
System Software for Flash Memory: A Survey

Tae-Sun Chung1, Dong-Joo Park2, Sangwon Park3, Dong-Ho Lee4,
Sang-Won Lee5, and Ha-Joo Song6

1 College of Information Technoloty, Ajou University, Korea
tschung@ajou.ac.kr

2 School of Computing, College of Information Science, Soongsil University, Korea
3 Computer Science & Information Communication Engineering Division, Hankuk

University of Foreign Studies, Korea
4 Department of Computer Science and Engineering, Hanyang University, Korea

5 School of Information and Communications Engineering, Sungkyunkwan
University, Korea

6 Division of Electronic, Computer and Telecommunication, Pukyong National
University, Korea

Abstract. Recently, flash memory is widely adopted in embedded ap-
plications since it has several strong points: non-volatility, fast access
speed, shock resistance, and low power consumption. However, due to
its hardware characteristic, namely “erase before write”, it requires a
software layer called FTL (Flash Translation Layer). This paper surveys
the state-of-the-art FTL software for flash memory. This paper also de-
scribes problem definitions, several algorithms proposed to solve them,
and related research issues. In addition, this paper provides performance
results based on our implementation of each of FTL algorithms.
Keywords: Flash memory, Embedded System, File System

1 Introduction

Flash memory has inherently strong points compared to traditional hard disk:
non-volatility, fast access speed, shock resistance, and low power consumption.
Therefore, it has been widely adopted in embedded applications such as USB
flash memory, CF card memory, mobile devices, and so on. However, due to its
hardware characteristics, flash memory-based applications require special soft-
ware operations while reading (writing) data from (to) flash memory.

One of basic hardware characteristics of flash memory is that it has an erase-
before-write architecture [4]. That is, in order to update a location on a flash
memory, it has to be first erased before the new data can be written to it.

Moreover, the erase unit (block) is larger than the read or write unit(sector) [4]
resulting in the major performance degradation of the overall flash memory sys-
tem.

Therefore, the system software called FTL (Flash Translation Layer) should
be introduced [1, 2, 5, 8, 10, 11]. The basic scheme for FTL is as follows. By using
the logical to physical address mapping table, if a physical address location
mapped to a logical address is previously written, the input data is written to

an empty physical location to which no data have ever been previously written
and then the mapping table is updated due to newly changed logical/physical
address mapping. This protects one block from being erased per overwrite.

In applying the FTL algorithm to real embedded applications, there are two
major considerations: the storage performance and the SRAM memory require-
ment. With respect to the storage performance, as flash memory has special
hardware characteristics as mentioned above, the overall system performance is
mainly affected by the write performance. In particular, since the erase cost is
much more expensive than the write or read cost, it is very important to mini-
mize the erase operations. Additionally, the SRAM memory required to keep the
mapping information is so valuable resource in real embedded applications that
if an FTL algorithm requires large SRAM memory, it will increase the product
cost of embedded applications, leading to losing the price competitiveness.

In this paper, we survey the-state-of-the-art FTL algorithms. Gal et al. [6]
have also provided algorithms and data structures for flash memories. Compared
to the work, our work focuses on FTL algorithms and does not discuss file system
issues [9, 13, 7]. we describe the problem definition, the FTL algorithms proposed
to solve it, and the related research issues. In addition, we provide performance
results based on our implementation of each of FTL algorithms.

This paper is organized as follows. Section 2 describes problem definition.
Section 3 shows how the previous FTL algorithms can be classified, and Section
4 presents performance results. Finally, Section 5 concludes the paper.

2 Problem Definition & FTL Functionalities

2.1 Problem Definition

First, we define operation units in the flash memory system as follows.

Definition 1. A sector is the smallest amount of data which is read or written
at a time. That is, a sector is the unit of read or write operations.

Definition 2. A block is the unit of the erase operation on flash memory. The
size of a block is multiples of the size of a sector.

Figure 1 shows the software architecture of the flash file system. We will focus
on the FTL layer in Figure 1. The file system layer issues a series of read or write
commands with a logical sector number each, to read data from, or write data
to, specific addresses of flash memory . The logical sector number is converted
to a real physical sector number of flash memory by some mapping algorithm in
the FTL layer.

