
Implementation Synthesis of Embedded Software 
under Operating Systems Supporting the Hybrid 

Scheduling Model 

Zhigang Gao1, Zhaohui Wu1, and Hong Li1 

1 College of Computer Science, Zhejiang University 
Hangzhou 310027, Zhejiang, China 

{gaozhigang, wzh, lihong}@zju.edu.cn 

Abstract. Implementation synthesis of embedded software has great influence 
on implementing embedded software’s non-functional requirements, such as 
real-time, memory consumption, and low power, etc. In this paper, we focus on 
the implementation synthesis problem under a class of operating systems that 
supports the hybrid-scheduling model, that is, task sets have preemptable tasks 
and non-preemptable tasks. We propose a time analysis technology and an 
implementation synthesis method with the ability of design space exploration 
and optimization. Experimental evaluation shows our implementation synthesis 
method yields real-time embedded software with lower system overheads. 

1   Introduction 

Implementation synthesis of embedded software, as a part of embedded software 
integration, refers to the process from logical software design models (abbr. design 
models) to implementation models on specific platforms. Most non-functional 
requirements, such as real-time, memory consumption, and low power, are 
implemented and optimized during the implementation synthesis of embedded 
software, which makes it an important stage in the design of embedded systems. 

Currently, almost all the research work [4, 7, 8] is based on the assumption that the 
underlying operating system (OS) uses the priority-based fully preemptive scheduling 
strategy. Although this kind of scheduling strategy is widely used in currently 
commercial real-time OS, there are also other scheduling strategies that can achieve 
better effects in some specific domains. Hybrid scheduling is such an example. It 
mixes preemptable tasks with non-preemptable ones. This kind of scheduling strategy 
makes sense when the execution time of a task is in the same magnitude of the time of 
context switches, RAM is required to use economically or the execution of a task 
must not be interrupted. It is one of the scheduling modes supported by the 
specification of OSEK/VXD [9], a wildly accepted specification in automotive 
electronic industries. 

Under the hybrid scheduling strategy, the implementation synthesis involves not 
only priority assignments to tasks, but also scheduling property (preemptable or non-
preemptable) assignments to tasks. In this paper, we focus on the implementation 



synthesis of real-time embedded software running on uniprocessor with the goal of 
satisfying real-time and reducing system overheads. We propose the time analysis 
technology and a new implementation synthesis method, which is an extension of Gu 
et al.’s work [7], to address the implementation synthesis problem under OSs 
supporting the hybrid-scheduling model. 

The rest of this paper is organized as follows. Section 2 presents the software 
models and implementation strategy. Section 3 describes the time analysis technology 
under the hybrid-scheduling model. We describe the process of implementation 
synthesis in section 4. The experimental evaluation results are given in section 5. 
Finally, we give conclusions and future work with section 6. 

2   Software Models and Implementation Strategy 

In terms of the model presented by Wang et al. [1, 2], a component is a logical 
software entity that can carry out certain functions triggered by events (we do not 
differentiate between the term “event” and the term “message” in the following 
sections, and use them interchangeably). An action is defined as the computation 
performed by a component when receiving an event. A transaction is a sequence of 
actions that are triggered by an external input event, possibly cut through one or more 
components. The components in a transaction communicate through buffered 
asynchronous messages. For simplicity, we only consider the or relation when more 
than one input event trigger the same output event, that is, a component can issue the 
output event once it receives any event from its input ports. 

In design models, one action of a component has the worst-case execution time 
(WCET), and a transaction has a fixed period and a fixed deadline. In this paper, we 
assume the deadline of a transaction is no more than its period. 

We use transaction-based runtime models. It is the counterpart of transactions in 
design modes, which consisting of a sequence of related tasks (the transactions in 
design modes and the transactions in runtime models can be differentiated according 
to their context). Each task has a period and an end-to-end (e2e) deadline. After being 
created and initialized, a task waits for events. When an event arrives, the task does 
the corresponding computation and sends one or more messages to other tasks. And 
then it goes back to wait for another event. Since tasks may use some shareable 
resources, it is necessary to synchronize the access to mutually exclusive resources. 

