
A Fuzzy-based Service Adaptation Middleware for
Context-aware Computing1

Ronnie Cheung, Jiannong Cao, Gang Yao, Alvin Chan

Department of Computing, Hong Kong Polytechnic University
{csronnie, csjcao, csgyao, cstschan}@comp.polyu.edu.hk

Abstract. In a mobile environment, it is desirable for mobile applications to
adapt their behaviors to the changing context. However, adaptation mechanism
may emphasize more on overall system performance, while neglecting the needs
of individual. We present a generalized Adaptive Middleware Infrastructure
(AMI) to cater for individual needs in a fair manner, while maintaining optimal
system performance. Furthermore, due to the vagueness in context nature and
uncertainty in context aggregation for adaptation, we propose a Fuzzy-based
Service Adaptation Model (FSAM) to achieve generality and improve the
effectiveness of service adaptation. By fuzzification of the context and
measuring the fitness degree between the current context and the optimal
situation, FSAM adopts the most appropriate service. We have evaluated the
FSAM inference engine within the middleware AMI by an application Campus
Assistant. The performance is analyzed and compared with a conventional
threshold-based approach.

Keywords middleware infrastructure, fuzzy theory, context -aware, service
adaptation, mobile computing

1 Introduction

In a mobile environment, the variations and constraints of communication and
computing resources introduced by the dynamical nature of wireless transmission call
for adaptive context-aware applications that can adapt their behaviors to the context s.
In this paper, we present an Adaptive Middleware Infrastructure (AMI), which sits
between applications and the operating system [1] [[3]. The fairness among
applications and between the high-level applications and the low-level operating
system both are taken into account. AMI provides applications with the most suitable
service based on predefined policies so as to achieve adaptability to the changing
context. It consists of well-defined modules in support of middleware functionalities
to improve the generality.

The area of context -aware middleware has attracted many researchers [9]. In system
CARISMA [4], the context -aware middleware compares the application profile and
the current context to evaluate which policy to be adopted. In [5], the functionality of
a service code module is adapted on the basis of the estimation of resource usage.
However, these systems are problem-specific or focus on software realization while
AMI emphasizes a generic reference infrastructure.

1 This project is supported by RGC research grants under Project Ref. No. PolyU 5200/04E and
also partially supported by Hong Kong Polytechnic University under the ICRG grant G-YD63.

The effectiveness of service adaptation to the current context is a another challenge
in context -aware computing, due to the vagueness of the context nature from the
perspective of human, and the uncertainty in context aggregation when making
adaptation decision under the circumstance of multi-dimensional context. Introducing
fuzzy techniques is one of promising approaches to deal with these problems .

We formalize a context -aware service adaptation framework and propose a Fuzzy-
based Service Adaptation Model (FSAM) [2]. We employ the linguistic variables and
membership degrees to carry out the fuzzification of the context situation, so that the
vagueness of context can be quantified. The fitness function is developed to produce
an overall fitness degree of the current context, corresponding to each predefined
policy, in order to adopt the most suitable one for service selection and delivery. The
fitness degree is obtained by measuring the distances between the current context and
the predefined reference context situation.

Much research has been done on fuzzy-based adaptation. In [6], the authors offer a
survey on applying fuzzy theory to adapting QoS requirements in communication
networks. In [7], the fuzzy control theory is used for QoS adaptation in distributed
multimedia applications. Again, the approaches are usually developed for a specific
domain and not targeted at a generic service adaptation model, while FASM deals
with application-independent service adaptation.

We implement the AMI along with the FSAM as the inference engine in the
Campus Assistant application. The application offers different quality level of chat
and email services adaptive to continuously-varying context. The variations of context
are simulated to trigger service adaptation. Based on the experiment results, the
performance of the fuzzy-based solution is analyzed and compared with the
conventional threshold-based context aggregation approach for context -aware
adaptation.

2 Adaptive Middleware Infrastructure (AMI)

The Adaptive Middleware Infrastructure (AMI), which allows generic applications to
exercise context -awareness [1] [3], aims at the integration of all relevant features and
the synergy achieved by a well-established and unified baseline architecture in order
to promote the development of context -aware computing.

