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Abstract. Recent research in real-time systems has much focused on
new task models for flexible scheduling and fault-tolerant real-time sys-
tems. In this paper, we propose a novel task model for the purpose of
flexible scheduling in reliable real-time systems. In the proposed dual-
mode r-reliable task model, a task periodically releases fast mode jobs
or reliable mode jobs with the constraint that reliable mode jobs must
be executed at least once for any r consecutive periods to guarantee the
reliability of task. We also propose scheduling algorithms and compare
performance through simulation results.

1 Introduction

Real-time systems are the systems in which the completion time of task affects
systems as well as the correct result of task. Traditional real-time systems are
classified into hard and soft real-time systems. In hard real-time systems, miss-
ing task deadlines is fatal for the task. By contrast, in soft real-time systems, a
few missed deadlines do not cause serious problems, but the task has some di-
minished value for the failure of deadlines. Recent research in real-time systems,
however, has focused on new task models for the purpose of the flexibility of
task scheduling or the reliability of systems.

For more flexible scheduling, (m, k)-firm task model [1], s-skippable task
model [2], and window-constrained task model [3] were proposed. Bernat et al. [4]
generalized those task models and introduced weakly hard real-time systems.
Weakly hard real-time systems are hard but permit occasional misses of task
deadlines, so that tasks have their own bounded numbers to tolerate missed
deadlines during any consecutive window of time. Moreover, Mok and Chen [5]
proposed the multiframe task model, which allows the execution time of a task
to vary from one instance to another with a known pattern. Another flexible
task models are Imprecise Computation (IC) [6,7] and Increased-Reward-with-
Increased-Service (IRIS) [8]. A task in IC model consists of a mandatory part
and an optional part. In IRIS model, each task receives a reward that depends
on the amount of service received prior to deadline.

In addition to flexible scheduling, much research on fault-tolerant real-time
systems has been conducted. In critical real-time systems, tasks must meet their



deadlines in spite of some failures. Fault-tolerant real-time scheduling algorithms
have been proposed with both forward recovery and backward recovery schemes.
For forward recovery in fault-tolerant real-time systems, the scheduling algo-
rithms in [9-11] considered task replications and Ghosh et al. [12] analyzed the
Rate Monotonic scheduling with task duplications. Punnekkat et al. [13] ana-
lyzed checkpointing for backward recovery of fault-tolerant real-time systems.

There have been recent works related on flexible and reliable real-time con-
trol systems. The Simplex architecture [14, 15] is a flexible and reliable software
architecture that uses analytically redundant controllers. In the Simplex architec-
ture, a device is controlled by two different versions of programs, a high-assurance
controller and a high-performance controller. The high-assurance controller pro-
vides high reliability with low performance. The high-performance controller,
however, shows good performance but low reliability. Chandra et al. [16] pre-
sented a method that finds the optimal frequencies for systems using analytically
redundant controllers on the assumption that the failure rates are known.

In this paper, we introduce a new task model in which a task must execute
at least one reliable job during the bounded window of time. A task periodically
releases jobs which may be in fast mode or reliable mode. The fast mode job is
the normal execution process to accomplish the goal of task, while the reliable
mode job adds more dependable process for the reliability of task. In wireless
real-time communication, for instance, reliable job data may be sent with a large
amount of redundant bits to tolerate packet loss, while fast mode job data are
sent with few redundant bits. Besides two different job modes, we specify the
minimum number of reliable mode jobs to be executed. A task with the bound of
r must execute at least one reliable job for any r consecutive jobs, which will be
defined by r-reliable constraint. Thus, the proposed task model is named the dual-
mode r-reliable task model. The applications of the proposed task model include
reliable real-time communication, fault-tolerant real-time scheduling, and QoS
or multimedia related applications. This paper will also suggest several priority-
driven scheduling algorithms for the proposed task model.

The remainder of this paper is organized as follows. In Section 2, we specify
the new task model and discuss the scheduling problem. The scheduling algo-
rithms for the proposed task model are described in Section 3 and simulation
results of those algorithms are given in Section 4. Finally, this paper is concluded
with Section 5.

