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Abstract. In this paper, the concept of “computing checkpoint” is introduced, 
and then an efficient coordinated checkpoint algorithm is proposed. The algo-
rithm combines the two approaches of reducing the overhead associated with 
coordinated checkpointing, which one is to minimize the processes which take 
checkpoints and the other is to make the checkpointing process non-blocking. 
Through piggybacking the information including which processes have taken 
new checkpoint in the broadcast committing message, the checkpoint sequence 
number of every process can be kept consistent in all processes, so that the un-
necessary checkpoints and orphan messages can be avoided in the future run-
ning. Evaluation result shows that the number of redundant computing check-
points is less than 1/10 of the number of tentative checkpoints. Analyses and 
experiments show that the overhead of our algorithm is lower than that of other 
coordinated checkpoint algorithms. 

1   Introduction 

Checkpointing and rollback-recovery has been an attractive technique for providing 
fault-tolerance in distributed computing system. When a fault occurs, the processes 
can reload the checkpoints state to recover the system [1-2]. Due to its simple, dom-
ino-free, and the minimal requirement for storage, coordinated checkpointing is effi-
cient. Two approaches are used to reduce the overhead of coordinated checkpoint 
algorithm: one is to minimize the number of checkpoints [3-6]; the other is to make 
the checkpointing process non-blocking [7-8]. To reduce the overhead of coordinated 
checkpoint algorithm, the concept of computing checkpoint is introduced. And, an 
efficient coordinated checkpoint algorithm based on computing checkpoint is pro-
posed. 
The paper is organized as follows: Section 2 introduces the system model and defini-
tions. Section 3 presents an efficient low-cost non-blocking coordinated checkpoint 
algorithm (LNCC). Section 4 gives its correctness proofs. Section 5 evaluates the 
number of redundant computing checkpoints. Section 6 shows the experiment results. 
Section 7 compares LNCC with some earlier relative coordinated checkpoint schemes. 
Section 8 draws a conclusion. 



2   Preliminaries  

The distributed computation consists of N sequential processes denoted by P1 ,P2,K , 
PN running concurrently on fail-stop. Processes do not share a common memory or a 
common clock. Message passing is the only way for the processes to communicate 
with each other. The computation is asynchronous, i.e., each process progresses at its 
own speed and messages are exchanged through reliable communication channels, 
whose transmission delays are finite but arbitrary. The messages generated by the 
underlying distributed application will be referred to as computation messages. The 
messages generated by the processes to advance checkpoints will be referred to as 
system messages. A process can execute internal, send and delivery statements. Each 
process Pi produces a sequence of events ei,1, K , ei,s, K , which can be finite or 
infinite. Every process Pi has an initial local state denoted σi,0. The sequence of 
events ei,1, K , ei,s applied to the initial state σi,0 result the state σi,s. Every process 
saves its local state on stable memory to produce its local checkpoint and each check-
point taken by a process is assigned a unique checkpoint sequence number (CSN). 
The checkpoint taken by the initiator or a process on which the initiator depends is 

called basic checkpoint. The ith (i≥ 0) checkpoint of process Pk is assigned a sequence 
number i and is denoted by Ck,i. Any event ek,x exist between Ck,i-1 and Ck,i is said “ek,x 
belongs to Ck,i”. The ith checkpoint interval of process Pp denotes all the computation 
performed between its ith and (i+1)th checkpoint, including the ith checkpoint but not 
the (i+1)th checkpoint, denoted as I(p,i). In distributed systems, orphan messages and 
in-transit messages may result in the inconsistency. 
Orphan messages: A message M sent by process Pi to process Pj is called an orphan 
message with respect to the ordered pair of local checkpoints (Ci,x,Cj,y), if the delivery 
of M belongs to Cj,y while its sending event does not belong to Ci,x. 
In-transit messages: A message M sent by process Pi to process Pj is called an in-
transit message with respect to the ordered pair of local checkpoints (Ci,x,Cj,y), if the 
sending of M belongs to Ci,x while its delivery does not belong to Cj,y. 
If a fault occurs, in-transit messages will be lost. By logging and replaying them out 
when process recovering, the in-transit messages lost can be avoided. An orphan 
message will result in the system becoming inconsistent when rollback recovery. 
Definition 1, dependency relation: A process Pi sends a message to process Pj with 
respect to the ordered pair of local checkpoints (Ci,x,Cj,y), we say that Pj at its yth 
checkpoint interval depends on Pi at its xth checkpoint. Simply we say Pj depends on 
Pi, denoted as Rj(i)=1. If Pj depends on Pk, and Pk depends on Pi, we say Pj transi-
tively depends on Pi. We simply call the two cases Pj depends on Pi.  
Definition 2, computing checkpoint: Assume that Pi has taken its (x+1)th tentative 
checkpoint and sends a computation message M to Pj. Before receiving M, Pj knows 
Pi in its xth checkpoint. Hence Pj must take forced checkpoint before delivering M. 
The checkpoint taken by Pj is called a computing checkpoint. 
Definition 3, global consistent checkpoint: A global checkpoint is a set of local 
checkpoints, one from each process. A global checkpoint is consistent if no message 
is orphan with respect to any pair of its local checkpoints [9-10]. 



