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Abstract. In this paper, a general fault-tolerant framework adopting a more 
rigid fault model for VLIW data paths is proposed. The basic idea used to 
protect the data paths is that the execution result of each instruction is checked 
immediately and if errors are discovered, the instruction retry is performed at 
once to overcome the faults. An experimental architecture is developed and 
implemented in VHDL to analyze the impacts of our technique on hardware 
overhead and performance degradation. We also develop a comprehensive fault 
tolerance verification platform to facilitate the assessment of error coverage for 
the proposed mechanism. A paramount finding observed from the experiments 
is that our system is still extremely robust even in a very serious fault scenario. 
As a result, the proposed fault-tolerant VLIW core is quite suitable for the 
highly dependable real-time embedded applications.  

1  Introduction 

In recent years, VLIW processor has become a major architectural approach for 
high-performance embedded computing systems. Several notable examples of VLIW 
are Intel and HP IA-64 [1], TI TMS320C62x/67x DSP devices and Fujitsu FR500. As 
processor chips become more and more complicated, and contain a large number of 
transistors, the processors have a limited operational reliability due to the increased 
likelihood of faults or radiation-induced soft errors especially when the chip 
fabrication enters the deep submicron technology [2]. Also indicated specifically in 
[3], it is expected that the bit error rate in a processor will be about ten times higher 
than in a memory chip due to the higher complexity of the processor. And a processor 
may encounter a bit flip once every 10 hours. Thus, it is essential to employ the 
fault-tolerant techniques in the design of high-performance superscalar or VLIW 
processors to guarantee a high operational reliability in critical applications. Recently, 
the reliability issue in high-end processors is getting more and more attention [3-9].  

The previous researches in reliable microprocessor design are mainly based on the 
concept of time redundancy approach [3-9] that uses the instruction replication and 
recomputation to detect the errors by comparing the results of regular and duplicate 
instructions. The instruction replication, recomputation schedule and result 
comparison of regular and duplicate instructions can be accomplished either in 
software level − source code compilation phase to generate redundant code for fault 
detection [4], [7], [8] or in hardware level [3], [5], [6], [9]. In [7], [8], the authors 
adopted software techniques for detecting the errors in superscalar and VLIW 
processors respectively. The compiler-based software redundancy schemes have the 
advantage of no hardware modifications required, but the performance degradation 



and code growth increase significantly as pointed out in [3], [5]. The hardware 
redundancy approach requires extra hardware and architectural modification to 
manage the instruction replication, recomputation and comparison to detect the errors.  

The deficiencies in previous studies are summarized as follows. First, most of the 
studies in the literature focus only on the aspect of error detection and neglect the 
issue of error recovery; thereby, those designs are incomplete so that we have 
difficulty in investigating the effectiveness of the error detection scheme without 
considering the error recovery jointly. Second, they lack the precise evaluation of the 
hardware overhead caused by the incorporation of fault tolerance; therefore, it is hard 
to justify the soundness of the approaches. Thirdly, the performance degradation due 
to the error detection and error recovery is significant during program execution. 
Moreover, the performance analysis only takes the performance degradation resulting 
from the fault detection into account. They are short of the analysis of error recovery 
time demanded to overcome the transient faults. The error recovery time mainly 
depends on the error-detection latency, which can be calculated from the time of 
regular instruction execution to the time of duplicate instruction recomputation. 
Owing to variable latency, the analysis of latency effect on performance is quite 
involved, and therefore, it complicates the analysis of the impact of error recovery on 
performance. Further, the latency may be unacceptably long. If an error cannot be 
detected in a short time, it will increase the error recovery time as well as program 
execution time. Such a lengthy recovery may be detrimental to the real-time 
applications. Last but not least, the previous studies rarely perform the quantitative 
evaluation of error coverage and the probability of common-mode failures [10] for the 
systems in various fault environments. Thus, it is hard to validate the fault tolerance 
ability of the schemes due to lack of the measures of error coverage.  

 This work is going to address the issues stated above. In Section 2, a fault-tolerant 
approach concentrating on the dependable data path design of VLIW processors is 
proposed. The approach proposed is quite comprehensive in that it comprises the error 
detection and error recovery. Hardware architecture and the measurements of 
hardware overhead and performance degradation are presented in Section 3. In 
Section 4, a thorough error coverage analysis is conducted to validate our scheme. 
The conclusions appear in Section 5. 