All the relevant features that AMI integrates include context collection, context
composition, context reference engine, context delivery, adaptive middleware services,
ToS and QoS enforcement, etc. As shown in Figure 1, the features are embodied in
the four major modules in our system:

The first module is the Context Space. It contains Context Detectors, Context
Composers and Fuzzy Context Composers that detect and compose low-level contexts
into higher level representations. Examples of context detectors could be the wrappers
for OS event, an application’s computing activities. The fuzzy context composers
composite low-level context information, marshalling the dynamic and uncertainty of
the environment, and presents the current context in a generic form. For example, a
fuzzy context composer could be monitoring all network-related detectors and
determine the quality of network connection with the membership degree.

The second module is the Middleware Service Space. This is the execution
environment for both Public Middleware Services (one set of services that are shared

Fig. 1. Adaptive Middleware Infrastructure

among all applications) and Application Specific Middleware Services (each mobile
application has its own set of services). These adaptive middleware services are
provided to individual applications under the control of the Fuzzy Inference engine.

The third module is the Fuzzy Inference Engine, which determines the middleware
services according to the current context and the requirement of application-specific
ToS and QoS. In order to control the middleware services, the fuzzy inference engine
is aware of the programmable properties of the middleware service. To adjust
quantitative parameters for the middleware services, the fuzzy inference engine calls
the corresponding adjustment functions. To switch among the middleware services,
the inference engine stops exporting certain services while activate others.

The fourth module is the Middleware Manager Space. The middleware manager
space contains five system managers, which coordinates all management operations
within the AMI. The Administration Control Manager component manages the
admission of mobile applications that subscribe the services of the middleware. The
Context Manager controls the runtime environment for the context objects, including
the low level context detectors and high level context composers. The Context
Repository Manager stores the records on all contextual information, such that queries
on context history are possible. The Middleware Service Manager coordinates with
admission control. It also allocates and controls the resources for newly subscribed
services. The ToS and QoS Enforcer are used for monitoring the ToS and QoS levels
for each connected application.

3 Fuzzy-based Service Adaptation Model (FSAM)

The core component of the AMI is the fuzzy inference engine, which determines
service adaptation according to the context derived from the context space. We have
developed the Fuzzy-based Service Adaptation Model (FSAM) as the inference
engine [2]. FSAM takes the context information and other policy definitions as the
input. The output of FSAM is the adaptation decision, which will be used by the
middleware service manger to reconfigure services. In this section, first we define the
concepts and terminology used in FSAM. Then we introduce the fitness function base

on the definitions. Finally, the procedure of decision-making in FSAM is illustrated
using the following formulas:

Service: A service is a functionality provided in the application. The service can be
delivered at different quality level or with different resource constraints. Let S= {s1, s2,

s3,,… , sq} (1≤q), represent the service set, where si (1≤ i≤ q) represents the i-th service.

Policy: A policy is a rule which determines which quality level of service to be
delivered based on the context . Let Pi={pi

1, pi
2,… , pi

mi | i∈ [1, q]} be a set of policies,
where pi

j (1≤ j≤m) represents the j-th policy corresponding to the i-th service si. mi is
the number of the policy corresponding to si.

Context: A context is one of conditions to determine a policy for service selection. Let
C={c1, c2,… , cn} be a set of context, where ci (1≤ i≤ n) represents the i-th context
information, n is the number of all context.

Context Situation: A Context Situation is the composite context information to
represent the context at any given time t. It is denoted by a set of 3-element tuples:

SI(t) = {(ci, lvb,
bi lvcµ (value_of(ci, t)) | ci ∈ C, i∈[1,n], b∈[1,k]} (1)

where, ci(1≤ i≤ n) is a context, lvb(1≤b≤k) is a linguistic value,
bi lvcµ (x)∈[0,1] is the

predefined memb ership function for “ci is lvb”, value_of(ci,t) represents the value of
context ci at time t.

Standard Reference Depositary: Given a service si, with respect to each policy pi
j (1≤

j≤m), we assume that there must exist a specific Context Situation associated with pi
j.