Thus, the problem definition of FTL is as follows. We assume that flash
memory is composed of n physical sectors and the file system - the upper layer
- considers a flash memory as a block-i/o device that is consisted of m logical
sectors. Since a logical sector has to be mapped at least one physical sector, the
number m is less than or equal to n.

Fig. 1. Software architecture of the flash memory system

Definition 3. Flash memory is composed of a number of blocks and each block
is composed of multiple sectors. Flash memory has the following characteristics:
If the physical sector location on flash memory was previously written, it has to
be erased in the unit of block before the new data can be overwritten. The FTL
algorithm is to produce the physical sector number in flash memory from the
logical sector number given by the file system.

2.2 FTL Functionalities

An FTL algorithm is supposed to provide the following functionalities.

– Logical to physical address mapping: The main functionality of an FTL
algorithm is to convert logical addresses from the file system to physical
addresses of flash memory.

– Power-off recovery: Even though a sudden power-off occurs during FTL op-
erations, the data structures of the FTL system should be recovered and its
consistency has to be maintained.

– Wear-leveling: FTL should include the wear-leveling function to wear down
memory blocks as evenly as possible.

3 A Taxonomy for FTL Algorithms

In this section, we suggest a taxonomy of FTL algorithms according to features
such as addressing mapping, mapping information management, and the size of
the SRAM table.

3.1 Addressing Mapping

Sector Mapping A naive and intuitive FTL algorithm is the sector map-
ping [1]. In sector mapping, every logical sector is mapped to a corresponding
physical sector. Therefore, if there are m logical sectors seen by the file system,
the row size of logical to physical mapping table is m.

For example, Figure 2 shows an example of sector mapping. In the example,
we assume that a block is composed of four pages and so there are totally 16
physical pages, where each page is organized into the sector and spare areas. If
we also assume that there are 16 logical sectors, the row size of the mapping
table is 16. When the file system issues a command - “write some data to LSN
(Logical Sector Number) 9”, the FTL algorithm writes the data to PSN (Physical
Sector Number) 3 according to the mapping table in case the PSN 3 has not
been written before.

But, in other case, the FTL algorithm looks for an empty physical sector,
writes data to it, and adjusts the mapping table. If there is no empty sector, the
FTL algorithm will select a victim block from flash memory, copy back the valid
data to the spare free block, and update the mapping table. Finally, it will erase
the victim block, which will become the spare block.

In order to rebuild the mapping table after power outage, the FTL algorithm
either stores the mapping table to flash memory or records the logical sector
number in the spare area on each writes to the sector area.

Fig. 2. Sector mapping

Block Mapping The sector mapping algorithm requires such a large memory
space (SRAM) that it is hardly feasible for small embedded systems. For this
reason, the block mapping-based FTL algorithms [2, 5, 10] are proposed. The
basic idea of the block mapping algorithms is that the logical sector offset within
a logical block is identical to the physical sector offset within the physical block.

In the block mapping scheme, if there are m logical blocks seen by the file
system, the row size of logical to physical mapping table is m. Figure 3 shows an
example of the block mapping algorithm. Assuming that there are four logical
blocks, the row size of the mapping table is four. If the file system issues the
command “write some data to LSN 9”, the FTL algorithm calculates the logical

block number 2(=9/4) and the sector offset 1(=9%4), and then finds physical
block number 1 using the mapping table. Since in the block mapping algorithm,
the physical sector offset equals the logical sector offset, the physical sector
location can be easily determined.

Hence the block mapping algorithm requires a small size of mapping informa-
tion. However, if the file system issues writes with the same LSNs many times,
the FTL algorithm has to perform the copy and erase operations frequently,
leading to severe performance degradation.

For rebuilding the mapping table, the FTL algorithm records the logical
block number in the spare area of the first page of the physical block.

Fig. 3. Block mapping

Hybrid Mapping Since both sector and block mapping have some disadvan-
tages as mentioned in the previous two subsections, hybrid mapping approaches
are introduced [8, 11]. A hybrid technique, as its name suggests, first uses a block
mapping technique to get the corresponding physical block , and then, uses a
sector mapping technique to find an available empty sector within the physical
block.

