
On Multiprocessor Utility Accrual Real-Time
Scheduling With Statistical Timing Assurances

Hyeonjoong Cho1, Haisang Wu2, Binoy Ravindran1, and E. Douglas Jensen3

1 ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA {hjcho, binoy}@vt.edu
2 Juniper Networks, Inc., Sunnyvale, CA 94089, USA, hswu@ieee.org

3 The MITRE Corporation, Bedford, MA 01730, USA jensen@mitre.org

Abstract. We present the first Utility Accrual (or UA) real-time scheduling algo-
rithm for multiprocessors, called gMUA. The algorithm considers an application
model where real-time activities are subject to time/utility function time con-
straints, variable execution time demands, and resource overloads where the total
activity utilization demand exceeds the total capacity of all processors. We es-
tablish several properties of gMUA including optimal total utility (for a special
case), conditions under which individual activity utility lower bounds are satis-
fied, a lower bound on system-wide total accrued utility, and bounded sensitivity
for assurances to variations in execution time demand estimates. Our simulation
experiments confirm our analysis and illustrate the algorithm’s effectiveness.

1 Introduction

Multiprocessor architectures (e.g., Symmetric Multi-Processors or SMPs, Single Chip
Heterogeneous Multiprocessors or SCHMs) are becoming more attractive for embed-
ded systems primarily because major processor manufacturers (Intel, AMD) are making
them decreasingly expensive. This makes such architectures very desirable for embed-
ded system applications with high computational workloads, where additional, cost-
effective processing capacity is often needed. But this exposes the critical need for
multiprocessor real-time scheduling, which has recently received significant attention.

Pfair algorithms [3] have been shown to achieve a schedulable utilization bound
(below which all tasks meet their deadlines) that equals the number of processors. Due
to their higher overhead, algorithms other than Pfair (e.g., global EDF) have also been
studied. With M processors, EDF’s utilization bound is shown to be M−(M − 1)umax,
where umax is the maximum individual task utilization. This work was later extended
for the case of deadlines less than or equal to periods in [2]. In [4], it is shown that the
utilization bound in [2] does not dominate the bound in [10], and vice versa.

Timeliness objectives other than the hard real-time objective have also received at-
tention. For example, tardiness bounds are established for a suboptimal Pfair algorithm
in [14], an EDF-based partitioning scheme and scheduling algorithm in [1], and global
EDF in [8].

1.1 Contributions

In this paper, we consider embedded real-time systems that operate in environments
with dynamically uncertain properties. These uncertainties include transient and sus-

tained resource overloads due to context-dependent activity execution times and arbi-
trary activity arrival patterns. Nevertheless, such systems’ desire the strongest possible
assurances on activity timeliness behavior. Another important distinguishing feature of
these systems is their relatively long execution time magnitudes—e.g., in the order of
milliseconds to minutes. Some example systems that motivate our work include [6, 7].

When overloads occur, meeting deadlines of all activities is impossible as the de-
mand exceeds the supply. The urgency of an activity is typically orthogonal to the rela-
tive importance of the activity—-e.g., the most urgent activity can be the least important,
and vice versa; the most urgent can be the most important, and vice versa. Hence when
overloads occur, completing the most important activities irrespective of their urgency
is often desirable. Thus, a clear distinction has to be made between urgency and impor-
tance. During under-loads, such a distinction need not be made, because deadline-based
scheduling algorithms such as EDF are optimal (on one processor).

Deadlines by themselves cannot express both urgency and importance. Thus, we
consider the time/utility function (TUF) model that express the utility of completing
an activity as a function of its completion time [12]. We specify deadline as a binary-
valued, downward “step” shaped TUF; Figure 1(a) shows examples. Note that a TUF
decouples importance and urgency—i.e., urgency is measured as a deadline on the X-
axis, and importance is denoted by utility on the Y-axis.

-

6

(a)
-

6bbb

(b)
-

6
S

SSHH
(c)

Fig. 1: Example TUFs: (a) Step TUFs; (b) AWACS
TUF [6]; and (c) Air defense TUFs [13]

Many real-time systems also
have activities that are subject
to non-deadline time constraints,
such as those where the util-
ity attained for activity comple-
tion varies (e.g., decreases, in-
creases) with completion time.
Figures 1(a)-1(c) show example
TUFs from two real applications.
When time constraints are speci-
fied using TUFs, the scheduling criteria is based on accrued utility, such as maximizing
sum of the activities’ attained utilities. We call such criteria, utility accrual (or UA)
criteria, and scheduling algorithms that optimize them, as UA scheduling algorithms.