On the basis of the Context Situation, the policy pi
j is the most suitable policy for

service si and has to be adopted. Intrinsically, the most suitable policy means a
tradeoff between resource constraints in certain context and the service to be
delivered. A most suitable Context Situation is referred to Standard Reference
Context Situation. We call the aggregation of {SR(pi

1), SR(pi
2), … , SR(pi

mi)}, pi
j ∈

Pi, as the Standard Reference Depositary of Pi and denote it by SRD(Pi).

SR(pi
j) = {(ci,, lvb, bi lvcµ (best_value_of(ci)) | ci∈C, i∈[1,n], lvb∈LV,b∈[1,k]} (2)

Fitness Function: In practice, a Context Situation at time t usually is at certain
distance away from any SR(pi

j), so we define the Fitness Function to evaluate the
Fitness Degree of the Context Situation at time t against Standard Reference Context
Situation SR(pi

j). Given a service si, the Fitness Function is the mapping from the
Context Situation at time t and Standard Reference Context Situation SR(pi

j) to the
Fitness Degree of policy p i

j
 : (FF): SI(t)*SR(pi

j)→ FD(pi
j),

FF(SI(t), SR(pi
j)) =

∑
=

−
))((_

1

)),(_())(__(

1
j

i
i

pSRofsize

i

l

ii tcofvaluecofvaluebest µµ

 (3)

where size_of(SR(pi
j)) represents the number of tuples in SR(p i

j), µ(x) is the
membership function appears in i-th vector, li is a natural number.

In function (3), the denominators are for the calculation of the distance between
SI(t) and SP(pi

j). After obtaining the fuzzy distance, we calculate the reciprocal to

obtain the Fitness Degree. When li=1, the function uses Hamming Distance; when
li=2, the function uses Euclidean Distance, both are classical methods for calculating
fuzzy distance between two statuses [8]. When li=3, we regard li as a weight value for
a context, which can be adjusted by individual application to affect policy choice.

4 Implementation and Evaluation

In this section, we implement the FSAM model as the contextual inference engine
within the AMI in a hypothetic application Campus Assistant.

4.1 Application Campus Assistant

The Campus Assistant is a mobile context -aware application running on mobile
platforms . Through the wireless network, the Campus Assistant enables the user to
communicate with each other in real time, or retrieve and send emails by offering
Chat and Email services. Due to the spatial and temporal variations of wireless
communication and computing resources, the Campus Assistant tries to detect the
changing context and deliver the different quality level of service, in order to ma intain
an acceptable level of perception when the resources available become inadequate.

Such adaptation is predefined by certain rules, i.e. policies in the system. The Chat
service has three policies: text Chat, voiceChat and videoChat. The Email service has
five policies: headMail, fullMail, encryptedMail, bigMail and encryptedBigMail.
Each policy is corresponding to a certain quality level of service. The context can
have many aspects due to the multidimensional characteristics, including
communication, computing, geographical, organizational, etc. To simplify the context
analysis , only Network_maxRate, CPU_clockRate, Network_delay, RAM_freeSpace
are taken in account in our case. The characteristics of vagueness and subjectivity in
context are handled by the aforementioned fuzzy-based inference engine FSAM.

4.2 FSAM Configuration and Procedures

Corresponding to FSAM theoretic framework, we assume that the inference engine
with the following configurations in the application.

Service: S = {chat, email}, i.e. S1=chat and S2= email

Policies: P1 = {text Chat, voiceChat, videoChat},
 P2 = {headMail, fullMail, encryptedMail, bigMail, encryptedBigMail}

Context: C={Network_maxRate,CPU_clockRate,Network_delay,RAM_freeSpace}

Context Situation: 4-ele ment tuples

SI(t)={(Network_maxRate, high, µNetwork_maxRate high (value_of(Network_maxRate, t))),
 (CPU_clockRate, high, µCPU_clockRate high (value_of (CPU_clockRate, t))),
 (Network_delay, low, µNetwork_delay low (value_of (Network_delay, t))),
 (RAM_freeSpace, high, µRAM_freeSpace high (value_of (RAM_freeSpace, t)))}

Membership Functions: context ci (i=1,2,3,4), application-specific and produced from
releated domains