3   The Low-Cost Non-blocking Coordinated Checkpointing (LNCC) 

Two-phase scheme and computing checkpoint are used to improve the efficiency of 
algorithm. When a process takes a computing checkpoint, it does not request these 
processes on which it depends to take checkpoints. A computing checkpoint should 
be transformed to a tentative checkpoint or be discarded according to the process 
receiving request or not. In the second phase, the initiator broadcasts committing 
message to all processes in the system, piggybacking the information including which 
processes have taken checkpoints. According to the information, each process can 
ensure the CSNs of all processes are consistent so that orphan message and unneces-
sary checkpoint can be avoided. When the checkpoints are taken, the dependent rela-
tions of the processes will be updated to avoid taking unnecessary checkpoints [11]. 

3.1   The Data Structure of LNCC  

Ri: a Boolean array. Ri(j)=1 means Pi depends on Pj. Ri is initialized to 0, but Ri(i)=1.  
Tem_Ri: a Boolean array. It is used to save temporary dependent relation when taking 
tentative checkpoint. It is initialized to 0, but Tem_Ri(i)=1 in every Pi. 
Rep_Ri: a Boolean array. It is used to save which process has taken a new checkpoint.  
CSNi[j]: an integer array. CSNi[j]=X means process Pj takes Xth checkpoint that Pi 
expects. CSN is initialized to 0 in every process. 
Cp_state: a Boolean variable. Cp_statei=1 marks a process in its checkpointing. 
Com_state: a Boolean variable, marking a process takes a computing checkpoint. 
Weight: a non-negative variable of type real with maximum value of 1. It is used to 
detect the termination of the checkpointing. 
Trigger: a tuple (pid,inum). pid indicates the checkpoint initiator that triggered this 
node to take its latest basic checkpoint. inum indicates the CSN at node pid when it 
takes its local basic checkpoint on initiating consistent checkpointing. 

3.2 The LNCC Algorithm Description 

A formal description of the two-phase checkpoint algorithm is given in Fig.1.  

3.3 An Example of LNCC Algorithm 

Fig.2 is an example of LNCC executing. Solid line means transmitting computing 
message and dashed line means request message. P4, as the initiator, takes checkpoint 
C4,1 and sends request to the processes on which it depends. After taking checkpoint 
C3,1, P3 sends M4 to P2 with CSN3(3)=1. Due to CSN2(3)=0 and CSN2(3)<CSN3(3), P2 
takes computing checkpoint C2,1 before delivering M4. Due to CSN1(2)=0 and 
CSN2(2)=1, P1 takes computing checkpoint C1,1 before delivering M5. After receiving 
request, P1 makes computing checkpoint C1,1 tentative and sends request to P2. P2 
makes computing checkpoint C2,1 tentative. The system is consistent. When receiving 



committing message, P6 cancels the dependent relation of P6 depending P5. P6 in-
creases CSN6(5), CSN6(4), CSN6(3), CSN6(2) , CSN6(1). 

 

Actions taken when Pi sends a computation message to Pj : 
If Pi is in its checkpointing, Pi sends message with its CSN and Trigger. 

Actions for the initiator Pj : 
The initiator Pj increases its CSNj[j], sets weight:=1, trigger:=(Pj, CSNj[j]), marks 
that it is in its checkpointing and takes local checkpoint. The initiator sends request 
message with a half of its residuary weight to the processes on which the initiator 
depends to request them take checkpoints too. 