2 Dual-mode r-reliable Real-time Systems

The dual-mode r-reliable real-time system is a real-time system which consists
of the dual-mode r-reliable tasks. This section defines dual-mode r-reliable task
model and the scheduling problem to solve.

2.1 Dual-mode r-reliable Task Model

A dual-mode r-reliable real-time task can be explained by three terminologies:
real-time, dual-mode, and r-reliable. Since we assume a task is periodic, a real-
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Fig. 1. Example of a dual-mode r-reliable task 7(2, 1, 3, 3)

time task means that the task periodically creates jobs which must be finished
before the next job releases. Dual-mode means that the computation mode of
each job is either in fast mode or reliable mode. Lastly, r-reliable notifies the
constraint that at least one job of every r consecutive jobs of the task is in
reliable mode. Thus, a dual-mode r-reliable real-time task 7 is defined by four
parameters (cf?, ¢, p, 7).

— ¢ : the execution time of reliable mode job

— ¢ : the execution time of fast mode job

— p : the period of jobs released
r : r-reliable constraint

A task 7 releases a job every p time units. Each job of the task can be executed
as soon as it is released and its relative deadline is p. As stated above, a job is
either in fast mode or reliable mode. According to the computation mode, the
required execution time of the job is ¢” or ¢ in each. In general, the reliable
mode job requires more processing time so that we assume the execution time
of the reliable mode job is larger than that of the fast mode job (c® > ¢f"). The
parameter r indicates how often the reliable mode job should be executed for
the reliability of the task. Thus, we represent the reliability of a task with this
r-reliable constraint.

For example, the task 7(2, 1, 3, 3) can be scheduled as shown in Figure 1.
The task creates a job every 3 time units, and the job is either in fast mode
or reliable mode. While the fast mode job is executed for one time unit, the
reliable mode job is executed for two time units. Since at least one reliable job is
executed during every three consecutive periods, the schedule in Figure 1 meets
the 3-reliable constraint.

The reliable mode job of a task can be modeled in two different manners.
The first is an additional computation which is independent of the fast mode job
and requires (¢ — ¢f") computation times. The second approach of the reliable
mode job is to execute more reliable process different from the fast mode job.
One such example is the MPEG decoding process, in which I-frame in MPEG
decoding differs from P-frame decoding and takes more time. Reliable real-time
communications using FEC (Forward Error Correct) schemes are also an exam-
ple. A low rate-coded massage with less redundant information corresponds to
the fast mode job, while a high rate-coded message with more redundant infor-
mation corresponds to the reliable mode job. In this paper, we assume the latter
case so that the computation process of the reliable mode job is different from
that of the fast mode job.



The main applications of dual-mode r-reliable task model are reliable real-
time communication, fault-tolerant real-time scheduling, and QoS or multimedia
related applications. In reliable real-time communication, it is necessary to send
data with more redundant bits to tolerate packet loss but we cannot send such
data every time for the lack of network bandwidth. These data can be repre-
sented with a reliable mode job in the proposed task model and its minimum
distance corresponds to the r-reliable constraint. We may apply the model to
fault-tolerant real-time scheduling using backward error recovery scheme with
checkpointing. That is, a normal job added with checkpointing process is mod-
eled as a reliable mode job and the checkpointing period indicates the r-reliable
constraint. Moreover, many real-time applications related on QoS or multimedia
can use the r parameter in such a manner that tasks with higher qualities are
assigned with lower r’s. For example, the standard H.261 and H.263 ITU video
codecs have two different frame types, Intraframe (I-frame) and Interframe (P-
frame). Data size of P-frame is smaller than that of I-frame since it is based on
the previous frame (I-frame or P-frame). Thus, both H.261 and H.263 bitstreams
are modeled with dual-mode r-reliable tasks and the minimum interval between
I-frames corresponds to th r-reliable constraint.