We consider the problem of global UA scheduling on an SMP system with M num-
ber of identical processors. We consider global scheduling (as opposed to partitioned
scheduling) because of its improved schedulability and flexibility [11]. Further, in many
embedded architectures (e.g., those with no cache), its migration overhead has a lower
impact on performance [4]. Moreover, applications of interest to us [6,7] are often sub-
ject to resource overloads, during when the total application utilization demand exceed
the total processing capacity of all processors. When that happens, we hypothesize that
global scheduling can yield greater scheduling flexibility, resulting in greater accrued
activity utility, than partitioned scheduling.

We consider repeatedly occurring application activities that are subject to TUF time
constraints, variable execution times, and overloads. To account for uncertainties in
activity execution behaviors, we consider a stochastic model, where activity execution
demand is stochastically expressed. Activities repeatedly arrive with a known minimum

inter-arrival time. For such a model, our objective is to provide statistical assurances on
activity timeliness behavior.

This problem has not been previously studied. We present a polynomial-time, heuris-
tic algorithm called the global Multiprocessor Utility Accrual scheduling algorithm
(or gMUA). We show that gMUA achieves optimal total utility (for a special case),
probabilistically satisfies individual activity utility lower bounds, and lower bounds the
system-wide total accrued utility. Thus, the paper’s contribution is the gMUA algorithm.
We are not aware of any past efforts that solve the problem solved by gMUA.

The rest of the paper is organized as follows: Section 2 describes our models and
scheduling objective. In Section 3, we discuss the rationale behind gMUA and present
the algorithm. We describe the algorithm’s properties in Section 4 and report our simu-
lation studies in Section 5. The paper concludes in Section 6.

2 Models and Objective

2.1 Activity Model
We consider the application to consist of a set of tasks, denoted T={T1, T2, ..., Tn}.
Each task Ti has a number of instances, called jobs, and these jobs may be released
either periodically or sporadically with a known minimal inter-arrival time. The jth job
of task Ti is denoted as Ji,j . The period or minimal inter-arrival time of a task Ti is
denoted as Pi. All tasks are assumed to be independent. The basic scheduling entity
that we consider is the job abstraction. Thus, we use J to denote a job without being
task specific, as seen by the scheduler at any scheduling event.

A job’s time constraint is specified using a TUF. Jobs of the same task have the
same TUF. A task Ti’s TUF is denoted by Ui(); thus job Ji,j’s completion at time t will
yield an utility Ui(t). We focus on non-increasing unimodal TUFs, as they encompass
majority of the time constraints in our motivating applications.

Each TUF Ui of Ji,j has an initial time Ii,j and a termination time Xi,j , which are
the earliest and the latest times for which the TUF is defined, respectively. We assume
that Ii,j is the arrival time of job Ji,j , and Xi,j − Ii,j is the period or minimal inter-
arrival time Pi of the task Ti. If Ji,j’s Xi,j is reached and execution of the corresponding
job has not been completed, an exception is raised, and the job is aborted.

2.2 Job Execution Time Demands
We estimate the statistical properties of job execution time demand, instead of the worst-
case, because our motivating applications exhibit a large variation in their actual work-
load. Thus, the statistical estimation of the demand is much more stable and hence more
predictable than the actual workload.

Let Yi be the random variable of a task Ti’s execution time demand. Estimating the
execution time demand distribution of the task involves two steps: (1) profiling its exe-
cution time usage, and (2) deriving the probability distribution of that usage. A number
of measurement-based, off-line and online profiling mechanisms exist (e.g., [16]). We
assume that the mean and variance of Yi are finite and determined through either online
or off-line profiling. We denote the expected execution time demand of a task Ti as
E(Yi), and the variance on the demand as V ar(Yi).