 0 B＜1Kbps

C1=
5

1k
B log 10

 1k≤B≤100Mbps (4)

 1 B＞100Mbps
Fig. 2. Network_maxRate high

membership function

 0 T＞1000ms

C3=
4

1.0 log
1

10T
− 0.1≤T≤1000ms (5)

 1 T＜0.1ms

Fig. 3. Network_delay low
membership function

 0 F＜2MHz

C2=
3

2 log 10 M
F

 2M≤F≤2GHz (6)

 1 F＞2GHz

Fig. 4. CPU_clockRate high
membership function

 0 R＜50KB

C4=
4

50 log 10 k
R

 50k≤R≤500MB (7)

 1 R＞500MB

Fig. 5. RAM_freeSpace high
membership function

Standard Reference Context Situation: As in Table 1, the most suitable values of
context corresponding to each policy is predefined.

Table 1. Standard Reference Context Situation

 Network_max
Rate(kbps)

CPU_clock
Rate(MHz)

Network_
delay(ms)

RAM_free
Space(KB)

 text Chat (p1
1) 4 20 500 0.2

 voiceChat (p1
2) 200 300 10 4

 videoChat (p1
3) 10000 1000 0.2 200

 headMail (p2
1) 2 4 n/a 0.2

 fullMail (p2
2) 10 10 n/a 0.4

 encryptedMail (p2
3) 10 100 n/a 10

 bigMail (p2
4) 500 50 n/a 2

encryptedBigMail (p2
5) 500 1000 n/a 100

Standard Reference Depository: Based on Table 1 and membership functions, the
SRD(P1’) and SRD(P2’) are determined as in Table 2.

Table 2. SRD(P’1)and SRD(P’2)

 Network_max
Rate High

CPU_clock
Rate High

Network_
delay Low

RAM_free
Space High

SR(p1
1) 0.12 0.33 0.08 0.15

SR(p1
2) 0.46 0.72 0.50 0.48 SRD(P’1)

SR(p1
3) 0.80 0.90 0.92 0.90

SR(p2
1) 0.06 0.10 n/a 0.15

SR(p2
2) 0.20 0.23 n/a 0.23

SR(p2
3) 0.20 0.57 n/a 0.58

SR(p2
4) 0.54 0.47 n/a 0.40

SRD(P’2)

SR(p2
5) 0.54 0.90 n/a 0.83

With the configuration, we initiate the reasoning and decision-making procedures in
FSAM. First we use the membership functions to map the current context into the
Context Situation. Then, by substiting the values of the current context SRD(P1) and
SRD(P2) into the Fitness Function formula (3) to compute the fitness degrees . E.g.

FF(SI(t),SR(P1
1)=1 / ((0.12- high xRateNetwork_maµ (value_of(Network_maxRate, t)) 3

 + (0.33 - high ateCPU_clockRµ (value_of(CPU_clockRate, t)) 3

 + (0.8- lowlay Network_deµ (value_of(Network_delay, t)) 3

 + (0.15- low aceRAM_freeSpµ (value_of(RAM_freeSpace, t)) 3)

Finally, regarding each service, the policy Psuitable which has the maximum fitness
degree will be the most suitable one to be adopted. For chat service:Psuitable=Max
{FF(SI(t), SR(P1

1)), FF(SI(t), SR(P1
2)), FF(SI(t), SR(P1

3))}; For email service: Psuitable=Max
{FF(SI(t), SR(P2

1)), FF(SI(t),SR(P2
2)), FF(SI(t),SR(P2

3)), FF(SI(t),SR(P2
4)), FF(SI(t),SR(P2

5))

4.3 Evaluation

We simulate the variations of the changing context by means of generating multiple
sets of 4-element tuples (Network_maxRate, CPU_clockRate, Network_delay,
RAM_freeSpace). The 4-element tuples are fed into the FASM inference engine in a
time-series manner. Since the network bandwidth and network delay play a
significant role in affectomg the performance of applications hosted in a mobile
device, we produce two segments of changing network bandwidth and delays to
simulate the varying of wireless communication to trigger the adaptation in a severely
fluctuating manner. As in Figure 6 and Figure 7, 160 sets of tuples are generated.

