
Implementation Synthesis of Embedded Software
under Operating Systems Supporting the Hybrid

Scheduling Model

Zhigang Gao1, Zhaohui Wu1, and Hong Li1

1 College of Computer Science, Zhejiang University
Hangzhou 310027, Zhejiang, China

{gaozhigang, wzh, lihong}@zju.edu.cn

Abstract. Implementation synthesis of embedded software has great influence
on implementing embedded software’s non-functional requirements, such as
real-time, memory consumption, and low power, etc. In this paper, we focus on
the implementation synthesis problem under a class of operating systems that
supports the hybrid-scheduling model, that is, task sets have preemptable tasks
and non-preemptable tasks. We propose a time analysis technology and an
implementation synthesis method with the ability of design space exploration
and optimization. Experimental evaluation shows our implementation synthesis
method yields real-time embedded software with lower system overheads.

1 Introduction

Implementation synthesis of embedded software, as a part of embedded software
integration, refers to the process from logical software design models (abbr. design
models) to implementation models on specific platforms. Most non-functional
requirements, such as real-time, memory consumption, and low power, are
implemented and optimized during the implementation synthesis of embedded
software, which makes it an important stage in the design of embedded systems.

Currently, almost all the research work [4, 7, 8] is based on the assumption that the
underlying operating system (OS) uses the priority-based fully preemptive scheduling
strategy. Although this kind of scheduling strategy is widely used in currently
commercial real-time OS, there are also other scheduling strategies that can achieve
better effects in some specific domains. Hybrid scheduling is such an example. It
mixes preemptable tasks with non-preemptable ones. This kind of scheduling strategy
makes sense when the execution time of a task is in the same magnitude of the time of
context switches, RAM is required to use economically or the execution of a task
must not be interrupted. It is one of the scheduling modes supported by the
specification of OSEK/VXD [9], a wildly accepted specification in automotive
electronic industries.

Under the hybrid scheduling strategy, the implementation synthesis involves not
only priority assignments to tasks, but also scheduling property (preemptable or non-
preemptable) assignments to tasks. In this paper, we focus on the implementation

synthesis of real-time embedded software running on uniprocessor with the goal of
satisfying real-time and reducing system overheads. We propose the time analysis
technology and a new implementation synthesis method, which is an extension of Gu
et al.’s work [7], to address the implementation synthesis problem under OSs
supporting the hybrid-scheduling model.

The rest of this paper is organized as follows. Section 2 presents the software
models and implementation strategy. Section 3 describes the time analysis technology
under the hybrid-scheduling model. We describe the process of implementation
synthesis in section 4. The experimental evaluation results are given in section 5.
Finally, we give conclusions and future work with section 6.

2 Software Models and Implementation Strategy

In terms of the model presented by Wang et al. [1, 2], a component is a logical
software entity that can carry out certain functions triggered by events (we do not
differentiate between the term “event” and the term “message” in the following
sections, and use them interchangeably). An action is defined as the computation
performed by a component when receiving an event. A transaction is a sequence of
actions that are triggered by an external input event, possibly cut through one or more
components. The components in a transaction communicate through buffered
asynchronous messages. For simplicity, we only consider the or relation when more
than one input event trigger the same output event, that is, a component can issue the
output event once it receives any event from its input ports.

In design models, one action of a component has the worst-case execution time
(WCET), and a transaction has a fixed period and a fixed deadline. In this paper, we
assume the deadline of a transaction is no more than its period.

We use transaction-based runtime models. It is the counterpart of transactions in
design modes, which consisting of a sequence of related tasks (the transactions in
design modes and the transactions in runtime models can be differentiated according
to their context). Each task has a period and an end-to-end (e2e) deadline. After being
created and initialized, a task waits for events. When an event arrives, the task does
the corresponding computation and sends one or more messages to other tasks. And
then it goes back to wait for another event. Since tasks may use some shareable
resources, it is necessary to synchronize the access to mutually exclusive resources.

During implementation synthesis, we chose Component-Based Multi-Threading
(CBMT) strategy, where a thread consists of one or more components. It has the
benefits of reasonable context-switching overheads, sufficient parallelism, optimal
memory consumption, and better support for software engineering [7].