Actions at process Pi , on receiving a checkpoint request from Pj : 
If Pi has taken a computing checkpoint, it makes computing checkpoint basic tenta-
tive, propagates the checkpoint request to these processes with a half of its residu-
ary weight on which it depends but Pj does not depend. Pi replies message with re-
siduary weight to the initiator. If Pi doesn’t take computing checkpoint and 
CSNj[j]>CSNi[j], Pi increases CSNi[i], takes tentative checkpoint, propagates the 
checkpointing requiring with a half of its residuary weight to the processes on 
which it depends but Pj does not depend. Pi replies message with residuary weight 
to the initiator. 

Actions at process Pi, on receiving a computation message from Pj : 
 Pi receives a computation message from Pj with CSNj[j] and trigger. If 
CSNj[j]>CSNi[j] then Pi takes a computing checkpoint, increases CSNi[i], then de-
livers the message. 

Actions in the second phase for the initiator Pi: 
If the sum of weight which piggyback in every reply messages is equal to one, it 
means all processes on which initiator depends have taken checkpoints, the initiator 
broadcasts committing message with the information including which processes 
have taken checkpoint; otherwise initiator broadcast negative message. The initiator 
updates the dependent relations. 

Actions at other process Pj on receiving a broadcast message from Pi: 
If a process receives a committing message, the receiver makes tentative permanent 
or discards computing checkpoint. The receiver updates the dependent relations and 
the CSNs of each process according to the information that which processes have 
taken checkpoints. If a process receives a negative message, the receiver discards 
tentative checkpoint or computing checkpoint, and updates the dependent relations 
and CSNs of each process. 

Fig.1. The LNCC algorithm description 

 

Fig.2. An example of a distributed system with LNCC algorithm 



4   Correctness of the algorithm  

Theorem 1: Computing checkpoint is necessary.  
Proof: Assume that Pj sends M piggybacking CSNj[j] to Pi. If CSNj[j]>CSNi[j], it 
means Pj has taken a checkpoint before sending M. Assume that Pi doesn’t take com-
puting checkpoint before delivering M. Since the future running situations of proc-
esses are unforeseen, later, Pi may receive a request from another process Pk. Pi will 
take checkpoint, M becomes an orphan. If Pi takes computing checkpoint before 
delivering M, when receiving a checkpoint request, Pi will transform the computing 
checkpoint to basic tentative checkpoint, so M is avoided to become an orphan. After 
making computing checkpoint tentative, Pi propagates request of taking checkpoint to 
the processes on which it depends but Pk does not depend. If Pi doesn’t receive any 
request message, the computing checkpoint will be discarded, and the system still is 
consistent.□ 
Theorem 2: An initiator Pi takes checkpointing, all the processes on which Pi de-
pends should take relative checkpoints too. 
Proof: If initiator Pi directly depends on a process Pj, there is Ri(j)=1. Pj will receive a 
request from Pi. So Pj will take tentative checkpoint caused by Pi. If the initiator Pi 
transitively depends on Pj, there must be processes P1, P2, K , Pn, having Pi directly 
depends on P1, P1 directly depends on P2, K , Pn directly depends on Pj. Pj will re-
ceive the request and take tentative checkpoint.□ 
Theorem 3: LNCC is a consistent checkpoint algorithm.  
Proof: Assume that there is an inconsistent after the LNCC. There is a message M 
sent from Pi to Pj such that Pj saves the event of delivering M and Pi doesn’t save the 
event of sending M. Pj is an initiator or a process on which initiator depends because 
of its taking a checkpoint. M is sent from Pi to Pj, so there is Rj(i)=1. If Pj takes 
checkpoint, Pi must take checkpoint too. Contradiction.□ 

5   Evaluating the redundant computing checkpoints  

A computing checkpoint that isn’t transformed into a tentative is a redundant check-
point. If there is not any redundant computing checkpoint, the checkpoint algorithm is 
a minimum algorithm. We analyze the proportion of redundant computing checkpoint 
among all checkpoints. 

5.1 The model and assumption 

A checkpoint interval can be denoted by two parts: the period of not taking check-
pointing (denoted as TNC) and the period of taking checkpointing (denoted as TC) as 
shown in Fig.3.  
Obviously there is TNC>>TC. Psc initiates checkpointing and the processes on which 
Psc depends take checkpoint too. The set ND includes the processes on that Psc de-

pends and the set DN  includes the processes on that Psc does not depend. Computing 



checkpoints are produced in period of TC only. The computing checkpoints that are 
produced in ND will be transformed into tentative and the computing checkpoints that 

are produced in DN  are redundant computing checkpoints. In order to compute the 
redundant checkpoint, denoted as Ncomp, assume that the message sending and receiv-
ing rate are the same, denoted as λM, and receiver receives message in no delay.  