 For the purpose of evaluation, a conventional threshold-based context aggregation
and service adaptation approach is also implemented in the Campus Assistant
application as the inference engine. Similar to the VDS system by Cristian Koliver et
al in [6], a formula of QoS parameter aggregation is offered and addressed. Since the
QoS parameters constitute a subset of context, so we apply the formula to the field of
context -aware service adaptation.

0 50 100 150
0

500

1000

1500

2000

Time

N
et
w

or
k_

_m
ax

R
at
e(

K
bp

s)

Variation of Network Bandwidth

0 50 100 150
9

9.5

10

10.5

11

Time

C
P
U

__
clo

ck
R

at
e(

M
H

z)

Variation of CPU rate

0 50 100 150
0

50

100

150

Time

N
et
w

or
k_

_d
el
ay

(m
s)

Variation of Network Delay

0 50 100 150
0

200

400

600

Time

R
A
M

__
fre

eS
pa

ce
(K

B
)

Variation of Memory Available

bandwidth cpu

delay memory

Fig. 6. Variation of context s

A service adaptation mode M is defined by the formula: M = (f1 w 1 + f2 w2 +… + fi
wi), where fi denotes the adaptation factor of each context . wi represents the weight for
each context , where i={1,2,3,4}, and is employed to adjust the influence on adaptation
of each context . It alleviates the compensation between different context s as well.
According to the predefined association between mode M and policy, the right policy
will be adopted to deliver the suitable service based on the context at a given time t.
When mapping context ci to its adaptation factor: fi,=si ci, where ci ∈Ci , i={1,2,3,4} si

is the scaling factor to scale fi, to a normalized range. Ci = [min, max] determines a
valid range for each context, where min is the lower bound and max is the upper
bound. If the context is beyond the range of Ci, it will be rejected and ignored. In our
implementation, the specific values are congfigured as follows:

Context: ci={Network_maxRate,CPU_clockRate,Network_delay,RAM_freeSpace}
Weight: wi =1, to match the FSAM setting; Scaling Factor: si =1;
Adaptation Factor: fi=ci, where i={1,2,3,4};
For chat service: M=c1/c3+c2+c4, since the context Network_maxRate and
Network_delay are relevant; For email service: M=c1 +c2 +c4 , since each context are
independent; For either chat or email service, the thresholds are heuristic and
produced in the following Table 3 and Table 4. Similar to the fuzzy-based FASM, the
threshold-based inference engine produces the adaptation mode M. The policy
corresponding to M will be adopted as the current adaptation strategy.

Table 3. Thresholds of adaptation mode
for Chat service

Chat Policies M
text Chat(p1

1) [min, 53.2)

voiceChat(p1
2) [53.2, 926)

videoChat(p1
3) [926, max)

Table 4. Thresholds of adaptation mode
for Email service

Email Policies M
headMail (p2

1) [min, 15.2)
fullMail (p2

2) [15.2, 38)
encryptedMail (p2

3) [38, 98)
bigMail (p2

4) [98, 496)
encryptedBigMail(p2

5) [496, max)

Based on the inputs, the FASM fuzzy engine and the conventional threshold-based
approach respectively produce outputs to control the service adaptation. The outputs
are recorded and compared as in Figure 7 and Figure 8. We observe that the
fluctuations caused by the variations of context are filtered by the fuzzy inference
engine FASM for both Chat service and Email service.

0 20 40 60 80 100 120 140 160

textChat

voiceChat

videoChat

Time

Service Adaptation with Fuzzy Control

0 20 40 60 80 100 120 140 160

textChat

voiceChat

videoChat

Time

Service Adaptation with Linear Control

Fig. 7. Chat service adaptation

0 20 40 60 80 100 120 140 160

headMail

fullMail

encryptedMail

bigMail

encryptedBigMail

Time

Ti
m

e

Service Adaptation with Linear Control

0 20 40 60 80 100 120 140 160

headMail

fullMail

encryptedMail

bigMail

encryptedBigMail

Time

Service Adaptation with Fuzzy Control

Fuzzy Control

Linear Control

Fig. 8. Email service adaptation

In contrast, the threshold-based inference engine appears to be transparent to the
variations. Particularly, regarding to the latter, in the situation of severely fluctuations
of context changing, the service adaptation becomes unstable and keep changing
accordingly. This phenomenon is called jitter and the jitters may lead to unbearable
deterioration of service quality no matter the policy adopted is suitable to the context
or not. From the perspective of microeconomics, it would not be difficult to observe
that the adaptation curves by FASM are relatively smoother than those by threshold-
based approach. This means the fuzzy-based solution has a better tolerance to the
variations of context , which leads to the improvement of effectiveness of the service
adaptation