2  Fault-Tolerant Data Path Design 

Two types of faults described below are addressed in the error detection and error 
recovery: 1. Correlated transient faults [11] (e.g., a burst of electromagnetic radiation) 
which could cause multiple module failures. 2. Near-coincident faults [12] – recovery 
can be affected by this kind of faults. It is evident that the adopted fault model in this 
study is more rigid and complete compared to the single-fault assumption commonly 
applied before. Besides the concern of the fault model, an important goal for the 
design of error-recovery process is to simplify its complexity and meanwhile achieve 
the time efficiency to recover the errors. Overall, the design concern here is to 
propose a fault-tolerant VLIW core for the highly dependable real-time embedded 
applications. However, we note that due to the more rigid fault model and severe fault 
situations considered, it requires developing a more powerful fault-tolerant scheme to 
raise the system reliability to a sound level. 



A VLIW processor core may possess several different types of functional modules 
in the data paths, such as integer ALU and load/store units. A couple of identical 
modules are provided for a specific functional type. We assume that the register file is 
protected by an error-correcting code. In the following, we present the main ideas 
employed in our scheme to detect and recover errors occurring in the data paths and 
then use three identical modules to demonstrate our fault-tolerant approach.  

2.1  Concurrent Error Detection and Real-Time Error Recovery 

We note that the length of error recovery time mainly depends on the error-detection 
latency. Hence, the error-detection scheme has a significant impact on the efficiency 
of the error recovery. Most of the previous studies may suffer the lengthy error 
recovery because the execution results of each instruction cannot be checked 
immediately. Therefore, to achieve the real-time error recovery, the execution results 
of each instruction must be examined immediately and if errors are found, the 
erroneous instruction is retried at once to overcome the errors. So, the error-detection 
problem can be formalized as how to verify the execution results instantly for each 
instruction, i.e. how to achieve no error-detection latency. We develop a simple 
concurrent error-detection (CED) scheme, which combines the duplication with 
comparison, henceforth referred to as comparison, and majority voting methodologies 
to solve the above error-detection problem. 
CED Scheme. The following notations are developed: 

 n : Number of identical modules for a specific functional type (we call it type x). 
n  is also the maximum number of instructions that can be executed concurrently 
in the modules of type x; 

 s : Number of spare modules added to the type x, s ≥ 0; 
 m : Number of instructions in an execution packet for type x, m ≤ n . 
An execution packet is defined as the instructions in the same packet can be 

executed in parallel. There are sn +  modules for type x. As we know, if 
snm +>× 2 then it is clear that the system won’t have the enough resources to check 

the instructions of an execution packet concurrently. Under the circumstances, the 
current execution packet needs to be partitioned into several packets that will be 
executed sequentially. Given an execution packet, there are three cases to consider: 
Case 1: snm +=× 2 . In this case, each instruction can be checked by the 
comparison scheme.  
Case 2: snm +<× 2 . We can divide the instructions into two groups: G(1) and 
G(2). There are 1m instructions and 2m  instructions in G(1) and G(2) respectively, 
where mmm =+ 21 , 0, 21 ≥mm . Each instruction in G(1) and G(2) can be examined 
by the triple modular redundancy (TMR) scheme and duplication with comparison, 
henceforth referred to as comparison, scheme respectively. It is worth noting that to 
deal with the correlated transient faults, which may cause the multiple module 
failures, the TMR scheme is enhanced to have the ability to detect the multiple 
module errors. The following equations and criterion are used to decide 1m and 2m . 
The equations are snmm +≤×+× 23 21 ; mmm =+ 21 ; 0, 21 ≥mm . There may have 
several solutions derived from the equations. Since TMR can tolerate and locate one 
faulty module compared to the comparison, the criterion employed is to choose a 
solution which has the maximal value of m1 among the feasible solutions. In other 



words, TMR has the benefit to avoid activating the procedure of error recovery while 
only one faulty module occurs. In contrast to TMR, comparison scheme needs to 
spend time for error recovery. The concern here is again the consideration of real-time 
applications.  
Case 3: snm +>× 2 . Due to limited resources, m instructions cannot be all 
checked at the same cycle by TMR and/or comparison schemes. Therefore, we need 
to partition m  instructions into several sequential execution packets such that the 
instructions in each packet can be examined concurrently. However, some extra 
cycles are required to guarantee that each instruction can be verified while it is 
executed. This implies that the performance of program execution will be degraded. 
The degree of performance degradation depends on the occurring frequency of the 
Case 3 during the program execution. The compromise between hardware overhead 
and performance degradation can be accomplished by choosing a proper s .  