During implementation synthesis, we chose Component-Based Multi-Threading 
(CBMT) strategy, where a thread consists of one or more components. It has the 
benefits of reasonable context-switching overheads, sufficient parallelism, optimal 
memory consumption, and better support for software engineering [7]. 

3   Time Analysis for CBMT under the Hybrid Scheduling Model 

For the time analysis of CBMT, Gu et al. [5, 7] used the modified form of the time 
analysis algorithm presented by Harbour, Klein, Lehoczky [10] (They call it the HKL 
algorithm.). The method presented by Gu et al. is suitable for the OSs supporting the 



priority-based preemptive scheduling model, but not suitable for the OSs supporting 
the hybrid scheduling model. 

The task model used in HKL algorithm assumes that a task consists of one or more 
subtasks. For example, a task τi consists of n subtasks, (τ(i,1),τ(i,2),…, τ(i,n)). P(i,j) refers to 
the priority of the subtask τ(i,j). Pmin(i) refers to the minimum priority of all the subtasks 
of τi. When Pmin(m)>P(i,j), τm has multiply preemptive effect on τ(i,j). If 

( ,1) ( , ) ( , ) ( , 1) ( , ), ( , , ) ( )m m k i j m k i jk P P P P P+∃ ⋅⋅⋅ > ∧ < , τm has singly preemptive effect 
on τ(i,j). τm has blocking effect on τ(i,j) if 

( , ) ( , ) ( , 1) ( , ) ( , ) ( , 1) ( , ), , ( ) (( , , ) ) ( )m l i j m l m k i j m k i jk l P P P P P P P+ +∃ < ∧ ⋅⋅⋅ > ∧ < . If the 
priority of several continuous subtasks of τm is higher than Pmin(i), they are called an H 
segment; If the priority of several continuous subtasks of τm is lower than Pmin(i), they 
are called an L segment. 

The canonical form of a task τi is a task τi' whose subtasks maintain the same order, 
but with priority levels that do not decrease. Harbour et al. proved that the completion 
time of τi was equal to that of τi'. When we calculate the worst case response time 
(WCRT) of τi, first, transform task τi into its canonical form, τi', denoted as (τ(i,1)', 
τ(i,2)', ···,τ(i,m)'), then analyze each subtask’s completion time in τi' one by one. The 
completion time of the last subtask of τi' is equal to the completion time of τi'. 

In the HKL algorithm, C(i,k) is the WCET of τ(i,k)'; MP(i,k) is the tasks that have 
multiply preemptive effect (type-1 tasks) on τ(i,k)'; SP(i,k) is the tasks that has singly 
preemptive effect (type-2 tasks) on τ(i,k)'; and B(i,k) is the blocking time suffered by 
τ(i,k)'. 

The HKL algorithm works well under the four assumptions given by Harbour et al. 
But the HKL algorithm does not consider context-switching overheads and blocking 
time caused by resource sharing and other factors. In the design models of this paper, 
the total blocking time comes from three aspects: blocking time caused by high 
priority task, which has been discussed in the HKL algorithm, blocking time caused 
by sharing resources that must be accessed serially, and blocking time caused by 
sharing components among multiple transactions. Gu et al. considered the influence 
caused by sharing components. However, the blocking time they discussed is only 
suitable for the situation that different input messages trigger different output 
messages. Moreover, context-switching overheads in Gu et al.’s work does not 
consider an H/L segment may include more than one tasks. In the following, we 
extend the HKL algorithm for performing time analysis on CBMT. 

In design models, there are three typical relations: (1) One input message triggers 
an action sequence. The action sequence outputs messages to multiple components, as 
shown in Fig. 1 (a). We call this kind of sharing relation 1-M sharing; (2) Any of 
multiple messages can trigger a sequence of actions, as shown in Fig. 1 (b). We call 
this kind of sharing relation M-1 sharing; and (3) Multiple different messages trigger 
multiple different action sequences on multiple sharing components, as shown in Fig. 
1 (c). We call this kind of sharing relation M-M sharing. In comparison to the task 
model used in HKL algorithm, the time analysis for CBMT is more complex due to 
the above three cases. The M-M sharing has the same influence on the time analysis 
with M-1 sharing, thus we only research the other two component sharing relations. 