Figure 4 shows an example of the hybrid technique. When the file system
issues the command “write some data to LSN 9”, the FTL algorithm calculates
the logical block number 2(=9/4) for the LSN, and then, finds the physical block
number 1 from the mapping table. After getting the physical block number, the
FTL algorithm allocates an empty sector for the update. In the example, since
the first sector of the pysical block 1 is empty, the data is written to the first
sector location. In this case, since the two logical and physical sector offsets(i.e.,
2 and 1, respectively) differ from each other, the logical sector number 9 should
be written to the spare area in page 1 of the physical block 1. For rebuilding

the mapping table, not only this information but also the logical block numbers
have to be recorded in the spare areas of the physical blocks.

When reading data from flash memory, the FTL algorithm first finds the
physical block number from the mapping table using the given LSN, and then,
by reading the logical sector numbers from the spare areas of the physical block,
it can get the most recent value for requested data.

Fig. 4. Hybrid mapping

Comparison We compare the performance of FTL algorithms in two perspec-
tives: file system- issued read/write performance and memory requirement for
storing mapping information.

The read/write performance of an FTL algorithm can be measured by the
number of flash I/O operations (read, write, and erase), since the read/write
performance is I/O-bounded. We assume that the mapping table of an FTL
algorithm is maintained in SRAM, and the access cost of the mapping table
is zero, then the read and write costs can be computed by the following two
equations, respectively.

Cread = xTr (1)
Cwrite = p(Tr + Tw) + (1− p)(Tr + (Te + Tw) + Tc) (2)

Cread and Cwrite above are the costs of read and write issued from the file
system layer, respectively, and Tr, Tw, and Te are the costs of read, write, and
erase processed in the flash memory layer. Tc is the cost of copies needed to
move sectors within a block to other free block before erasing and to copy back
after erasing. p is the probability that a write command does not incur any erase

operation. We assume that the input logical sector within the logical block is
mapped to one physical sector within a physical block.

In the sector and block mapping techniques, the variable x in the equation 1
has 1, since the sector to be read can be found directly from the mapping table.
However, in the hybrid technique, the value of the variable x is in the range of
1 ≤ x ≤ n, where n is the number of sectors within a block. This is because
the requested data can be read only after scanning the logical sector numbers
stored in the spare areas of a physical block. Thus, the hybrid mapping scheme
has higher read cost compared to the sector and block mapping techniques.

In case of the write cost, we assume that a read operation is required before
actual a write to see if the input data can be written to in-place sector location.
Thus, Tr has to be added in the equation 2. Since Te and Tc are higher cost
operations compared to Tr and Tw, the variable p is a key point in computing the
write cost. In the sector mapping, the probability of requiring an erase operation
per write is relatively small, while in block mapping, it is relatively high.

Another comparison criteria is the memory requirement for storing mapping
information. Table 1 shows such memory requirements for the three address
mapping techniques. Here, we assume a flash memory device of size 128MB,
where flash memory is composed of 8192 blocks and each block is composed of
32 sectors [4]. In sector mapping, three bytes are needed to represent the whole
sector numbers, while in block mapping, only two bytes are needed to represent
the whole block numbers. An hybrid mapping requires three bytes for block
mapping and for sector mapping within a block, respectively. From the Table 1
block mapping requires the smallest SRAM memory as expected.

Bytes for addressing Total

Sector mapping 3 Bytes 3B * 8192* 32 = 768KB

Block mapping 2 Bytes 2B *8192= 16KB

Hybrid mapping (2+1) Bytes 2B*8192+1B*32*8192 = 272KB

Table 1. Memory requirement for mapping information

3.2 Managing Address Mapping Information

The most important meta information in the FTL algorithms is the address
mapping information. In order to be able to rebuild the address mapping table
during a power-on process, the address mapping information should not be lost in
the sudden power-offs, and therefore it has to be persistently kept somewhere in
flash memory. We can classify the techniques for storing the mapping information
on flash memory into two categories: map block method and per block method.

Map Block Method A map block method stores the address mapping infor-
mation into some dedicated blocks of flash memory called map blocks. If we use
one map block, erase operations on the map block happens so frequently. Hence
we use several map blocks in order to lessen such frequent erases.