2.3 Statistical Timeliness Requirement

We consider a task-level statistical timeliness requirement: Each task must accrue some
percentage of its maximum possible utility with a certain probability. For a task Ti,
this requirement is specified as {νi, ρi}, which implies that Ti must accrue at least
νi percentage of its maximum possible utility with the probability ρi. This is also the
requirement of each job of Ti. Thus, for example, if {νi, ρi} = {0.7, 0.93}, then Ti

must accrue at least 70% of its maximum possible utility with a probability no less than
93%. For step TUFs, ν can only take the value 0 or 1.

This statistical timeliness requirement on the utility of a task implies a correspond-
ing requirement on the range of task sojourn times. Since we focus on non-increasing
unimodal TUFs, upper-bounding task sojourn times will lower-bound task utilities.

2.4 Scheduling Objective

We consider a two-fold scheduling criterion: (1) assure that each task Ti accrues the
specified percentage νi of its maximum possible utility with at least the specified prob-
ability ρi; and (2) maximize the system-level total attained utility. We also desire to
obtain a lower bound on the system-level total attained utility. Also, when it is not pos-
sible to satisfy ρi for each task (e.g., due to overloads), our objective is to maximize the
system-level total utility.

This problem isNP-hard because it subsumes theNP-hard problem of scheduling
dependent tasks with step TUFs on one processor [5].

3 The gMUA Algorithm

3.1 Bounding Accrued Utility

Let si,j be the sojourn time of the jth job of task Ti, where the sojourn time is defined as
the period from the job’s release to its completion. Now, task Ti’s statistical timeliness
requirement can be represented as Pr(Ui(si,j) ≥ νi × Umax

i) ≥ ρi. Since TUFs are
assumed to be non-increasing, it is sufficient to have Pr(si,j ≤ Di) ≥ ρi, where Di is
the upper bound on the sojourn time of task Ti. We call Di “critical time” hereafter, and
it is calculated as Di = U−1

i (νi×Umax
i), where U−1

i (x) denotes the inverse function of
TUF Ui(). Thus, Ti is (probabilistically) assured to accrue at least the utility percentage
νi = Ui(Di)/Umax

i , with the probability ρi.
Note that the period or minimum inter-arrival time Pi and the critical time Di of the

task Ti have the following relationships: (1) Pi = Di for a binary-valued, downward
step TUF; and (2) Pi ≥ Di, for other non-increasing TUFs.

3.2 Bounding Utility Accrual Probability

Since task execution time demands are stochastically specified, we need to determine
the actual execution time that must be allocated to each task, such that the desired utility
accrual probability ρi is satisfied. Further, this execution time allocation must account
for the uncertainty in the execution time demand specification (i.e., the variance factor).

Given the mean and the variance of a task Ti’s execution time demand Yi, by a
one-tailed version of the Chebyshev’s inequality, when y ≥ E(Yi), we have:

Pr[Yi < y] ≥ (y − E(Yi))2

V ar(Yi) + (y − E(Yi))2
(1)

From a probabilistic point of view, Equation 1 is the direct result of the cumulative
distribution function of task Ti’s execution time demands—i.e., Fi(y) = Pr[Yi ≤ y].
Recall that each job of task Ti must accrue νi percentage of its maximum utility with a
probability ρi. To satisfy this requirement, we let ρ′i = (Ci−E(Yi))

2

V ar(Yi)+(Ci−E(Yi))2
≥ ρi and

obtain the minimum required execution time Ci = E(Yi) +
√

ρ′
i
×V ar(Yi)

1−ρ′
i

.
Thus, gMUA allocates Ci execution time units to each job Ji,j , so that the prob-

ability that Ji,j requires no more than the allocated Ci time units is at least ρi—i.e.,
Pr[Yi < Ci] ≥ ρ′i ≥ ρi. We set ρ′i = (max {ρi}) 1

n , ∀i to satisfy requirements. Sup-
posing that each task is allocated Ci time within its Pi, the actual demand of each task
often vary. Some jobs of the task may complete its execution before using up its allo-
cated time and the others may not. gMUA probabilistically schedules the jobs of a task
Ti to provide assurance ρ′i (≥ ρi) as long as they satisfy a certain schedulability test.