The proposed dual-mode r-reliable task can be modeled with previous task
models [17,5,1]. A dual-mode r-reliable task can be modeled as the task with the
worst-case execution time cff in the L&L task model [17], or the multiframe task
with one reliable job and (r — 1) consecutive fast mode jobs in the multiframe
task model [5]. However, these are so pessimistic that their schedulabilities are
low. The (m, k)-firm task model [1] can also be used for modeling a dual-mode
r-reliable task by decomposing the task into (1, 1)-firm task with execution time
cf and (1, r)-firm task with execution time (cf — ¢f). It is only suitable for
the case that the reliable mode job is an additional process independent of the
fast mode job. However, as we assume the reliable mode job is different process
from the fast mode job, the (m, k)-firm task model does not exactly model the
proposed task.

2.2 Scheduling Problem

Before turning to the scheduling problem, we address the feasibility. A schedule
of a given dual-mode r-reliable task set is feasible if the schedule makes all jobs
meet their deadlines and each task meet its r-reliable constraint. Also, a dual-
mode r-reliable task set T is said to be feasible if and only if there exists a
scheduling algorithm to generate a feasible schedule of the task set.

Quan and Hu [18] proved that the scheduling problem of the (m,k)-firm
task model is NP-hard. In the assumption that all the computation times of fast
mode jobs are zero, the scheduling problem of dual-mode r-reliable tasks is equal
to that of corresponding (1, r)-firm tasks. Thus, the scheduling problem of the
dual-mode r-reliable task model is NP-hard in the weak sense.

The minimum effective utilization of a dual-mode r-reliable task 7(c?, ¢, p, )

is defined by % 4 efi=c”

PO The minimum effective utilization of the task 7 is the



minimum fraction of time that the task 7 keeps a processor busy, since 7 requires
¢’ time units every p periods and at least (¢! — ¢f”) times are allocated to 7’s
reliable jobs for p x r time units. The minimum effective utilization U¢(T") of a
dual-mode r-reliable task set T is the summation of minimum effective utilization
of the individual tasks within it.

Lemma 1. Given a dual-mode r-reliable task set T = {1; = (c&,cf p;,ri)|1 <

i <n}, if U(T) is larger than 1, then T is not feasible.

Proof. Even if we fully utilize the processor to execute the task set, the utilization
is 1. Since U®(T) > 1, a task exists which cannot be scheduled. Thus, the task
set T is not feasible. a

The task set satisfying the condition in Lemma 1 cannot be scheduled by
any algorithm due to its over-utilization. By contrast, if the utilization of a task
set is small enough to schedule every job as a reliable mode job, the task set is
always schedulable. The following lemma tells the condition to guarantee that
every task in the task set is schedulable.

Lemma 2. Given a dual-mode r-reliable task set T = {1; = (c&,cf pi,ri)|1 <

1
R
i <n}, T is feasible if T' satisfies Y % <1.

Proof. Consider the EDF algorithm and assume all tasks always release their
jobs in the reliable mode. Since the EDF is optimal, all reliable mode jobs of

R
tasks are schedulable if Zle ;—‘ < 1. Furthermore, all jobs meet their r-reliable
constraints. Thus, T is feasible. O

By Lemmas 1 and 2, scheduling algorithms in the next section concentrate
on scheduling the task set 7' such that U¢(T) <1 and Y _ .(cff/pi) > 1.

3 Scheduling Algorithms

In this section, we propose one fixed priority-based algorithm and three dynamic
priority-based algorithms for dual-mode r-reliable real-time systems. The fixed
priority-based algorithm described in Section 3.1 is based on the RM, and dy-
namic priority-based algorithms in Section 3.2 are based on the EDF.

3.1 Fixed Priority-based Algorithm

DR-RM (Dual-mode r-Reliable Rate Monotonic) assigns priorities to tasks ac-
cording to the Rate Monotonic policy [17]: the shorter period, the higher priority.
In DR-RM, the reliable mode job pattern of the task with r-reliable constraint is
determined in such a manner that every r-th job is in reliable mode. For instance,
the job mode pattern of a 4-reliable task is FFFRFFFR- - - (F : fast mode, R :
reliable mode).