 

 

Fig.3. The example of redundant computing checkpoints 

5.2 The number of processes on that initiator does not depend 

In the last TNC period, the number of messages received by Psc, )( NCSC TN , is:  
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The probability that Psc receives a message from iP  is ρ ＝ )1/(1 −N . The prob-

ability that Psc does not receive a message from iP  is: 
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The probability that K out of )1( −N  processes does not send messages to Psc is: 
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Its expectation number is:  
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That is, in the last TNC period, the expectation number of processes that have not sent 
any message to Psc equals to NND. Assume that there are two sets, SS1={Pi|Pi has sent a 
message to Psc in the last TNC period} and SNS1={Pi|Pi has not sent any message to Psc 



in the last TNC period}. Assume that Pi∈SNS1 in the last TNC period, the probability 
that the message sent by Pi has not sent to SS1 is:  
                                                       NNNDND /=ρ    .                                              (6) 

In the last TNC period, the expectation number of processes that belong to set SNS1 and 
have not sent any message to set SS1 is NND1. 
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In turn, the processes which belong to SNS1 can be parted into two sets, SS2={Pi|Pi has 
sent a message to SS1 in the last TNC period} and SNS2={Pi|Pi has not sent any message 
to SS1 in the last TNC period}. |SNS2|= 1NDN .The number of processes which belong to 
SNS2 and not send message to SS1 is NND2.  
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In turn, the processes which belong to SNS(i-1) can be parted into two set, SSi={Pi|Pi has 
sent a message to SS(i-1) in the last TNC period} and SNSi={Pi|Pi has not sent any mes-
sage to SS(i-1) in the last TNC period}. The probability of a process Pi which belongs to 
SNSi and does not send message to SS(i-1) is: 
                                                  NN ii NDND /)1( −=ρ    .                                          (11) 

The probability of the processes which belong to SNSi and don’t send message to SS(i-1) 

is: 
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The expectation number of processes which belong to SNSi and don’t send message to 
SS(i-1) is: 
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If (NNDi-NND(i+1)) ≤ 1, the number of processes on which PSC does not depends is 
NND(i+1). Set NID= NND(i+1), NID is the number of processes on which PSC does not de-
pend.  

5.3 The number of redundant computing checkpoints 

Assume that there are two sets, SID={Pi|PSC does not depend on Pi directly or indi-
rectly} and SD={Pi|PSC depends on Pi directly or indirectly}.  
In the TC period, Pi that belongs to SID receives a message sent by a process Pj that 
belongs to SD. If the CSN which is appended by Pj is larger than the CSN which Pi 
expects Pj has, Pi must take computing checkpoint. This computing checkpoint is 
redundant computing checkpoint that should be discarded in the future. If the CSN 
which is appended by Pj isn’t larger than the CSN which Pi expects Pj has, Pi does not 
take computing checkpoint. For simplifying analysis, we consider the worst situation 
that Pi takes computing checkpoint when it receiving a message sent from Pj, regard-
less its CSN and the appended CSN. 



The ratio that the processes belonged to SID receive the messages sent from the proc-
esses belonged to SD is λD. 
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In the TC period, the probability of taking computing checkpoint is:  
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The expectation number of redundant computing checkpoints is: 
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Table 1 shows the redundant computing checkpoints ratio（E%） to tentative check-
points under N=20. 

 Table 1. The efficiency of LNCC algorithm under parameters 

TNC 300 300 600 600 300 300 600 600 
TC 10 10 10 10 20 20 20 20 
λM 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 
NID 11.97 18.12 7.29 17.27 11.97 18.12 7.29 17.27 
ρC 0.04 0.00046 0.061 0.0014 0.07 0.0019 0.12 0.0027 
Ncomp 0.48 0.08 0.45 0.23 0.84 0.034 0.86 0.047 
E (%) 5.6 4 3.4 7.8 9.5 1.8 6.3 1.7 

 Table 1 shows that the number of redundant computing checkpoints depends on the 
values of TNC, TC and λM, but it is always less than 10% of the total tentative check-
points. The computing checkpoints ratio is in the worst situation. In fact the real ratio 
is less than the ratio listed in table 1, because the action of taking computing check-
point relies on the CSNs of processes too. 