3 Time Analysis for CBMT under the Hybrid Scheduling Model

For the time analysis of CBMT, Gu et al. [5, 7] used the modified form of the time
analysis algorithm presented by Harbour, Klein, Lehoczky [10] (They call it the HKL
algorithm.). The method presented by Gu et al. is suitable for the OSs supporting the

priority-based preemptive scheduling model, but not suitable for the OSs supporting
the hybrid scheduling model.

The task model used in HKL algorithm assumes that a task consists of one or more
subtasks. For example, a task τi consists of n subtasks, (τ(i,1),τ(i,2),…, τ(i,n)). P(i,j) refers to
the priority of the subtask τ(i,j). Pmin(i) refers to the minimum priority of all the subtasks
of τi. When Pmin(m)>P(i,j), τm has multiply preemptive effect on τ(i,j). If

(,1) (,) (,) (, 1) (,), (, ,) ()m m k i j m k i jk P P P P P+∃ ⋅⋅⋅ > ∧ < , τm has singly preemptive effect
on τ(i,j). τm has blocking effect on τ(i,j) if

(,) (,) (, 1) (,) (,) (, 1) (,), , () ((, ,)) ()m l i j m l m k i j m k i jk l P P P P P P P+ +∃ < ∧ ⋅⋅⋅ > ∧ < . If the
priority of several continuous subtasks of τm is higher than Pmin(i), they are called an H
segment; If the priority of several continuous subtasks of τm is lower than Pmin(i), they
are called an L segment.

The canonical form of a task τi is a task τi' whose subtasks maintain the same order,
but with priority levels that do not decrease. Harbour et al. proved that the completion
time of τi was equal to that of τi'. When we calculate the worst case response time
(WCRT) of τi, first, transform task τi into its canonical form, τi', denoted as (τ(i,1)',
τ(i,2)', ···,τ(i,m)'), then analyze each subtask’s completion time in τi' one by one. The
completion time of the last subtask of τi' is equal to the completion time of τi'.

In the HKL algorithm, C(i,k) is the WCET of τ(i,k)'; MP(i,k) is the tasks that have
multiply preemptive effect (type-1 tasks) on τ(i,k)'; SP(i,k) is the tasks that has singly
preemptive effect (type-2 tasks) on τ(i,k)'; and B(i,k) is the blocking time suffered by
τ(i,k)'.

The HKL algorithm works well under the four assumptions given by Harbour et al.
But the HKL algorithm does not consider context-switching overheads and blocking
time caused by resource sharing and other factors. In the design models of this paper,
the total blocking time comes from three aspects: blocking time caused by high
priority task, which has been discussed in the HKL algorithm, blocking time caused
by sharing resources that must be accessed serially, and blocking time caused by
sharing components among multiple transactions. Gu et al. considered the influence
caused by sharing components. However, the blocking time they discussed is only
suitable for the situation that different input messages trigger different output
messages. Moreover, context-switching overheads in Gu et al.’s work does not
consider an H/L segment may include more than one tasks. In the following, we
extend the HKL algorithm for performing time analysis on CBMT.

In design models, there are three typical relations: (1) One input message triggers
an action sequence. The action sequence outputs messages to multiple components, as
shown in Fig. 1 (a). We call this kind of sharing relation 1-M sharing; (2) Any of
multiple messages can trigger a sequence of actions, as shown in Fig. 1 (b). We call
this kind of sharing relation M-1 sharing; and (3) Multiple different messages trigger
multiple different action sequences on multiple sharing components, as shown in Fig.
1 (c). We call this kind of sharing relation M-M sharing. In comparison to the task
model used in HKL algorithm, the time analysis for CBMT is more complex due to
the above three cases. The M-M sharing has the same influence on the time analysis
with M-1 sharing, thus we only research the other two component sharing relations.

In order to perform time analysis for design modes, we regard components as
scheduling entities. We still use the notion of subtask to denote the tasks in

transactions. We use τCi to denote the subtask that a component Ci belongs to, and use
COτ(i,j) to denote the component that a subtask τ(i,j) consists of. In Fig. 1 (a), assuming
that Tr1-Trq are transactions that Mo1-Moq belong to.

