B C 

S# S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

t 

TP 
t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 

1 35 16 35 57 58 53 47 47 47 47 69 84 58 53 47 47 35 57 58 53 49 42 93 73 

2 35 17 35 60 58 49 47 44 47 44 69 77 58 49 47 44 35 60 58 49 49 41 93 93 

3 35 18 35 59 58 55 47 43 47 43 69 76 58 55 47 43 35 59 58 55 49 59 93 92 

4 35 14 35 59 58 51 47 46 47 46 69 76 58 51 47 46 35 59 58 51 49 58 93 90 

5 35 15 35 56 58 46 47 44 47 44 69 83 58 46 47 44 35 56 58 46 49 47 93 83 

6 35 16 35 56 58 48 47 45 47 45 69 83 58 48 47 45 35 56 58 48 49 46 93 66 

7 35 15 35 56 58 53 47 45 47 45 69 83 58 53 47 45 35 56 58 53 49 51 93 83 

8 35 11 35 57 58 47 47 45 47 45 69 84 58 47 47 45 35 57 58 47 49 44 93 73 

9 35 17 35 60 58 56 47 44 47 44 69 77 58 56 47 44 35 60 58 56 49 56 93 84 

10 35 12 35 60 58 53 47 44 47 44 69 77 58 53 47 44 35 60 58 53 49 42 93 76 

 

Table 2 presents that the number of branch coverage with 10 test patterns is 

comparatively high for first and second simulation clock cycles. Fig. 1 presents the 

histogram of branch coverage in table 2. The probability that the size of interruption is 



 

less than 10 is 0, and all the branch coverage is higher than 10 for the two consecutive 

clock cycles. 

 

 

Fig. 1 Histogram of branch coverage for first and second clock cycles 

 

Table 3 presents branch coverage at each cycle for 10 clock cycles with the same 

test pattern. For example, if the reference value has been chosen as 6, branch coverage 

is 35 and 18 at t=1 and t=2 respectively for sample S1, so the branch coverage in the 

time range between t=1 and t=2 defines a semi-random variable, and the branch 

coverage in the time range for t>2 defines a genuine random variable. 

 
Table 3. Branch coverage for each clock cycle 

BC  

CC S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1 35 35 58 47 47 69 58 47 35 58 49 93 

2 18 57 53 47 47 84 53 47 57 53 43 73 

3 1 3 12 8 8 3 12 8 3 12 35 52 

4 4 16 0 31 31 22 0 31 16 0 2 10 

5 0 29 3 12 12 32 3 12 29 3 3 3 

6 0 3 13 1 1 4 13 1 3 13 4 7 

7 0 5 3 0 0 2 3 0 5 3 3 1 

8 0 3 28 0 0 6 28 0 3 28 0 0 

9 0 0 2 8 8 0 2 8 0 2 5 5 

10 0 1 10 5 5 0 10 5 1 10 4 5 

 

The time is partitioned into two regions, TS and TR. TS is defined as TS={t1, 

…,tk }, where tW (ti)≥Vr for all i=1,2,..,k. and the next tW (tk+1)<Vr, where Vr is a 

reference value. Then the interval TR is defined as TR={tk+1, …,∞}, where  tW (ti) can 

take non-negative value for all i=k+1,…, ∞. 

It is important to note that values of the size of interruption 
tW s are comparatively 

large for a few clock cycles from the beginning point even though the exact values of 

tW s can not be predicted. 
tW  can be divided into two regions, that is, 

tsW  is a semi-

random variable in the first region of a random variable and 
trW  is a random variable 

in the other region as 

trtst WWW ||= .                          (6) 



 

tsW  in the first part of a random variable is so large that the data in the semi-

random variable range can be skipped when the stopping rule is running because tW s 

are not predicted by the Poisson’s distribution function. The semi-random variable is 

extremely important because the cumulative branch coverage in the semi-random 

variable nearly reaches half the total coverage though the first region has a few clock 

cycles. Therefore it is very important to make a reasonable choice for the turning 

point at a random variable because it has a great effect on the stopping point. 

The dark dashed line presents the probability of tW  for S7 in Fig. 2[13]. If the 

value of tW  is greater than 6, the probability of Nt is quite low. It can be recognized 

that the probability that the values of Wt are greater than 6 is very small in the genuine 

random variable range, but the probability in the semi-random variable is always 1. 