In general, the performance degradation for program execution in our dependable 
VLIW processor stems mainly from two sources: first is the extra cycles demanded 
for detecting the errors; second is the time for error recovery in order to overcome the 
effect of errors in the system. The error-recovery scheme is presented next. 
Error-Recovery Scheme. Since each instruction is executed and verified at the same 
time, the instruction retry can be adopted to overcome the errors in an effective 
manner. When control unit of data paths receives the abnormal signals from the 
detection circuits, the procedure of error recovery will be activated immediately to 
recover the erroneous instructions. The following notations are used to explain the 
proposed error-recovery scheme: 

 mx(i): The ith  module of type x, where sni +≤≤1 ; 

 TMR(mx(i), mx(j), mx(k)): TMR using mx(i), mx(j), mx(k), where kji ≠≠ . In the 
following, the term of TMR(mx(i), mx(j), mx(k)) is abbreviated to TMR_x(i, j, k); 

 r_no: Number of retries permitted for an incorrect instruction, where 0_ >nor . 
During the error recovery, each erroneous instruction is retried individually with 

the TMR scheme. We allow performing r_no retries for an instruction to conquer the 
errors before declaring fail-safe. Since TMR scheme represented as TMR_x(i, j, k) is 
employed for the instruction retry, an issue arises as how to determine the (i, j, k) for 

each retry. As we know, there are ⎟⎟
⎠

⎞
⎜⎜
⎝
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sn  combinations of (i, j, k). Let S_TMR be a 

set that contains ⎟⎟
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⎝
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sn  combinations of TMR_x(i, j, k). Hence, S_TMR can be 

represented as {TMR_x(1, 2, 3), …, TMR_x(1, 2, sn + ), …, TMR_x(1, 1−+ sn , 
sn + ), TMR_x(2, 3, 4), …, TMR_x(2, 1−+ sn , sn + ), …, TMR_x( 2−+ sn , 

1−+ sn , sn + )}, where 3≥+ sn . It is clear that selecting the TMR_x(1, 2, 3) 
constantly for each retry, for example, is the simplest approach, which has the 
advantage of simple implementation but can only tolerate one faulty module during 
the recovery process. In contrast to that, selecting elements one by one based on the 
element sequence in S_TMR for the retries is the highly complicated approach. Such 
an approach suffers from the high implementation cost, but on the other hand it can 

tolerate 2−+ sn  faulty modules if we set ≥nor _ ⎟⎟
⎠

⎞
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⎝
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sn . The remaining question 



in the design of selection policy for TMR retry is how to compromise between the 
implementation complexity and the number of faulty modules being tolerated. A 
sound selection policy for TMR retry is presented next. 
Selection Policy. On the basis of the above discussion, a set named SS_TMR, a 
subset of S_TMR, is created to guide the instruction-retry process. SS_TMR is given 
below: SS_TMR= {TMR_x( i , 1+i , 2+i ), where 21 −+≤≤ sni }. As seen from 
SS_TMR, the proposed retry process possesses a high regularity in its selection 
policy. So, it is easy to implement the SS_TMR policy compared to the S_TMR. 

After the analyses for some values of n and s, we decide to adopt the SS_TMR 
selection policy due to the following reasons: first, we note that the probability of 
three or more modules failed concurrently should be low; second, most of the faults 
are transient type, which may disappear during the recovery process; and last one is 
the low implementation complexity compared to the S_TMR policy. From the first 
two reasons, we can infer that both selection policies have the similar fault tolerance 
capabilities. It is evident that the SS_TMR selection policy can utilize the module 
resources efficiently so as to recover the errors in a short time. Thus, the program 
execution can continue without lengthy error-recovery process. In summary, our 
error-recovery scheme can provide the capability of real-time error recovery, which is 
particularly important for the applications demanding the reliable computing as well 
as real-time concern. 

2.2  Reliable Data Path Design: Case Study 

In the following illustration, without loss of generality, we assume only one type of 
functional module, namely ALU, in the data paths. In this case study, the original 
VLIW core contains three ALUs ( 3=n ) and therefore, three ALU instructions can be 
issued at most per cycle. A spare ALU ( 1=s ) is added to prevent the severe 
performance degradation as explained below. From CED scheme described in Section 
2.1, we note that if no spare is added then 2=m  or 3 execution packets will fall into 
Case 3. Consequently, the performance may be degraded significantly. Hence, the 
cost of a spare is paid to lower the performance degradation. Clearly, adding three 
spares in order to eliminate the performance degradation completely is not a feasible 
choice.  