In the case that the mapping information may be changed due to writes issued
by the file system, the above recording job will be done. When performing the
recording job, if there is no unused sector in the map blocks pool, erase operations
on all the map blocks have to be executed to make some free map blocks. The
mapping table can be cached in SRAM for fast mapping lookups. In this case,
the mapping table has to be rebuild in SRAM by reading the latest sector of the
latest map block from flash memory during a power-on process.

Per Block Method The address mapping information can be stored to each
physical block of flash memory. Differently from the map block method, logical
block numbers are stored in the spare area of the first sector of each physical
block. In addition, in order to to keep the mapping from a logical sector number
to the sectors in a physical block, the logical sector numbers are recorded in each
sector in the block. When rebuilding the mapping table due to power-off, both
the logical block numbers and logical sector numbers in the spare areas of flash
memory are used.

3.3 RAM Table

The size of RAM is very important in designing the FTL algorithm because it
is a key factor in overall system cost. The smaller the RAM size, the lower the
system cost. If a system has enough RAM, the performance can be improved.
The FTL algorithms have their own RAM structures and we can classify the FTL
algorithms according to their RAM structures. RAM is used to store following
information of the FTL algorithms.

– Logical to physical mapping information: The major usage of RAM is to
store the logical to physical mapping information. By accessing the RAM
information, the physical flash memory location for reading or writing data
can be found efficiently.

– Free memory space information: Once free memory space information in
flash memory is stored in RAM, an FTL algorithm can manage the memory
space without further flash memory accesses.

– Information for wear-leveling: The wear-leveling information can be stored
in RAM. For example, the erase count of flash memory blocks may be stored
in RAM.

4 Experimental Evaluation

For the simulation, we got various access patterns that the FAT file system [3]
issues to the block device driver when it gets a file write request.

We will report performance results over two representatives of access pat-
terns in embedded applications: Symbian [12] and Digicam. The first one is the
workload of 1M byte file copy operation in Symbian operating system and the
second one is the workload of digital cameras.

Figure 5-(a) shows the total elapsed time for the Digicam pattern. The x
axis is the test count and the y axis is the total elapsed time in millisecond. At
first, flash memory is empty, and flash memory is occupied as the iteration count
increases. The result shows that the Log scheme shows the best performance.
It is interesting that the Log scheme shows the better performance than the
sector mapping which requires a lot of SRAM resources for mapping. We think
the reason is that the workload of the Digicam is mostly composed of sequential
write operations and the Log scheme operates almost ideally in the sequential
write patterns.

Since the sector scheme uses a LSN-to-PSN mapping table, it has to update
the mapping table each time overwrite operations are performed. This means it
has to write the change in the mapping table to flash memory whenever a logical
sector is overwritten, which is not happen so many times in Log scheme that
uses a LBN-to-PBN mappings. In the experiment, we configured that there are
32 sectors in a block. Therefore, LSN-to-PSN mapping table have to be updated
approximately 30 times often than the LBN-to-PBN mapping. Therefore, even
though the sector mapping scheme incurs less erase operations (Figure 5-(b)), it
has longer overall execution time than the Log scheme.

The SSR and Mitsubishi techniques show the poor performance compared
to other techniques. We think the main reason is that the one logical block is
mapped to only one physical block in the SSR and Mitsubishi techniques. In
particular, when erasing a block in the SSR technique, since many valid sectors
exist in the erased block, many copy operations are necessary and the probability
that the erased block will be erased again in the future is very high. The Log
scheme shows the better performance than FMAX. It is because, we think, that
merging algorithm of FMAX is poor than that of the Log scheme in our workload.

Figure 5-(b) shows the erase count. The result is similar to the result of the
total elapsed time. This is because the erase count is the most dominant factor
in the overall system performance. [4] says that the running time ratio of read
(1 page), write (1 page), and erase (1 block) is 1:7:63 approximately. We can see
that the sector mapping requires the smallest erase counts. In sector mapping
scheme, a logical sector can be mapped to any free physical sector. Most of the
blocks are either full of invalid blocks or full of valid blocks. Therefore merge
operations between blocks with valid sectors are uncommon, causing less erase
operations.