The reference or turning point is decided to be the first value of tW having the 

frequency more than 1% at first from the beginning point. In Fig.2, tW  of which 

branch coverage is less than 6 at first is chosen as a turning point, which divides a 

random variable into a semi-random and a genuine random variable. Depending on 

behavioral models and test patterns, the branch coverage is randomly varied as the 

number of clock cycle increases, therefore the position of the reference value can not 

be fixed in time region. Instead, this is dynamically decided while simulation is 

running. 
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Fig. 2 Histogram fitting example of tW  for S7 

 

The first additional strategy is proposed as follows. The branch coverage in the 

semi-random variable range tsW  defined in (6) is skipped while the stopping rule is 

running, then stopping point will become short because xT becomes lower in (5). As 

the stopping point is shorter, the problem that total branch coverage becomes low 

must be considered. But random test patterns are used in most behavioral model 

verifications before testing a chip, and the increase in branch coverage rate abruptly 

drops as the number of random test pattern increases beyond the turning point, 

therefore it can be predicted that total branch coverage does not rapidly decrease  

when the data in the semi-random region tsW is skipped. 

The values of parameters obtained at the previous phases in (5) until time T are 

reset when a new phase starts in [13]. But the Bayesian model predicts the expected 

branch coverage using the previous branch coverage. The overall expected value of Xt 



 

at any time t>T given the verification history up to time T is the sum of all the 

expected sizes of interruptions after time T. Thus the second additional strategy is 

proposed, where the old data obtained in the previous phase can be used as initial 

values in the next phase. 

Applying the new verification strategies to the stopping rule of the Bayesian model 

can reduce clock cycles and improve performance of behavioral model verification. 

 

4. Simulation results and discussions 
 

In order to inspect the proposed algorithm, QuickVHDL simulator of Mentor 

Graphics is used. Fig. 3 explains the overall simulation process. The random test 

patterns are generated and the phase of test pattern is chosen, then simulation is 

conducted with the VHDL sample program and input files. The branch coverage is 

calculated during simulation, and the simulator decides whether the simulation 

continues or quitting by branch coverage and the proposed strategies. 
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Fig. 3. Simulation process  

 

12 VHDL models are examined to compare the effectiveness of proposed 

strategies with stopping rule of [14]. Table 4 presents the information of sample 

VHDL models. 

 
Table 4. Sample VHDL programs used in simulation 

Sample Description # of code line #of branch 

S1 16 megabit byte-wide top boot 150ns 1880 373 

S2 CMOS syncBIFIFO 256x36x2 4657 251 

S3 SyncFIFO with bus-matching 1024x36 5015 302 

S4 SyncFIFO 2048x36 4667 225 

S5 SyncFIFO 2048x36 4710 225 

S6 CMOS syncBIFIFO 1024x36x2 4949 296 

S7 SyncFIFO with bus-matching 1024x36 4963 302 

S8 SyncFIFO 2048x36 4777 225 

S9 CMOS syncBIFIFO 512x36x2 4752 251 

S10 SyncFIFO with bus-matching 512x36 4973 302 

S11 SyncBIFIFO with bus-matching 512x36x2 5498 399 

S12 SyncBIFIFO with bus-matching 1024x36x2 5770 470 



 

 

Table 5 presents 3 kinds of simulation results obtained while the proposed stopping 

rule is run with branch coverage of each clock cycle. In Table 5, SB is the result for 

static Bayesian estimator in [13]. SBF is the result for the proposed estimator, which 

is identical to SB except for two differences. The first is that the data of branch 

coverage that is greater than 6 from the beginning time are not used for the simulation 

because they stay in the semi-random variable range, and the second is that the result 

of previous phase in (5) has been used in the next phase simulation whenever phases 

change under the same condition of SB. Estimator SB30 is same to SBF except that 

the constraint that makes the simulation stop in a current phase is added to SBF 

whenever each branch coverage for 30 consecutive test patterns from an arbitrarily 

starting point is zero.  