Cm

Mo1

Moq

Cj Cm-1 Cj

Mit

MoCj+1

Mi1

Cn

Mi Cj

Mit

Cj+1

Mi1
Cn

Mo1

Mot
(a) (b) (c)

Fig. 1. Component-sharing relations (a) 1-M sharing (m≥ j) (b) M-1 sharing (n≥ j) (c) M-M
sharing (n≥ j)

1-M sharing has the following influence on the execution time of subtasks:
z Among the transactions that share multiple common components, one

transaction does not preempt or block the other transactions.
z The preemption time (including multiple preemption time and single

preemption time) caused by the subtasks that consist of sharing components
should only be calculated in one transaction.

In the following discussion of M-1 sharing, we use the example shown in Fig. 1 (b),
and assume Tr1-Trt are transactions that Mi1-Mit belong to. For an randomly selected
transaction Tri from Tr1-Trt, its canonical form is a transaction with subtask sequence
(τ(i,1)',···,τCj',···,τCk'···,τCn'···). τCk' is a subtask among τCj'-τCn'.

Under the relation of M-1 sharing, a subtask consisting of a shared component
cannot be preempted or blocked by succeeding subtasks. For example, in Fig. 1 (b),
τCj cannot be preempted or blocked by τCk, where { | }Ck Cr j r nτ τ∈ < ≤ . There are
two cases in the calculation of the WCRT of subtasks:
z For subtasks before τCj, their WCRT can be calculated by using the HKL

algorithm.
z For subtasks τCj'-τCn', the preemption time and the blocking time caused by

other transactions in Tr1-Trt can be calculated by using the following
equation (1).

The preemption effect of a transaction only occurs once under the condition of M-1
sharing because multiple transactions use the same components. So we regard it as
blocking effects. The blocking time suffered by τ(i,j)' because of M-1 sharing is
denoted as:

(,)

(, ,)

(,) `(,)

1
(,)) ()

() (1)i j

p i j

p p q i j

CM
Tr PE i j CO CO

B CET PC
τ τ

∈ ∧ =

= ∑

Where PC(p,i,j)
 denotes the components before COτ(i,j)' in transaction Trp that exhibits

preemption effects on τ(i,j)', CET(PC(p,i,j)) denotes the sum of the WCET of all
components in PC(p,i,j). PE(i,j) denotes the transactions that have preemption effects
(including multiple preemption effects and single preemption effects) on τ(i,j)' in Tr1-
Trk except Tr.

Under the hybrid scheduling, if a component appears in an L segment, the L
segment should be divided into three segments: an L segment, an H segments, and an
L segment. Harbour et al. have discussed this problem in [10].

Considering the blocking effects caused by component sharing, we modify the
MP(i,j) to MP(i,j)', SP(i,j) to SP(i,j)'. They are denoted as:

(,)` (,)

(,)` (,)

'
(,) (,)
'

(,) (,)

{ | , }
{ | , }

i j u m

i j u m

i j i j u

i j i j u

MP MP Tr m CO CO
SP SP Tr m CO CO

τ τ

τ τ

= − ∃ =
= − ∃ =

Except the blocking time B(i,j) which is caused by inner H segments, the blocking
time suffered by the subtask τ(i,j)' consists of three aspects: the blocking time (,)

1
i j

C MB ,
which is caused by M-1 sharing; the blocking time (,)i j

C M MB , which is caused by M-M
sharing, and can be calculated using similarly method in equation (1); and the
blocking time (,)i j

OB , which is caused by sharing resources and has been discussed by
Gu et al. in [7]. It is denoted as:

(,) (,)* (,)
(,) 1

i j i ji j
i j O CM CMMB B B B= + +

The context-switching time is mainly caused by multiply preemptive tasks, so we
only consider this kind of time overheads. The context-switching time suffered by
τ(i,j)' because of (,)p i jTr MP∈ is:

(,) 2i j p sysCS N CS= ⋅
Where Np is the subtask number in Trp, CSsys is the context-switching overheads.
If τ(i,j)' is a preemptable subtask, its completion time is:

' '
(,1) (,1)

'
(,)

(,1)*
(,1) (,1) (,1) (,1) (,1)

*
(,) (, 1) (,) (,) (, 1) (,)

(,) (, 1)

()

/ T / T ()

min(1, / T / T

p i p i

p i j

i h
i i i p i p i

Tr MP Tr SPp

i j i j i j i j p i j p p i j
Tr MP

i j p i j

t
t B B C CS C C

T
t t B t t C CS

t t

∈ ∈

− −
∈

−

⎡ ⎤
= + + + + +⎢ ⎥

⎢ ⎥⎢ ⎥
⎡ ⎤⎡ ⎤ ⎡ ⎤= + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦

⎡ ⎤+ −⎢ ⎥

∑ ∑
∑

'
(,)

(,)) 1 (2)
p i j

h
p p i j

Tr SP

C C when j
∈

⎡ ⎤⎡ ⎤ + >⎢ ⎥⎣ ⎦∑

Where C(i,j) is the WCET of τ(i,j)', Tp is the period of Trp, Cp is the WCET of Trp,
and Ch

p is the WCET of the first H segment of Trp. Under the condition of 1-M
sharing, the WCET of sharing components only be calculated in one transaction.

According to algorithm proposed by Wang et al. [6], the response time of a non-
preemptable task consists of waiting time W(i,j) and the execution time C(i,j). However,
the algorithm reported by Wang et al is based on independent tasks. For a non-
preemptable subtask τ(i,j)', its completion time is:

' '
(,1) (,1)

'
(,)

(,) (, 1) (,) (,)

(,1)*
(,1) (,1) (,) (,1)

*
(,) (,) (,) (, 1) (, 1) (,)

(1)()

() / T / T ()
p pi i

p i j

i j i j i j i j

i h
i i i j p i p

Tr MP Tr SPp

i j i j i j i j p i j p p i j
Tr MP

t t W C
W

W B B C CS C
T

W B W WT WT C CS

−

∈ ∈

− −
∈

= + +
⎡ ⎤

= + + + + +⎢ ⎥
⎢ ⎥⎢ ⎥

⎡ ⎤⎡ ⎤ ⎡ ⎤= + + − ⋅ +⎢ ⎥ ⎢ ⎥⎣ ⎦

∑ ∑

∑

'
(,)

(,) (, 1) (, 1)

(,) (,)
1

min(1, () / T / T)

. 1 (3)
p i j

h
i j i j p i j p p

Tr SP
j

i j i k
k

W WT WT C

where WT W when j

− −
∈

=

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + −⎢ ⎥ ⎢ ⎥⎣ ⎦

= >

∑

∑

4 The Process of Implementation Synthesis

T

Design Model

Initialization

Priority
Adjustment

Component
Grouping

CSF Check

Task
Optimization

End

F

T

Task
Generation

F: false
T: true

F

Fig. 2. The process of implementation synthesis

Implementation synthesis includes initialization and task generation, as shown in
Fig. 2. In this paper, we choose SA to perform task generation because of its
effectiveness in dealing with discrete optimization problem. Our optimization
objective is to increase Critical Scaling Factor (CSF) [3] and reduce system overheads.
CSF is an index that is used to evaluate time sensitivity of a task set. The bigger the
CSF of a system is, the more stable a system is. The energy function is defined as:

()
1

10S sys
c

E CSF N
N

= − + ⋅
⋅

Where Nc
 denotes the number of components in the design model, Nsys is the total

times of context switches when each task completes its once execution. When the
generated task set has the expected E(s) and no change occurs during some steps (we
set it 1000), the SA ends successfully.

4.1 Initialization

The purpose of initialization is to abstract all transactions in a design model and
assign components’ initial priorities. It is include two steps:

First, transaction set generation. We use the method proposed in [4] to find
transactions in the design model.

Second, assign initial priorities of components. We follow the rules: (a) In a
transaction, the nearer a component is from the event source, the higher its priority is;
and (b) The longer the period of a transaction is, the higher the priority levels of the
components that it includes is. If two transactions have the same period, the
transaction with longer execution time (the sum of WCET of all its components) is
assigned the higher priorities. It should be pointed out that a component shared by
multiple transactions is assigned the same priority as the shortest-period transaction
using this component.