Figure 6-(a) and Figure 6-(b) show the performance result in the Symbian
workload. In the Symbian workload, the sector mapping shows the best perfor-
mance. This result comes from the fact that the workload of Symbian, in contrast
to Digicam, has many random write operations. Thus, in the Log scheme, the
erase operation occurs frequently compared to the sector mapping.

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

E
la

ps
ed

 ti
m

e
(m

s)

Test count

The total elapsed time

FMAX
LOG

MSBS
SSR

Sector

(a) The total elapsed time

 1000

 10000

 100000

 0 20 40 60 80 100

C
ou

nt

Test count

The erase count

FMAX
LOG

MSBS
SSR

Sector

(b) Erase counts

Fig. 5. Digicam: The total elapsed time and erase counts

5 Conclusion

In this paper, we have surveyed the state of the art FTL algorithms. First,
we classified the FTL algorithms into three categories according to the address
mapping method: sector, block, and hybid. In most cases, the sector mapping
method shows the best performance but it requires much memory resources.
The block mapping technique requires the smallest memory resources but its
performance is the worst. Thus, the hybrid technique is proposed. In addition,
the meta information storage techniques are classified into two categories: per
block method and map block method. Finally, various FTL techniques differ in
using RAM tables. We implemented various FTL algorithms such as FMAX,
sector mapping, Log scheme, SSR, and Mitsubishi, and showed the performance
results. The Log scheme shows good performance in the sequential access pat-
terns. We can see that the workload of flash memory system has great impact
on the overall performance of a flash memory system. For a further study, we
want to design an FTL algorithm which has best performance while requiring
smallest resources by exploiting the access patterns of file systems.

Acknowledgment

This work was supported in part by MIC & IITA through IT Leading R&D
Support Project (2006-S-040-01) and was supported partly by the Ministry of
Information and Communication, Korea under the ITRC support program su-
pervised by the Institute of Information Technology Assessment, IITA-2005-
(C1090-0501-0019), and also supported partly by Seoul R&BD Program(10660).

 1000

 10000

 100000

 0 20 40 60 80 100

E
la

ps
ed

 ti
m

e
(m

s)

Test count

The total elapsed time

FMAX
LOG

MSBS
SSR

Sector

(a) The total elapsed time

 100

 1000

 10000

 0 20 40 60 80 100

C
ou

nt

Test count

The erase count

FMAX
LOG

MSBS
SSR

Sector

(b) Erase counts

Fig. 6. Symbian: The total elapsed time and erase counts

References

1. Amir Ban. Flash file system, 1995. United States Patent, no. 5,404,485.
2. Amir Ban. Flash file system optimized for page-mode flash technologies, 1999.

United States Patent, no. 5,937,425.
3. Microsoft Corporation. Fat32 file system specification. Technical report, Microsoft

Corporation, 2000.
4. Samsung Electronics. Nand flash memory & smartmedia data book, 2004.
5. Petro Estakhri and Berhanu Iman. Moving sequential sectors within a block of

information in a flash memory mass storage architecture, 1999. United States
Patent, no. 5,930,815.

6. Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories.
ACM Computing Surveys, 37(2), 2005.

7. A. Kawaguchi, S. Nishioka, and H. Motoda. Flash Memory based File System. In
USENIX 1995 Winter Technical Conference, 1995.

8. Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun Cho. A
space-efficient flash translation layer for compactflash systems. IEEE Transactions
on Consumer Electronics, 48(2), 2002.

9. M. Resenblum and J. Ousterhout. The Design and Implementation of a Log-
structured File System. ACM Transactions on Computer Systems, 10(1), 1992.

10. Takayuki Shinohara. Flash memory card with block memory address arrangement,
1999. United States Patent, no. 5,905,993.

11. Bum soo Kim and Gui young Lee. Method of driving remapping in flash memory
and flash memory architecture suitable therefore, 2002. United States Patent, no.
6,381,176.

12. Symbian. http://www.symbian.com, 2003.
13. M. Wu and W. Zwaenepoel. eNVy: A Non-Volatile, Main Memory Storage System.

In International Conference on Architectural Support for Programming Languages
and Operating Systems, 1994.