As we fix the reliable mode job pattern of a task, a dual-mode r-reliable
task 7(cft, ¢’ p,r) is modeled as the multiframe [5] task with period p and r



execution time list which consists of (r—1) ¢’s and one ¢ft. The critical instance
test for testing the schedulability of multiframe tasks [5] is applicable to test the
schedulability of dual-mode r-reliable tasks. Therefore, Theorem 1 follows.

Theorem 1. Suppose that a dual-mode r-reliable task set T = {r;(cF,cF' pi,7;)|
1 < i < n} is given and tasks are sorted such that p1 < py < ... < py,. Let us
define the worst-case execution time W;(t) as follows:

= (5] 4+ [k )

If, for all 1 < i < n, some t < p; exists such that W;(t) < t, then all the tasks
in the task set T' are schedulable by the DR-RM and their r-reliable constraints
are met.

Proof. Let us define R;(t) be {%-‘ e+ “jirj-l -(eff = ¢F) so that Wj(t) is the
sum of ¢/ and Z;;ll R;(t). Consider the reliable mode job of task 7. The critical
instance of task 7; is when all reliable mode jobs of higher-priority tasks than 7;
are released at the same time. Then, R;(¢) is the computation times of task 7;

until ¢ because task 7; requires cf times for every p; times and additional clt—cf

C:
times for every p; x r; times. Tilus7 Wi (t) becomes the sum of the compujtatiojn
times of the reliable mode job of task 7; and the computation times of all jobs
with higher-priority than 7; at time ¢.

Therefore, if ¢ < p; exists such that W;(¢) < ¢, then the reliable mode job of
7; will meet its deadline. Since the reliable mode job of task 7; meets its deadline,
fast mode jobs also meet their deadlines. Moreover, DR-RM generates every r;-
th job with a reliable mode job so that the r;-reliable constraint is met. Hence,
task 7; is schedulable and the theorem follows since ¢ can be any number. ]

3.2 Dynamic Priority-based Algorithms

Dynamic priority-based algorithms do not fix priorities of tasks so that the sched-
uler always executes the highest-priority job among available jobs. In this paper,
we select the EDF policy for assigning the priorities of jobs. Thus, the earlier
the deadline of the job, the higher the priority. Figure 2 shows the scheduling
algorithm based on the dynamic priority scheme.

In Figure 2, the algorithm Queue-Schedule executes the job with the earli-
est absolute deadline in the wait_queue and the algorithm Job-Release releases
every job among given tasks. At the time of releasing a job, the job mode is
determined by the function Determine_Mode. In this paper, three different al-
gorithms are used to determine job mode patterns. The following subsections
describe those algorithms.

(1) FIX Algorithm

The FIX algorithm determines the job mode patterns in the same manner as
that of DR-RM. That is, every r-th job is in reliable mode and others are in fast
mode.



Algorithm Scheduling_Dual-mode_r-reliable
/* -t : current time

- wait_queue : the queue of current available jobs
*/

Concurrently execute Queue-Schedule and Job-Release.

Queue-Schedule
Execute the job which has the earliest absolute deadline in wait_queue.

Job-Release
for each task 7; do
if t mod p;, == 0 then
mode = Determine-Mode (7;)
if mode == RELIABLE then
Create a reliable mode job of 7; and insert it in wait_queue.
else /x FAST mode */
Create a fast mode job of 7; and insert it in wait_queue.
endif
endif
endfor

Fig. 2. Dynamic priority-based algorithm

(2) DBP Algorithm

We modify the DBP (Distance-Based Priority) assignment scheme [1] to generate
computation modes of tasks. Each task maintains state; which indicates the state
of task 7; in the state transition diagram of the DBP assignment [1]. The state
transition diagram of a dual-mode r-reliable task is shown in Figure 3. At every
state, when the task releases the reliable mode job, its state becomes r— 1. When
the r-reliable task of state j (j > 0) releases the fast mode job, its state becomes
j — 1. If the task of state 0 releases the fast mode job, its state remains at state
0, and at that time the task cannot meet the r-reliable constraint.

The DBP job mode determining algorithm assigns the task ; of the low-
est state; to be in reliable mode. To prevent tasks from missing the r-reliable
constraint, the task in state 0 always releases the reliable mode job.