Compared to SB, clock cycles are reduced to 24.6% and 59.1% and branch 

coverage are reduced to 0.6% and 1.5% for SBF and SB30, respectively. Most 

branches are detected in the semi-random variable range and the coverage rate 

decreases as the number of clock cycles increases and the increase in coverage rate  

becomes very slow after the turning point. SB30 and SBF have 3 and 2 additional 

constraints compared to SB respectively as discussed in section Ⅲ, but obtain much 

better results than SB.  

 
Table 5. Simulation results of SB, SB30 and SBF 

SB[13] SB30 SBF 
Sample 

CC BC CC BC CC BC 

S1 1854 128 530 128 1460 128 

S2 631 199 493 204 1461 206 

S3 808 232 495 231 485 231 

S4 673 192 485 192 482 192 

S5 789 195 485 195 482 195 

S6 2249 273 490 247 489 249 

S7 809 232 495 231 496 231 

S8 2181 208 649 203 1456 208 

S9 631 199 493 204 1461 206 

S10 808 232 495 231 496 231 

S11 1982 245 596 245 1460 247 

S12 2080 364 628 348 1462 360 

SUM 15,495 2,699 6,334 2,659 11,690 2,684 

 

Estimator SB1 is the same as SBF, but the simulation does not stop even though 

the branch coverage is zero for 30 successive clock cycles from the starting point of 

phase Φ1, Φ2, Φ3, 4Φ. Simulation results of SB and SB1 for 4 phase stages are 

presented in table 6. Here, the branch coverage of Φ0 are results obtained before the 

turning point, that is, they are in a semi-random variable region, therefore the branch 

coverage is skipped while the stopping rule is operating. Let 30ZBC be zero branch 

coverage for 30 consecutive clock cycles from the beginning point. The numbers in 

CC column of SB are ones of clock cycles consumed for each phase, but the numbers 

in CC column of SB1 means cumulative clock cycles for each phase including Φ0. 

The total clock cycles of SB are much less than one of SB1 in S9 because the 

simulation of S9 under SB stops by 30ZBC constraints in phase Φ2, Φ4, but SB 



 

suffers from a drawback that the cumulative branch coverage is relatively low. The 

cumulative clock cycles of SB in S1 and S12 is much larger because they are not 

affected by 30ZBC constraint. SB1 in S1, S9, and S12 has no 30ZBC constraint, but 

the cumulative clock cycles are 1462 on average with good branch coverage. It can be 

concluded that the stopping points are decided by the proposed strategies.  

 
Table 6. Comparison of  SB and SB 1 for S1,S9, and S12 

S1 S9 S12 

SB SB1 SB SB1 SB SB1 
  

PH 
CC BC CC BC CC BC CC BC CC BC CC BC 

Φ0     2 53     2 92     4 228 

Φ1 94 121 88 121 99 183 88 177 112 336 90 336 

Φ2 188 1 161 122 60 0 161 182 60 0 163 336 

Φ3 120 0 306 122 292 16 308 192 324 10 308 346 

Φ4 1452 6 1460 128 180 0 1461 206 1584 18 1462 360 

TOT 1854 128 1460 128 631 199 1461 206 2080 364 1462 360 

 

It is difficult to obtain 100% branch coverage because random test patterns are 

applied to the simulator. The effect of semi-random variable is hidden because some 

simulation results have 30ZBC so that the simulation stops by 30ZBC constraints. 

Simulation results of Table 5 that do not have 30ZBC in phase Φ4 are selected and 

represented in Table 7 again to consider the effect of the proposed strategies. The 

simulation results of SBF reduce 2259 clock cycles with losses of 2 branch coverage 

because SBF skips the branch coverage detected in the Wts region.  

 
Table 7. Comparisons of SB and SBF without constraint of 30ZBC 

SB SBF  

Sample CC BC CC BC 

S1 1854 128 1460 128 

S8 2181 208 1456 208 

S11 1982 245 1460 247 

S12 2080 364 1462 360 

SUM 8097 945 5838 943 

 

5. Conclusion 
 

This paper proposes strategies that can be used to reduce clock cycles in behavioral 

model verification. The techniques are applied to 12 sample programs and the 

simulation results demonstrate that a large number of clock cycles are reduced with a 

few losses in branch coverage. In the future, finding the trade-off of branch coverage 

vs. consumption of clock cycle and an efficient turning point that can further reduce 

the number of simulation clock will be studied. 
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