In order to perform time analysis for design modes, we regard components as 
scheduling entities. We still use the notion of subtask to denote the tasks in 



transactions. We use τCi to denote the subtask that a component Ci belongs to, and use 
COτ(i,j) to denote the component that a subtask τ(i,j) consists of. In Fig. 1 (a), assuming 
that Tr1-Trq are transactions that Mo1-Moq belong to. 
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Fig. 1. Component-sharing relations (a) 1-M sharing (m≥ j) (b) M-1 sharing (n≥ j) (c) M-M 
sharing (n≥ j) 

1-M sharing has the following influence on the execution time of subtasks: 
z Among the transactions that share multiple common components, one 

transaction does not preempt or block the other transactions. 
z The preemption time (including multiple preemption time and single 

preemption time) caused by the subtasks that consist of sharing components 
should only be calculated in one transaction. 

In the following discussion of M-1 sharing, we use the example shown in Fig. 1 (b), 
and assume Tr1-Trt are transactions that Mi1-Mit belong to. For an randomly selected 
transaction Tri from Tr1-Trt, its canonical form is a transaction with subtask sequence 
(τ(i,1)',···,τCj',···,τCk'···,τCn'···). τCk' is a subtask among τCj'-τCn'. 

Under the relation of M-1 sharing, a subtask consisting of a shared component 
cannot be preempted or blocked by succeeding subtasks. For example, in Fig. 1 (b), 
τCj cannot be preempted or blocked by τCk, where { | }Ck Cr j r nτ τ∈ < ≤ . There are 
two cases in the calculation of the WCRT of subtasks: 
z For subtasks before τCj, their WCRT can be calculated by using the HKL 

algorithm. 
z For subtasks τCj'-τCn', the preemption time and the blocking time caused by 

other transactions in Tr1-Trt can be calculated by using the following 
equation (1). 

The preemption effect of a transaction only occurs once under the condition of M-1 
sharing because multiple transactions use the same components. So we regard it as 
blocking effects. The blocking time suffered by τ(i,j)' because of M-1 sharing is 
denoted as: 

( , )

( , , )

( , ) `( , )

1
( , )) ( )

( ) (1)i j

p i j

p p q i j
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Tr PE i j CO CO

B CET PC
τ τ

∈ ∧ =

= ∑  

Where PC(p,i,j)
 denotes the components before COτ(i,j)' in transaction Trp that exhibits 

preemption effects on τ(i,j)', CET(PC(p,i,j)) denotes the sum of the WCET of all 
components in PC(p,i,j). PE(i,j) denotes the transactions that have preemption effects 
(including multiple preemption effects and single preemption effects) on τ(i,j)' in Tr1-
Trk except Tr. 

Under the hybrid scheduling, if a component appears in an L segment, the L 
segment should be divided into three segments: an L segment, an H segments, and an 
L segment. Harbour et al. have discussed this problem in [10]. 

Considering the blocking effects caused by component sharing, we modify the 
MP(i,j) to MP(i,j)', SP(i,j) to SP(i,j)'. They are denoted as: 
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Except the blocking time B(i,j) which is caused by inner H segments, the blocking 
time suffered by the subtask τ(i,j)' consists of three aspects: the blocking time ( , )

1
i j

C MB , 
which is caused by M-1 sharing; the blocking time ( , )i j

C M MB , which is caused by M-M 
sharing, and can be calculated using similarly method in equation (1); and the 
blocking time ( , )i j

OB , which is caused by sharing resources and has been discussed by 
Gu et al. in [7]. It is denoted as: 

( , ) ( , )* ( , )
( , ) 1

i j i ji j
i j O CM CMMB B B B= + +  

The context-switching time is mainly caused by multiply preemptive tasks, so we 
only consider this kind of time overheads. The context-switching time suffered by 
τ(i,j)' because of ( , )p i jTr MP∈  is: 

( , ) 2i j p sysCS N CS= ⋅  
Where Np is the subtask number in Trp, CSsys is the context-switching overheads. 
If τ(i,j)' is a preemptable subtask, its completion time is: 
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Where C(i,j) is the WCET of τ(i,j)', Tp is the period of Trp, Cp is the WCET of Trp, 
and Ch

p is the WCET of the first H segment of Trp. Under the condition of 1-M 
sharing, the WCET of sharing components only be calculated in one transaction. 