3.3 Algorithm Description

gMUA’s scheduling events include job arrival and job completion. To describe gMUA,
we define the following variables and auxiliary functions:
• ζr: current job set in the system including running jobs and unscheduled jobs.
• σtmp, σa: a temporary schedule; σm: schedule for processor m, where m ≤ M .
• Jk.C(t): Jk’s remaining allocated execution time.
• offlineComputing() is computed at time t = 0 once. For a task Ti, it computes

Ci as Ci = E(Yi) +
√

ρi×V ar(Yi)
1−ρi

.
• UpdateRAET(ζr) updates the remaining allocated execution time of all jobs in the

set ζr.
• feasible(σ) returns a boolean value denoting schedule σ’s feasibility; feasible(Jk)

denotes job Jk’s feasibility. For σ (or Jk) to be feasible, the predicted completion time
of each job in σ (or Jk), must not exceed its critical time.
• sortByECF(σ) sorts jobs of σ in the order of earliest critical time first.
• findProcessor() returns the ID of the processor on which the currently assigned

tasks have the shortest sum of allocated execution times.
• append(Jk,σ) appends job Jk at rear of schedule σ.
• remove(Jk,σ) removes job Jk from schedule σ.
• removeLeastPUDJob(σ) removes job with the least potential utility density (or

PUD) from schedule σ. PUD is the ratio of the expected job utility (obtained when
job is immediately executed to completion) to the remaining job allocated execution
time, i.e., PUD of a job Jk is Uk(t+Jk.C(t))

Jk.C(t) . Thus, PUD measures the job’s “return on
investment.” Function returns the removed job.
• headOf(σm) returns the set of jobs that are at the head of schedule σm, 1 ≤ m ≤
M .

Algorithm 1: gMUA
Input : T={T1,...,Tn}, ζr={J1,...,JN}, M:# of processors1
Output: array of dispatched jobs to processor p, Jobp2
Data: {σ1, ..., σM}, σtmp, σa3

offlineComputing(T);4
Initialization: {σ1, ..., σM} = {0, ..., 0};5
UpdateRAET(ζr);6
for ∀Jk ∈ ζr do7

Jk.PUD = Uk(t+Jk.C(t))
Jk.C(t)

;8

σtmp = sortByECF(ζr);9
for ∀Jk ∈ σtmp from head to tail do10

if Jk.PUD > 0 then11
m = findProcessor();12
append(Jk, σm);13

for m = 1 to M do14
σa = null;15
while !feasible(σm) and !IsEmpty(σm) do16

t = removeleastPUD(σm);17
append(t, σa);18

sortByECF(σa);19
σm += σa;20

{Job1, ..., JobM} = headOf({σ1, ..., σM});21
return {Job1, ..., JobM};22

A description of gMUA at a high level of abstraction is shown in Algorithm 1. The
procedure offlineComputing() is included in line 4, although it is executed only
once at t = 0. When gMUA is invoked, it updates the remaining allocated execution
time of each job, which is decreasing for running jobs and a constant for unscheduled
jobs. The job PUDs are then computed.

The jobs are then sorted in the order of earliest critical time first (or ECF), in line 9.
In each step of the for loop from line 10 to line 13, the job with the earliest critical time
is selected to be assigned to a processor. The processor that yields the shortest sum of
allocated execution times of all jobs in its local schedule is selected for assignment (pro-
cedure findProcessor()). The rationale for this choice is that the shortest summed
execution time processor results in the nearest scheduling event for completing a job af-
ter assigning each job. Then, the job Jk with the earliest critical time is inserted into the
local schedule σm of the selected processor m.

In the for-loop from line 14 to line 20, gMUA attempts to make each local schedule
feasible by removing the lowest PUD job. In line 16, if σm is not feasible, then gMUA
removes the job with the least PUD from σm until σm becomes feasible. All removed
jobs are temporarily stored in a schedule σa and then appended to each σm in ECF
order. Note that simply aborting the removed jobs may result in decreased accrued
utility. This is because, the algorithm may decide to remove a job which is estimated to

have a longer allocated execution time than its actual one, even though it may be able to
accrue utility. For this case, gMUA gives the job another chance to be scheduled instead
of aborting it, which eventually makes the algorithm more robust. Finally, each job at
the head of σm, 1 ≤ m ≤ M is selected for execution on the respective processor.

4 Algorithm Properties

4.1 Timeliness Assurances

We establish gMUA’s timeliness assurances under the conditions of (1) independent
tasks that arrive periodically, and (2) task utilization demand satisfies any of the schedu-
lable utilization bounds for global EDF (GFB, BAK, BCL) in [4].