R : reliable mode job
F : fast mode job

Fig. 3. The state transition diagram of r-reliable task



(3) SS Algorithm

The SS (Slack Stealing) algorithm for determining the job mode is based on
generic slack stealing techniques for scheduling aperiodic and sporadic jobs. This
paper references the work of Chetto and Chetto [19].

For a given dual-mode r-reliable task set T', we define e; and A;. e; is the
distinct i-th arrival time of jobs in system and 4; is the length of idle time
between e;_1 and e; under the EDF schedule of tasks in T assuming that all
jobs are in fast mode. Chetto and Chetto [19] derive the equation for calculating
A; without scheduling the EDF until time e;. Since we schedule all jobs of tasks
with fast modes, the length of the idle time between e; 1 and e; is given by the
following equation.

n

i—1
A; = max{0, ei—Zf]%]cf—ZAk}, i=1,2,...
J k=1

J=1

The SS algorithm manages dist_reliable; to indicate the distance to a reliable
mode job. When dis_reliable; is non-zero, the task 7; creates a fast mode job and
dis_reliable; decreases by one. When dis_reliable; is zero, the task 7; releases a
reliable mode job and then decides the next dist_reliable;. The brief algorithm to
determine the next dist_reliable; is finding the last-fit period in which enough
idle times for the reliable mode job exists among the next r; periods. If the
summation of A;’s during each period is larger than or equal to ¢ — ¢f’, then
we can schedule the reliable mode job at that period.

4 Simulation Results

In this section, we present simulation results to compare the proposed algo-
rithms in dual-mode r-reliable real-time systems. The simulation in this section
is performed as follows: we randomly generate 500 feasible task sets for each
minimum effective utilization bound. Each task set consists of at least five tasks.
To generate a feasible task set, we start the empty task set and add a randomly
generated task to the task set one by one. The randomly generated task is ex-
amined to test for schedulability, including tasks in the task set so that only the
task to succeed in the schedulability test is added to the task set. We perform
the schedulability test for the task by scheduling it with tasks in the task set
until the least common multiple of r; x p;’s of all tasks.

In the experiment of Figure 4, the period p; of each task is given in the
range from 4 to 25 and the reliable constraint r; is in the range from 2 to 10.
For the computation time, we randomly select c? between 3 and p; and then
randomly generate ¢/ in the range from 2 to ¢ —1. The characteristics of feasible
task sets in the experiment is shown in Table 1. Since dynamic priority-based
algorithms proposed in the previous section are all based on the EDF policy,
they are named FIX-EDF, DBP-EDF, and SS-EDF according to the job mode
pattern algorithm.



Table 1. Characteristics of feasible task sets

Effective Util. ||0.4 ~ 0.5|0.5 ~ 0.6/0.6 ~ 0.7/0.7 ~ 0.8/0.8 ~ 0.9

# of tasks / set 5.0 5.0 5.0 5.0 5.0
average ¢t 4.5 4.8 5.1 5.0 4.7
average ¢t 2.1 2.3 2.5 2.7 2.7
average p 21.2 20.1 19.4 18.5 17.6
average r 6.8 6.6 6.3 6.2 6.0
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Fig. 4. The success ratios of algorithms

Figure 4 shows the success ratio of scheduling dual-mode r-reliable task sets
in percentile. The success ratios of dynamic priority-based algorithms are higher
than that of fixed priority-based algorithm DR-RM. SS-EDF shows the highest
success ratio among dynamic priority-based algorithms.

5 Conclusions

In this paper, we proposed a dual-mode r-reliable real-time task model, which
is a novel task model for flexible scheduling in reliable real-time systems. A
dual-mode r-reliable task has two different mode jobs and its reliable mode job
must be executed at least once for any r consecutive periods. The task model
can be applied to many recent real-time applications, including reliable real-time
communication, fault-tolerant real-time systems, and QoS related applications.
We also suggested priority-driven scheduling algorithms for the proposed task
model and compared performance throughout simulation results.
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