According to algorithm proposed by Wang et al. [6], the response time of a non-
preemptable task consists of waiting time W(i,j) and the execution time C(i,j). However, 
the algorithm reported by Wang et al is based on independent tasks. For a non-
preemptable subtask τ(i,j)', its completion time is: 
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4   The Process of Implementation Synthesis 
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Fig. 2. The process of implementation synthesis 

Implementation synthesis includes initialization and task generation, as shown in 
Fig. 2. In this paper, we choose SA to perform task generation because of its 
effectiveness in dealing with discrete optimization problem. Our optimization 
objective is to increase Critical Scaling Factor (CSF) [3] and reduce system overheads. 
CSF is an index that is used to evaluate time sensitivity of a task set. The bigger the 
CSF of a system is, the more stable a system is. The energy function is defined as: 

( )
1

10S sys
c

E CSF N
N

= − + ⋅
⋅

 

Where Nc
 denotes the number of components in the design model, Nsys is the total 

times of context switches when each task completes its once execution. When the 
generated task set has the expected E(s) and no change occurs during some steps (we 
set it 1000), the SA ends successfully. 

4.1   Initialization 

The purpose of initialization is to abstract all transactions in a design model and 
assign components’ initial priorities. It is include two steps: 

First, transaction set generation. We use the method proposed in [4] to find 
transactions in the design model. 



Second, assign initial priorities of components. We follow the rules: (a) In a 
transaction, the nearer a component is from the event source, the higher its priority is; 
and (b) The longer the period of a transaction is, the higher the priority levels of the 
components that it includes is. If two transactions have the same period, the 
transaction with longer execution time (the sum of WCET of all its components) is 
assigned the higher priorities. It should be pointed out that a component shared by 
multiple transactions is assigned the same priority as the shortest-period transaction 
using this component. 

4.2   TASK Generation 

The purpose of task generation is to find a task set with acceptable CSF. It includes 
three steps. 

Priority Adjustment. Randomly select two components and exchange their priorities 
to find other priority assignment schemes in the search space of SA. 

Component Grouping. The objective of component grouping is to merge adjacent 
components with consecutive priorities and organize them into tasks. It works as 
follows: Following through the component sequence of a transaction, if a component 
with multiple output messages or its next component has multiple input messages, the 
components with adjacent priorities are merged into tasks. Then continue to find other 
component in this transaction. For example, there are eight components with priority 
sequence (3, 5, 4, 6, 8, 7, 10, 11), where the first six components are preemptable and 
the last two components are non-preemptable. They can be merged into two tasks. 
The first task consists of the first six components with priorities 7 and it is 
preemptable. The second task consists of the last two components with priorities 11 
and it is non-preemptable. 

CSF check. The completion time of a transaction can be obtained using the equation 
(2) and equation (3). From the completion time and deadlines of all transactions, the 
CSF of the system can be obtained. If CSF is acceptable, we continue the next step. 
Otherwise, go to the step of priority adjustment. 

Task optimization. Its purpose is to reduce the number of tasks and the context-
switching time by merging adjacent tasks and adjusting their preemption properties. 

We use APTsys denote the average times that all tasks are preempted by other tasks 
in transaction set, APTi denoting the average times that a task τi is preempted by other 
tasks in transaction set. 