Theorem 1 Suppose that only step shaped TUFs are allowed under conditions (1) and
(2). Then, a schedule produced by global EDF is also produced by gMUA, yielding
equal total utilities. This is a critical time-ordered schedule.

Proof. We prove this by examining Algorithm 1. In line 9, the queue σtmp is sorted in
a non-decreasing critical time order. In line 12, the function findProcessor() re-
turns the index of the processor on which the summed execution time of assigned tasks
is the shortest among all processors. Assume that there are n tasks in the current ready
queue. We consider two cases: (1) n ≤ M and (2) n > M . When n ≤ M , the result
is trivial — gMUA’s schedule of tasks on each processor is identical to that produced
by EDF (every processor has a single task or none assigned). When n > M , task Ti

(M < i ≤ n) will be assigned to the processor whose tasks have the shortest summed
execution time. This implies that this processor will have the earliest completion for all
assigned tasks up to Ti−1, so that the event that will assign Ti will occur by this com-
pletion. Note that tasks in σtmp are selected to be assigned to processors according to
ECF. This is precisely the global EDF schedule, since gMUA’s critical times correspond
to EDF’s deadlines. Under conditions (1) and (2), EDF meets all deadlines. Thus, each
processor always has a feasible schedule, and the if-block from line 16 to line 18 will
never be executed. Thus, gMUA produces the same schedule as global EDF.

Some important corollaries about gMUA’s timeliness behavior can be deduced from
EDF’s behavior under conditions (1) and (2).

Corollary 2 Under conditions (1) and (2), gMUA always completes the allocated exe-
cution time of all tasks before their critical times.

Theorem 3 Under conditions (1) and (2), gMUA meets the statistical timeliness re-
quirement {νi, ρi} for each task Ti.

Proof. From Corollary 2, all allocated execution times of tasks can be completed before
their critical times. Further, based on the results of Equation 1, among the actual pro-
cessor time of task Ti’s jobs, at least ρi of them have lesser actual execution time than
the allocated execution time. Thus, gMUA can satisfy at least ρi critical times—i.e., the
algorithm accrues νi utility with a probability of at least ρi.

Theorem 4 Under conditions (1) and (2), if a task Ti’s TUF has the highest height
Umax

i , then the system-level utility ratio, defined as the utility accrued by gMUA with re-
spect to the system’s maximum possible utility, is at least ρ1ν1Umax

1 /P1+...+ρnνnUmax
n /Pn

Umax
1 /P1+...+Umax

n /Pn
.

Proof. We denote the number of jobs released by task Ti as mi. Each mi is computed
as ∆t

Pi
, where ∆t is a time interval. Task Ti can accrue at least νi percentage of its maxi-

mum possible utility with the probability ρi. Thus, the ratio of the system-level accrued
utility to the system’s maximum possible utility is ρ1ν1Umax

1 m1+...+ρnνnUmax
n mn

Umax
1 m1+...+Umax

n mn
. Thus,

the formula comes to ρ1ν1Umax
1 /P1+...+ρnνnUmax

n /Pn

Umax
1 /P1+...+Umax

n /Pn
.

4.2 Dhall Effect

The Dhall effect [9] shows that there exists a task set that requires nearly 1 total utiliza-
tion demand, but cannot be scheduled to meet all deadlines under global EDF and RM
even with infinite number of processors. Prior research has revealed that this is caused
by the poor performance of global EDF and RM when the task set contains both high
utilization tasks and low utilization tasks together. This phenomena, in general, can also
affect UA scheduling algorithms’ performance, and counter such algorithms’ ability to
maximize the total attained utility. We discuss this with an example inspired from [15].
We consider the case when the execution time demands of all tasks are constant with
no variance, and gMUAi estimates them accurately.