According to CED scheme with 3=n  and 1=s , 1=m  falls into Case 2. The 
( 21,mm ) can be (1, 0) or (0, 1). Clearly, (1, 0) is selected as the final solution. So, if 
an execution packet contains only one ALU instruction then it will be checked by 
TMR scheme. For 2=m , it is Case 1. Each instruction will be checked by comparison 
scheme. For 3=m , it is Case 3. The three concurrent ALU instructions need to be 
scheduled to two sequential execution packets where one packet contains two 
instructions and the other holds the rest one; and therefore, one extra ALU cycle is 
required to complete the execution of three concurrent ALU instructions for 
error-detection purpose.  
CED Process. Given 3=n  and 1=s , the notation CMP_ALU(i, j) is used to denote 
an instruction executed with the comparison scheme using the ith and jth ALUs. 

while (not end of program) 
{switch (m )  
{case ‘1’:  



TMR_ALU(1, 2, 3); if (TMR_ALU detects more than one 
ALU failure) then the “Error-recovery process” is 
activated to recover the failed instruction. 

case ‘2’:  
the execution packet contains two instructions:      
I1 and I2. 
I1: CMP_ALU(1, 2); I2: CMP_ALU(3, 4); 
if (I1 fails) then the “Error-recovery process” is 
activated to recover I1. 
if (I2 fails) then the “Error-recovery process” is 
activated to recover I2. 

case ‘3’:  
the packet is divided to two packets and executed 
sequentially.  

}} 

Error-recovery process: 
1←i ; 

While ( 0_ >nor ) 

{TMR_ALU(i, 1+i , 2+i ); 
  if (TMR_ALU succeeds) then the error recovery succeeds 

 exit;  

  else { 1__ −← nornor ; 1+← ii ; if ( 3≥i ) then 1←i ;}} 

recovery failure and the system enters the fail-safe state.

     
3  Hardware Implementation and Performance Evaluation 

To validate the proposed approach, an experimental fault-tolerant VLIW architecture 
based on the scheme presented in Section 2.2 is developed. Figure 1 illustrates the 
architecture implementation, where 3=n , and 1=s  for ALUs. The features of this 
32-bit VLIW processor are stated as follows: • the instruction set is composed of 
twenty-five 32-bit instructions; • each ALU includes a 32x32 multiplier. For 
simplicity of demonstration, the proposed approach does not apply to the load/store 
units; • a register file containing thirty-two 32-bit registers with 12 read and 6 write 
ports is shared with modules and designed to have bypass multiplexors that bypass 
written data to the read ports when a simultaneous read and write to the same entry is 
commanded; • data memory is 1K x 32 bits. The structure consists of five pipeline 
stages: ‘instruction fetch and dispatch’, ‘decode and operand fetch from register file’, 
‘execution’, ‘data memory reference’ and ‘write back into register file’ stages. This 
experimental architecture can issue at most three ALU and three load/store 
instructions per cycle. Note that the ‘Error Analysis’ block in execution stage, which 
was created only to facilitate the measurement of the error coverage during the fault 
injection campaign, is not a component for the VLIW processor displayed in Figure 1.  

A fault-tolerant VLIW processor based on the architecture of Figure 1 and the 
features mentioned previously was realized in VHDL. The implementation data by 
UMC 0.18µm process are shown in Table 1. The area does not include the instruction 
memory as well as the ‘Error Analysis’ block. For performance consideration, we 
require that the clock frequency of the fault-tolerant VLIW processor must retain the 



same as that of non fault-tolerant one. It is worth noting that the overhead of 
‘ALU_Control’ unit is only 0.26 percent compared to the area of the non 
fault-tolerant VLIW core. This implies that the control task of our scheme is simple 
and easy to implement. The performance degradation caused from the CED demand is 
between 0.6% and 34.3% for eight benchmark programs, including heapsort, 
quicksort, FFT, 5×5 matrix multiplication and IDCT (8×8) etc.. 
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Fig. 1. Fault-tolerant VLIW architecture. 

Table 1.  Comparing our approach with non fault-tolerant VLIW core. 