The algorithm of task optimization is shown in Algorithm TP. 
Algorithm TP(TS) 
/* TS is the set of tasks. E(s) denotes the energy of 

the transaction set. CSFacc is the threshold that judges 
whether CSF is acceptable. */ 
m = The transaction number in TS; 



for ( j=0; j<m; j++){ 
Tr = The jth transaction in TS; 
n= The number of tasks in Tr; 
for (i=0; i<n; i++) { 
Ti = The ith task in Tr; 
if (APTi > APTsys && Ti has preemptable property){ 
Make Ti a non-preemptable task; 
Calculate the current E(s); 
if (E(s) increase || CSF < CSFacc) 
Make Ti a preemptable task; 

} 
} 
for ( j=0; j<m; j++){ 

Tr = The jth transaction in TS; 
n= The number of tasks in Tr; 
for (i=0; i<n; i++) { 
Ti= The ith task in Ts; 
if (Ti and T(i-1) have different preemptive 

properties) continue; 
if (APTi < APTsys && APTi-1 < APTsys) { 
Merge Ti and T(i-1) into a tasks Ti', and use the 
higher priority between Pi and P(i-1) as the 
merged task’s priority; 
Calculate the current E(s); 
} 
if (E(s) increase)  

Break Ti’ up into the original Ti and T(i-1); 
} 

} 
} 
Algorithm TP searches all tasks in transactions, and try to assign preemptable 

property to tasks that have more preempted times in order to reduce context-switching 
overheads. In this process, CSF should be no less than the expected value and E(s) 
does not increase. After that, merge adjacent tasks to reduce the number of tasks. 

5   Experimental Evaluation 

In order to evaluate the performance of the algorithm presented in this paper, we 
constructed the design model with the following parameters: transaction number: 40; 
the number of components in each transaction: 5-10; period of transactions: 10-
2000ms; the WCET of component: 1-25ms; context-switching time: 8 microseconds. 
There were 1-M, M-M and M-1 sharing among components. There were sharing 
resources among components. All components in the design model were preemptable 
and left a large freedom degree for priority assignment. A fixed CSF (1.15) was 
chosen in the experiments. The experiments were performed on a PC running 
Windows XP, with 2500MHz CPU speed and 512Mb memory. 
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Fig. 3. The comparison of system overheads 

In order to obtain the reduction of context-switching time, we compared the 
method proposed in this paper, named SA+H, to the method only using SA, named 
SA, under the same condition, but it did not assign preemption properties to tasks in 
SA. We counted the context-switching times when every task completed once 
execution. The experimental result is shown in Fig. 3. In comparison to SA, the 
context-switching times of SA+H are less than those of SA at different CPU 
utilization. The difference of context-switching times between SA and SA+H is 
maximal when the CPU utilization is 50 percent. This is because they are both 
effective when CPU utilization is low. But SA+H shows its advantage when the CPU 
utilization is moderate because the more accurate time analysis algorithm in section 
3.1 makes non-preemptable tasks generated effectively. The difference of context-
switching times between SA and SA+H becomes little as the increase of CPU 
utilization. It is because the non-preemptable properties of some tasks influence task 
merging. Non-preemptable tasks lead to a reduction of 10 percent in context-
switching time in SA+H (not shown in Fig. 3). Although the non-preemptable tasks 
contribute a small part in total context-switching time, it is significant to assign non-
preemptable properties to a task to make its execution uninterrupted in some safe-
critical applications. 

We investigated the distribution of the non-preemptable tasks in a task set 
generated with the proposed method in this paper. The experiment was performed 
with CPU utilization of 70%. The experimental result shows the non-preemptable 
tasks occur more frequently in the tasks with shorter WCET. It is because tasks with 
larger WCET have greater possibility to destroy the shedulability of system than tasks 
with smaller WCET. It also confirms the fact that hybrid-scheduling property is more 
suitable for tasks with smaller WCET and tasks that cannot interrupt for special 
reasons. 

6   Conclusions and Future Work 

This paper proposes a new method for the implementation synthesis of embedded 
software under OS that supports the hybrid-scheduling model. It is an extension of 



implementation synthesis method that is based on priority-based fully preemptive 
scheduling and enlarges the application range of implementation synthesis 
technology. We propose a time analysis method for CBMT and an implementation 
synthesis method with the design space exploration and optimization ability. This 
method can yield real-time implementation and has lower system overheads. The 
work focusing on the influence of other resource constraints, such as memory, energy, 
on implementation synthesis, is on the way. 
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