As in Figure 9, it would not be difficult to conclude that the complexity of the
approach majorly depends on the membership functions defined in FASM according
to the procedures described earlier. Nevertheless, the membership functions are
application-specific and relevant to particular scenarios. In our implementation, the
computational cost of FASM inference engine and the conventional threshold-based
approach are calculated in terms of running time . Due to the limits of the timer
accuracy of the soft clock in the Windows operating system, we record the
computation time in the unit of 20 service adaptations rather than once. As in Figure
9, the conventional threshold-based approach occupies very low machine time
because of its linear characteristics. The computation time of the FASM engine
varies, but the maximum is below 150 milliseconds. This is acceptable for most
applications even in real-time scenarios.

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

i-th Context Set

C
om

pu
tin

g
tim

e
(m

s)

Computational Cost

Fuzzy control
Linear control

Fig 9. Computational cost

5 Conclusion and future work

In this paper, we introduce a generic middleware infrastructure AMI. A fuzzy-based
service adaptation model FSAM is developed as inference engine within AMI. We
formalize a framework by fuzzification of the context and measuring the fitness
degree of the current context . The policy with the maxium degree will be adopted. We
verify the effectiveness of FSAM compared to a conventional threshold-based
approach based on the simulation results.

Since the Context Repository module in AMI maintains a historic record of context,
the service adaptation can be not only reflective to the current context, but also be
adaptive to the predictable future context. We consider the context prediction as the
extension of the context -awareness in the time domain. The incorporation of context
prediction would efficiently increase the effectiveness and reduce the response time.

6 References

1. Ronnie Cheung, “An Adaptive Middleware Infrastructure for Mobile Computing”,
Proceedings of 14th WWW2005 Conference, pp. 996-997, ACM Press, 2005

2. Jiannong Cao, Na Xing, Alvin T.S Chan, Yulin Feng, Beihong Jin, “rvice Adaptation Using
Fuzzy Theory in Context -aware Mobile Computing Middleware”, Proceedings of the 11th
IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 496-501, 2005

3. Ronnie Cheung, “An Adaptive Middleware Infrastructure Incorporating Fuzzy Logic for
Mobile Computing”, in Proceedings of the International Conference on Next Generation
Web Services Practices, IEEE Computer Society Press, pp 449-451 Korea, 2005

4. Capra, L., Emmerich, W., Mascolo, C.,"CARISMA: context -aware reflective middleware
system for mobile applications", IEEE Transactions on Software Engineering, Volume: 29,
Issue: 10, pp.929 – 945, Oct . 2003

5. Vivien Wai-Man Kwan, Francis Chi-Moon Lau, Cho-Li Wang, "Functionality adaptation: a
context -aware service code adaptation for pervasive computing environments", Proceedings
of IEEE/WIC International Conference on Web Intelligence, pp.358 – 364, Oct. 2003

6. Cristian Koliver, Jean-Marie Farines, and Klara Nahrstedt, “QoS Adaptation Based on
Fuzzy Theory” Soft Computing for Communications, Springer-Verlag, pp. 245–267, 2004

7. Baochun Li, Nahrstedt, K.,"A control-based middleware framework for quality-of-service
adaptations" IEEE Journal on Selected Areas in Communications, Volume: 17, Issue: 9 pp.
1632 – 1650, Sept. 1999

8. Constantin A. “Fuzzy Logic and Neuro-Fuzzy Applications Explained”, Prentice Hall, 1995
9. Capra, L., “Mobile Computing Middleware for Context -Aware Applications” Proceedings of

the 24th International Conference on Software Engineering, pp.723 – 724, 19-25 May 2002