4  Error Coverage Analysis 

In this section, the error coverage analysis based on the fault injection [13] is 
conducted to validate our scheme. A comprehensive fault tolerance verification 
platform comprising a simulated fault injection tool, ModelSim VHDL simulator and 
data analyzer has been built. It offers the capability to effectively handle the 
operations of fault injection, simulation and error coverage analysis. The core of the 
verification platform is the fault injection tool that can inject the transient and 
permanent faults into VHDL models of digital systems at chip, RTL and gate levels 
during the design phase. The tool adopts the built-in commands of VHDL simulators 

 Area (µm2) Overhead ALU_Control(µm2) System clock (MHz) 
Non fault-tolerant 

VLIW 9319666   128 

Our approach 10708296 14.9% 24215 128 



to inject the faults into VHDL simulation models. Injection tool can inject the 
following classes of faults: ‘0’ and ‘1’ stuck-at faults, ‘Z’: high-impedance and ‘X’: 
unknown faults. Weibull fault distribution is employed to decide the time instant of 
fault injection. 

Our tool supports a fault injection analysis, which can provide us the useful 
statistics for each injection campaign. The statistical data for each injection campaign 
represents a fault scenario. We can exploit the injection tool to produce a variety of 
fault scenarios such that the fault-tolerant systems can be thoroughly validated. The 
injection tool can assist us in creating the proper fault environments that can be used 
to effectively validate the capability of a fault-tolerant system and examine the 
strength of a fault-tolerant system under various fault scenarios. Therefore, the 
proposed verification platform helps us raise the efficiency and validity of 
dependability analysis. 

4.1  Fault-Tolerant Design Metrics 

Figure 2 illustrates the error handling process in our fault-tolerant system. CED 
scheme uses the comparison and TMR to detect the errors. Hence, the following types 
of errors will escape being detected and such detection defects will result in the 
unsafe failures (or called common-mode failures [10]): one is the two ALUs produce 
the same, erroneous results to comparator; another is two or three of ALUs produce 
the identical, erroneous results to TMR. Once errors are detected and need to be 
recovered, the error-recovery process is activated. Three possible outcomes could 
happen for each instruction retry using TMR scheme. One possibility is that the 
recovery is successful; another is retry fails and the system enters the fail-safe state; 
the last possibility is two or three of ALUs produce the identical, erroneous results to 
TMR such that the system encounters the fail-unsafe hazard. From Figure 2, if errors 
happen, the system could enter one of the following states: ‘successful recovery and 
restore the normal operation’, ‘fail-safe’ and ‘fail-unsafe’ states. 

The design metrics as described below are exploited to justify our approach: 
 unsfP − : Probability of system entering the fail-unsafe state; 
 det−eC : Error-detection coverage, i.e. probability of errors detected; 
 receC − : Error-recovery coverage, i.e. probability of errors recovered 

given errors detected; 
 eC : Error coverage, i.e. probability of errors detected and recovered; 
 sfP − : Probability of system entering the fail- safe state; 
 sftP −−− det : State transition probability from ‘detected’ state to 

‘fail-safe’ state. 
 unsftP −−− det : State transition probability from ‘detected’ state to 

‘fail-unsafe’ state. 
 det−− unsfP : Probability of system entering the fail-unsafe state due to 

the detection defects stated earlier; 
 recunsfP −− : Probability of system entering the fail-unsafe state due to 

the recovery defects stated earlier; 
The parameters eN , det−eN , det−− esceN , receN − , sfnreceN −−−  and 

unsfnreceN −−−  (called the error-related parameters) represent the total number 



of errors occurred, the number of errors detected, the number of errors escape 
being detected, the number of errors recovered, the number of errors not recovered 
and system enters the ‘fail-safe’ state and the number of errors not recovered and 
system enters the ‘fail-unsafe’ state, respectively. The design metrics can be 
expressed as follows: 
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Fig. 2. Predicate graph of fault-tolerant mechanism. 