Example A. Consider M + 1 periodic tasks that are scheduled on M processors
under global EDF. Let task τi, where 1 ≤ i ≤ M , have Pi = Di = 1, Ci = 2ε, and task
τM+1 have PM+1 = DM+1 = 1+ε, CM+1 = 1. We assume that each task τi has a step
shaped TUF with height hi and task τM+1 has a step shaped TUF with height HM+1.
When all tasks arrive at the same time, tasks τi will execute immediately and complete
their execution 2ε time units later. Task τM+1 then executes from time 2ε to time 1+2ε.
Since task τM+1’s critical time — we assume here it is the same as its period — is 1+ε,
it begins to miss its critical time. When M → ∞, ε → 0, hi → 0 and HM+1 → ∞,
we have a task set, whose total utilization demand is near 1 and the maximum possible
total attained utility is infinite, but that finally accrues zero total utility even with infinite
number of processors. We call this phenomena as the UA Dhall effect. Conclusively, one
of the reasons why global EDF is inappropriate as a UA scheduler is that it is prone to
suffer this effect. However, gMUA overcomes this phenomena.

Example B. Consider the same scenario as in Example A, but now, let the task
set be scheduled by gMUA. In Algorithm 1, gMUA first tries to schedule tasks like
global EDF, but it will fail to do so as we saw in Example A. When gMUA finds that
τM+1 will miss its critical time on processor m (where 1 ≤ m ≤ M), the algorithm
will select a task with lower PUD on processor m for removal. On processor m, there
should be two tasks, τm and τM+1. τm is one of τi where 1 ≤ i ≤ M . When hi → 0
and HM+1 →∞, τm’s PUD is almost zero and that of task τM+1 is infinite. Therefore,
gMUA removes τm and eventually accrues infinite utility as expected.

Under the case when Dhall effect occurs, we can establish UA Dhall effect by assign-
ing extremely high utility to the task that will be removed by global EDF. In this sense,
UA Dhall effect is a special case of the Dhall effect. It also implies that the scheduling

algorithm suffering from Dhall effect will likely suffer from UA Dhall effect, when it
schedules the tasks that are subject to TUF time constraints.

The fact that gMUA is more robust against UA Dhall effect than global EDF can be
observed in our simulation experiments (see Section 5).

4.3 Sensitivity of Assurances

gMUA is designed under the assumption that task expected execution time demands
and the variances on the demands — i.e., the algorithm inputs E(Yi) and V ar(Yi) – are
correct. However, it is possible that these inputs may have been miscalculated (e.g., due
to errors in application profiling) or that the input values may change over time (e.g.,
due to changes in application’s execution context). To understand gMUA’s behavior
when this happens, we assume that the expected execution time demands, E(Yi)’s, and
their variances, V ar(Yi)’s, are erroneous, and develop the sufficient condition under
which the algorithm is still able to meet {νi, ρi} for all tasks Ti.

Theorem 5 Let gMUA satisfies {νi, ρi}, ∀i, under correct E(Yi)’s and their correct
V ar(Yi)’s. When incorrect expected values, E′(Yi)’s, and variances, V ar′(Yi)’s, are

given as inputs, gMUA satisfies {νi, ρi}, ∀i, if E′(Yi) + (Ci − E(Yi))
√

V ar′(Yi)
V ar(Yi)

≥
Ci, ∀i, and the task execution time allocations, computed using E′(Yi)’s and V ar′(Yi),
satisfy any of the schedulable utilization bounds for global EDF.

Proof. We assume that if gMUA has correct E(Yi)’s and V ar(Yi)’s as inputs, then it
satisfies {νi, ρi},∀i. This implies that the Ci’s determined by Equation 1 are feasibly
scheduled by gMUA satisfying all task critical times:

ρi =
(Ci − E(Yi))2

V ar(Yi) + (Ci − E(Yi))2
. (2)

However, gMUA has incorrect inputs, E′(Yi)’s and V ar′(Yi), and based on those, it
determines C ′is by Equation 1 to obtain the probability ρi, ∀i:

ρi =
(C ′i − E′(Yi))2

V ar′(Yi) + (C ′i − E′(Yi))2
. (3)

Unfortunately, C ′i that is calculated from the erroneous E′(Yi) and V ar′(Yi) leads
gMUA to another probability ρ′i by Equation 1. Thus, although we expect assurance
with the probability ρi, we can only obtain assurance with the probability ρ′i because of
the error. ρ′ is given by:

ρ′i =
(C ′i − E(Yi))2

V ar(Yi) + (C ′i − E(Yi))2
. (4)

Note that we also assume that tasks with C ′i satisfy the global EDF’s utilization bound;
otherwise gMUA cannot provide the assurances. To satisfy {νi, ρi}, ∀i, the actual prob-
ability ρ′i must be greater than the desired probability ρi. Since ρ′i ≥ ρi,

(C ′i − E(Yi))2

V ar(Yi) + (C ′i − E(Yi))2
≥ (Ci − E(Yi))2

V ar(Yi) + (Ci − E(Yi))2
.