4.2 TASK Generation

The purpose of task generation is to find a task set with acceptable CSF. It includes
three steps.

Priority Adjustment. Randomly select two components and exchange their priorities
to find other priority assignment schemes in the search space of SA.

Component Grouping. The objective of component grouping is to merge adjacent
components with consecutive priorities and organize them into tasks. It works as
follows: Following through the component sequence of a transaction, if a component
with multiple output messages or its next component has multiple input messages, the
components with adjacent priorities are merged into tasks. Then continue to find other
component in this transaction. For example, there are eight components with priority
sequence (3, 5, 4, 6, 8, 7, 10, 11), where the first six components are preemptable and
the last two components are non-preemptable. They can be merged into two tasks.
The first task consists of the first six components with priorities 7 and it is
preemptable. The second task consists of the last two components with priorities 11
and it is non-preemptable.

CSF check. The completion time of a transaction can be obtained using the equation
(2) and equation (3). From the completion time and deadlines of all transactions, the
CSF of the system can be obtained. If CSF is acceptable, we continue the next step.
Otherwise, go to the step of priority adjustment.

Task optimization. Its purpose is to reduce the number of tasks and the context-
switching time by merging adjacent tasks and adjusting their preemption properties.

We use APTsys denote the average times that all tasks are preempted by other tasks
in transaction set, APTi denoting the average times that a task τi is preempted by other
tasks in transaction set.

The algorithm of task optimization is shown in Algorithm TP.
Algorithm TP(TS)
/* TS is the set of tasks. E(s) denotes the energy of

the transaction set. CSFacc is the threshold that judges
whether CSF is acceptable. */
m = The transaction number in TS;

for (j=0; j<m; j++){
Tr = The jth transaction in TS;
n= The number of tasks in Tr;
for (i=0; i<n; i++) {
Ti = The ith task in Tr;
if (APTi > APTsys && Ti has preemptable property){
Make Ti a non-preemptable task;
Calculate the current E(s);
if (E(s) increase || CSF < CSFacc)
Make Ti a preemptable task;

}
}
for (j=0; j<m; j++){

Tr = The jth transaction in TS;
n= The number of tasks in Tr;
for (i=0; i<n; i++) {
Ti= The ith task in Ts;
if (Ti and T(i-1) have different preemptive

properties) continue;
if (APTi < APTsys && APTi-1 < APTsys) {
Merge Ti and T(i-1) into a tasks Ti', and use the
higher priority between Pi and P(i-1) as the
merged task’s priority;
Calculate the current E(s);
}
if (E(s) increase)

Break Ti’ up into the original Ti and T(i-1);
}

}
}
Algorithm TP searches all tasks in transactions, and try to assign preemptable

property to tasks that have more preempted times in order to reduce context-switching
overheads. In this process, CSF should be no less than the expected value and E(s)
does not increase. After that, merge adjacent tasks to reduce the number of tasks.

5 Experimental Evaluation

In order to evaluate the performance of the algorithm presented in this paper, we
constructed the design model with the following parameters: transaction number: 40;
the number of components in each transaction: 5-10; period of transactions: 10-
2000ms; the WCET of component: 1-25ms; context-switching time: 8 microseconds.
There were 1-M, M-M and M-1 sharing among components. There were sharing
resources among components. All components in the design model were preemptable
and left a large freedom degree for priority assignment. A fixed CSF (1.15) was
chosen in the experiments. The experiments were performed on a PC running
Windows XP, with 2500MHz CPU speed and 512Mb memory.