4.2  Simulation Results and Discussion 

We have conducted a huge amount of fault injection campaigns to validate the 
proposed fault-tolerant VLIW scheme under various fault situations. We performed a 
comprehensive experiment to explore a particular fault-related parameter, namely 
fault-occurring frequency, to see its impact on the fault-tolerant metrics. By adjusting 
the fault-occurring frequency, we can create a variety of fault scenarios, which can be 
used to measure how robust can our fault-tolerant system reach under the different 
fault environments? The common rules of fault injection campaigns are: 1) value of a 
fault is selected randomly from the s-a-1 and s-a-0; 2) injection targets cover the 
entire ‘EXE’ stage as shown in Figure 1. The common data of fault injection 
parameters are: α=1 (useful-life), failure rate (λ) = 0.001, probability of permanent 
fault occurrence = 0, fault duration = 5 clock cycles. In addition, the number of retries 
r_no is set to four. Next, we discuss the outcomes obtained from the experiments. 

Fault-Occurring Frequency. The goal of this experiment is to observe the effect of 
the fault-occurring frequency on the design metrics depicted in Section 4.1. In this 
experiment, we copy each of the following benchmark programs: ‘N! (N=10)’, ‘5×5 

matrix multiplication’, ‘ ∑
=

×
5

1
2

i
ii BA ’, four times and then the twelve programs are 



combined in random sequence to form a workload for the fault simulation. The length 
of workload is equal to 4384 (clocks) ×30 (ns/clock). 

Note that if workload and fault duration are constant, the quantity of faults 
injected, i.e. fault-occurring frequency, will influence the degree of fault overlap. For 
instance, while the quantity of faults injected increases, the degree of fault overlap 
will become more serious. In other words, the various fault-occurring frequencies will 
lead to the different fault environments. Hence, in order to investigate the effect of the 
fault-occurring frequency on error coverage, we conduct five fault injection 
campaigns with various numbers of faults injected. The statistical analysis of an 
injection campaign is able to disclose the fault activity within the simulation. Clearly, 
the larger the number of faults injected (i.e. higher fault-occurring frequency), the 
worse of fault environment will be due to a higher occurring frequency of multiple 
faults including correlated, mutually independent and near-coincident transient faults. 
Therefore, the statistical analysis helps designers choose a set of desired fault 
scenarios to test the ability of fault-tolerant systems. As a result, the proposed 
fault-tolerant verification platform can furnish more comprehensive and solid error 
coverage measurements. 

Figure 3 characterizes the effect of fault-occurring frequency on the fault-tolerant 
design metrics. The experimental results obtained have 95% confidence interval of 
±0.138% to ±0.983%. The outcomes shown in Figure 3 reveal the fault tolerance 
capability of our scheme in the various fault environments. It is evident that the error 
coverage decreases with the increase of fault-occurring frequency. Meanwhile, the 
system has a higher chance to enter the fail-safe and fail-unsafe states when the 
probability of occurrence of multiple faults rises. The safe failure occurs once the 
error-recovery process cannot overcome the errors due to a serious fault situation. 
Overall, the results presented in Figure 3 are quite positive and sound those declare 
the effectiveness of our fault-tolerant scheme even in a very bad fault environment.  
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Fig. 3. Fault-tolerant metric analysis. (a) coverage. (b) probabilities of fail-safe and fail-unsafe. 

5  Conclusions 

This paper presents a new fault-tolerant framework for VLIW processors that focuses 
mainly on the reliable data path design. Based on a more rigid fault model, a CED and 
real-time error recovery scheme is proposed to enhance the reliability of the data 
paths. Our approach provides the design compromise between hardware overhead, 
performance degradation and fault tolerance capability. This framework is quite 
useful in that it can give the designers an opportunity to choose an appropriate 



solution to meet their need. Several significant contributions of this study are: 1. 
Integrate the error detection and error recovery into VLIW cores with reasonable 
hardware overhead and performance degradation. It is worth noting that the proposed 
fault-tolerant framework can achieve no error-detection latency and real-time error 
recovery. Consequently, our scheme is suitable for the real-time computing 
applications that demand the stringent dependability. 2. Conduct a thorough fault 
injection campaigns to assess the fault-tolerant design metrics under a variety of fault 
environments. Importantly, we provide not only the error-detection and error-recovery 
coverage, but also the fail-safe and fail-unsafe probabilities. Acquiring the fail-unsafe 
probability is crucial for us to understand how much possibility the system could fail 
without notice once the errors occur. Moreover, a couple of fault environments, which 
represent the various degrees of fault’s severity, were constructed to validate our 
scheme so as to realize the capability of our scheme in different fault scenarios. So, 
such experiments can give us more realistic and comprehensive simulation results. 
The effectiveness of our mechanism even in a very severe fault environment is 
justified from the experimental results.  
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