Hence, C ′ ≥ Ci. From Equations 2 and 3,

C ′i = E′(Yi) + (Ci − E(Yi))

√
V ar′(Yi)
V ar(YI)

≥ Ci. (5)

5 Experimental Evaluation

Performance with Constant Demand. We consider an SMP machine with 4 proces-
sors. A task Ti’s period Pi(= Xi) and its expected execution time E(Yi) are ran-
domly generated in the range [1,30] and [1, α · Pi], respectively, where α is defined
as max{Ci

Pi
|i = 1, ..., n} and V ar(Yi) are zero. According to [10], EDF’s utilization

bound depends on α and the number of processors, which means that irrespective of the
number of processors, there exists task sets with total utilization demand (UD) close
to 1.0, which cannot be feasibly scheduled under EDF. Generally, the performance of
global schemes tends to decrease when α increases.

We consider two TUF shape patterns: (1) all tasks have step shaped TUFs, and (2)
a heterogeneous TUF class, including step, linearly decreasing and parabolic shapes.
Each TUF’s height is randomly generated in the range [1,100].

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

A
U

R
 (%

)

Utilization Demand (UD)

 gMUA (=0.4)
 gMUA (=0.7)
 gMUA (=1.0)
 EDF (=0.4)
 EDF (=0.7)
 EDF (=1.0)

(a) AUR

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

C
M

R
 (%

)

Utilization Demand (UD)

 gMUA (=0.4)
 gMUA (=0.7)
 gMUA (=1)
 EDF (=0.4)
 EDF (=0.7)
 EDF (=1)

(b) CMR

Fig. 2: Performance Under Constant Demand, Step TUFs

The number of tasks are determined depending on the given UD and the α value.
We vary the UD from 3 to 6.5, including the case where it exceeds the number of
processors. We set α to 0.4, 0.7, and 1. For each experiment, more than 1000,000 jobs
are released. To see the generic performance of gMUA, we assume {νi, ρi} = {0, 1}.

Figure 2 shows the AUR and CMR of gMUA and EDF, respectively, under increas-
ing UD (from 3.0 to 6.5) and for the three α values. AUR (accrued utility ratio) is the
ratio of total accrued utility to the total maximum utility, and CMR (critical time meet
ratio) is the ratio of the number of jobs meeting their critical times to the total number
of job releases. For a task with a step TUF, its AUR and CMR are identical. But the
system-level AUR and CMR can be different due to the mix of different utility of tasks.

When all tasks have step TUFs and the total UD satisfies the global EDF’s uti-
lization bound, gMUA performs exactly the same to EDF. This validates Theorem 1.

EDF’s performance drops sharply after UD = 4.0 (for step TUFs), which corresponds
to the number of processors in our experiments. This is due to EDF’s domino effect
that occurs when UD exceeds the number of processors. On the other hand, gMUA’s
performance gracefully degrades as UD increases and exceeds 4.0, since it selects as
many feasible, higher PUD tasks as possible.

Observe that EDF begins to miss deadlines much earlier than when UD = 4.0, as
indicated in [4]. Even when UD < 4.0, gMUA outperforms EDF in both AUR and
CMR. This is because, gMUA is likely to find a feasible or at least better schedule even
when EDF cannot find a feasible one, as discussed in Section 4.2.

We also observe that α affects EDF’s and gMUA’s AUR and CMR. Despite this,
gMUA outperforms EDF for the same α and UD for the reason that we describe above.

We observed similar and consistent trends for tasks with heterogeneous TUFs; these
are omitted here for brevity.

Performance with Statistical Demand. We now evaluate gMUA’s statistical timeli-
ness assurances. For each task Ti’s demand Yi, we generate normally distributed exe-
cution time demands. Task execution times are changed along with the total UD. We
consider both step and heterogeneous TUF shapes as before.