0

100

200

300

400

500

10 30 50 70 90

CPU utilization (%)

O
verheads

SA SA+H

Fig. 3. The comparison of system overheads

In order to obtain the reduction of context-switching time, we compared the
method proposed in this paper, named SA+H, to the method only using SA, named
SA, under the same condition, but it did not assign preemption properties to tasks in
SA. We counted the context-switching times when every task completed once
execution. The experimental result is shown in Fig. 3. In comparison to SA, the
context-switching times of SA+H are less than those of SA at different CPU
utilization. The difference of context-switching times between SA and SA+H is
maximal when the CPU utilization is 50 percent. This is because they are both
effective when CPU utilization is low. But SA+H shows its advantage when the CPU
utilization is moderate because the more accurate time analysis algorithm in section
3.1 makes non-preemptable tasks generated effectively. The difference of context-
switching times between SA and SA+H becomes little as the increase of CPU
utilization. It is because the non-preemptable properties of some tasks influence task
merging. Non-preemptable tasks lead to a reduction of 10 percent in context-
switching time in SA+H (not shown in Fig. 3). Although the non-preemptable tasks
contribute a small part in total context-switching time, it is significant to assign non-
preemptable properties to a task to make its execution uninterrupted in some safe-
critical applications.

We investigated the distribution of the non-preemptable tasks in a task set
generated with the proposed method in this paper. The experiment was performed
with CPU utilization of 70%. The experimental result shows the non-preemptable
tasks occur more frequently in the tasks with shorter WCET. It is because tasks with
larger WCET have greater possibility to destroy the shedulability of system than tasks
with smaller WCET. It also confirms the fact that hybrid-scheduling property is more
suitable for tasks with smaller WCET and tasks that cannot interrupt for special
reasons.

6 Conclusions and Future Work

This paper proposes a new method for the implementation synthesis of embedded
software under OS that supports the hybrid-scheduling model. It is an extension of

implementation synthesis method that is based on priority-based fully preemptive
scheduling and enlarges the application range of implementation synthesis
technology. We propose a time analysis method for CBMT and an implementation
synthesis method with the design space exploration and optimization ability. This
method can yield real-time implementation and has lower system overheads. The
work focusing on the influence of other resource constraints, such as memory, energy,
on implementation synthesis, is on the way.

Acknowledgments

This research was supported by 863 National High Technology Program under Grant
No. 2005AA1Z2020 and Key Program of Science and Technology Department of
Zhejiang Province under Grant No. 2004C21057.

References

1 Wang, S., Merrick, J. R., and Shin, K. G.: Component allocation with multiple resource
constraints for embedded real-time software design. In proc. IEEE Real-Time and
Embedded Technology and Applications Symposium. (2004) 219-226

2. Wang, S., and Shin, K. G.: An architecture for embedded software integration using reusable
components. In proc. International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems. (2000) 110-118

3. Vestal, S.: Fixed-priority sensitivity analysis for linear compute time models. IEEE Trans.
Software Eng., vol. 20. (1994) 308-317

4. Kodase, S., Wang, S., and Shin, K. G.: Transforming structural model to runtime model of
embedded software with real-time constraints. In Proc. Design, Automation and Test in
Europe Conference . (2003) 20170-20175

5. Gu, Z., Wang, S., and. Shin, K. G.: Synthesis of real-time implementation from UML-RT
models. In Proc. IEEE RTAS Workshop on Model-Driven Embedded Systems. (2004)

6. Wang, L., and Wu, Z.: Schedulability Test for Fault-Tolerant Hybrid Real-time Systems with
Preemptive and Non-preemptive tasks. In Proc. the Fourth International Conference on
Computer and Information Technology. (2004) 1169-1174

7. Gu, Z., and Shin, K. G.: Synthesis of Real-Time Implementations from Component-Based
Software Models. In Proc. IEEE Real-Time Systems Symposium. (2005)

8. Bartolini, C., Lipari, G., and Natale, M. D.: From functional blocks to the synthesis of the
architectural model in embedded real-time applications. In Proc. IEEE Real Time and
Embedded Technology and Applications Symposium. (2005) 458-467

9. OSEK/VDX Operating System, Version 2.2.1, Jan. 16, 2003. [Online]. Available:
http://www.osek-vdx.org/mirror/os221.pdf

10. Harbour, M., Klein, M. H., and Lehoczky, J.: Timing analysis for fixed-priority scheduling
of hard real-time systems. IEEE Trans. Software Eng., vol. 20, no. 2. (1994) 13-28