3 4 5 6 7 8 9

0

20

40

60

80

100

A
U

R
 (=

C
M

R
) (

%
)

Utilization Demand (UD)

 T1
 T2
 T3
 T4
 T5
 T6

(a) Task-level

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

A
U

R
 a

nd
 C

M
R

 (%
)

Utilization Demand (UD)

 AUR
 CMR

(b) System-level

Fig. 3: Performance Under Statistical Demand, Step TUFs

Figures 3(a) shows AUR and CMR of each task under increasing total UD of
gMUA. From the figure, we observe that all tasks under gMUA accrue 100% AUR and
CMR within the global EDF’s bound (i.e., UD<≈2.5 here), thus satisfying the desired
{νi, ρi} = {1, 0.96},∀i. This validates Theorem 3.

Under the condition beyond what Theorem 3 indicates, gMUA achieves graceful
performance degradation in both AUR and CMR in Figure 3(b), as the previous exper-
iment. In Figure 3(a), gMUA achieves 100% AUR and CMR for T1 over all range of
UD. This is because, T1 has a step TUF with higher height. Thus, gMUA favors T1

over others to obtain more utility when it cannot satisfy the critical time of all tasks.
According to Theorem 4, the system-level AUR must be at least 96%. (For each

task Ti, νi = 1, because all TUFs are step shaped.) We observe that AUR and CMR of
gMUA under the condition of Theorem 4 are above 99.0%. This validates Theorem 4.

A similar trend was observed for heterogeneous TUFs.

6 Conclusions and Future Work

We present a global UA scheduling algorithm for SMPs, called gMUA. The algorithm
considers tasks that are subject to TUF time constraints, variable execution time de-
mands, and resource overloads. We establish that gMUA achieves optimal total util-
ity (for a special case), probabilistically satisfies task utility lower bounds, and lower
bounds system-wide total accrued utility. We also show that gMUA’s utility lower bound
satisfactions have bounded sensitivity to variations in execution time demand estimates,
and that the algorithm is robust against a variant of the Dhall effect. Our simulation ex-
periments validate our analysis and confirm the algorithm’s effectiveness.

Examples directions for further research include relaxing the sporadic task arrival
model to allow a stronger adversary (e.g., the unimodal arbitrary arrival model) and
allowing greater task utilizations for satisfying utility lower bounds.

References
1. J. Anderson, V. Bud, and U. C. Devi. An edf-based scheduling algorithm for multiprocessor

soft real-time systems. In IEEE ECRTS, pages 199–208, July 2005.
2. T. P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In IEEE

RTSS, pages 120–129, Dec. 2003.
3. S. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel. Proportionate progress: A notion of

fairness in resource allocation. In Algorithmica, volume 15, page 600, 1996.
4. M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of edf on multi-

processor platforms. In IEEE ECRTS, pages 209– 218, 2005.
5. R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie Mellon

University, 1990.
6. R. K. Clark, E. D. Jensen, et al. An adaptive, distributed airborne tracking system. In IEEE

WPDRTS, April 1999.
7. R. K. Clark, E. D. Jensen, and N. F. Rouquette. Software organization to facilitate dynamic

processor scheduling. In IEEE WPDRTS, April 2004.
8. U. C. Devi and J. Anderson. Tardiness bounds for global edf scheduling on a multiprocessor.

In IEEE RTSS, 2005.
9. S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research,

26(1):127140, 1978.
10. J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic tasks systems on

multiprocessors. Real-Time Systems, 25(2-3):187–205, 2003.
11. P. Holman and J. H. Anderson. Adapting pfair scheduilng for symmetric multiprocessors. In

Journal of Embedded Computing, to appear.
12. E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model for real-time

systems. In IEEE RTSS, pages 112–122, December 1985.
13. D. P. Maynard et al. An example real-time command, control, and battle management appli-

cation for alpha. Technical report, CMU CS Dept., Dec. 1988. Archons Project TR 88121.
14. A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on multi-

processors. In IEEE ECRTS, pages 51–59, July 2003.
15. O. U. P. Zapata and P. M. Alvarez. Edf and rm multiprocessor scheduling algorithms:

Survey and performance evaluation. http://delta.cs.cinvestav.mx/˜pmejia/
multitechreport.pdf. Last accessed October 2005.

16. X. Zhang, Z. Wang, et al. System support for automated profiling and optimization. In ACM
SOSP, pages 15–26, October 1997.