6   Experiment  

A system with 16 nodes is simulated, the nodes are connected through a LAN which 
has 100Mbps bandwidth and each node has one process running on it. The length of 
each computation message is 1KB, and the length of each system message is 50Bytes. 
The computer’s CPU is PⅣ2.4GHz, memory is 512MB. The rate of memory bus 
with 64bit width is 100MHz. The length of checkpoint is 1MB. Fig.4 shows the num-
ber of redundant computing checkpoints and tentative checkpoints change with the 
change of message sending rate. 
As shown in Fig.4, when the massage sending rate increasing, the number of redun-
dant computing checkpoints increases at first, then gets its maximum, and then de-
creases. This can be explained as follows: a process takes a computing checkpoint 
only when it receives a computation message from a process that has taken a tentative 
checkpoint. If the message sending rate is low, processes have low probability of 
sending messages and they have low probability of receiving messages during the TC 



time. Thus, processes have low probability of taking computing checkpoints. So, the 
number of redundant computing checkpoints is less too. If the message sending rate 
enhancing, it is more likely for a process to receive a message and take a computing 
checkpoint during the TC time. If the message sending rate enhancing further, the 
initiator is more likely to depend on other processes. The computing checkpoints are 
also more likely to be turned into tentative checkpoint. The number of redundant 
computing checkpoint decreases. If the message sending rate is large enough, the 
number of redundant computing checkpoint will be zero. Simulations show that the 
number of redundant computing checkpoints always less than 5 percent of the tenta-
tive checkpoints, less than the number computed in table 1. Because we assume that a 
process always takes a computing checkpoint when the process receives a computa-
tion message from another process that has taken tentative checkpoint in table 1, in 
despite of the CSN of them. Fig.5 shows the comparison result of the algorithms’ 
overhead. As shown in Fig.5, LNCC has the low overhead than other algorithms. 

 

 

Fig.4. The comparison of redundant comput-
ing checkpoints and tentative checkpoints 

 

Fig.5. The comparison of the overhead of 
checkpoint algorithms 

7   Comparisons with existing work  

Many coordinated checkpointing schemes have been proposed for the distributed 
computing. In ref.[3], a min-process coordinated checkpointing scheme has been 
proposed, in which only minimal processes need to take new consistent globe check-
point while others needn’t change their old checkpoints. But it must block processes 
when taking checkpointing. Blocking algorithms may dramatically degrade system 
performance [7]. To address this issue, non-blocking algorithms are proposed [7-8]. 
In the algorithms, processes use a checkpoint sequence number to identify orphan 
messages. However, these algorithms require all processes to take checkpoints during 
checkpointing, even though many of them may not be necessary. 
Prakash–Singhal’s algorithm was the first algorithm to attempt to combine these two 
approaches [12]. It only forces minimum number of processes to take checkpoints 
and does not block the underlying computation during the checkpointing. However, 
this algorithm may result in an inconsistency [6,11]. Cao-Singhal improves Prakash–
Singhal’s algorithm by using mutable checkpoint [11]. According to Cao-Singhal’s 



algorithm, when Pi receives a computation message M from Pj, Pi should take a mu-
table checkpoint if following three conditions have been satisfied: (1) Pj is in check-
pointing process before sending M; (2) Pi has sent a message since last checkpoint; (3) 
Pi has not taken a checkpoint associated with the initiator [11]. But there is still an 
inconsistency in some situations. 
Fig.6 illustrates the inconsistency of Cao-Singhal’s algorithm. P4 (as an initiator) 
takes checkpoint and asks P3 and P5 to take checkpoints (dashed represents request 
messages). After taking a checkpoint, P3 sends M4 to P2, and P2 sends M5 to P1. Con-
dition 2 isn’t satisfied, so P2 needn’t take mutable checkpoint. Due to transmission 
delays, later, P1 may receive a checkpoint request after receives M5. Then P1 takes a 
checkpoint and requires P2 to take checkpoint. Then M4 becomes an orphan. 

 

Fig.6. An inconsistent example of Cao-Singhal’s algorithm 

In table 2, we use four parameters to compare LNCC with other algorithms: the num-
ber of tentative checkpoints required during a checkpointing process, the blocking 
time (in the worst case), the system message overhead, whether the algorithm is dis-
tributed or not.  

Table 2. A comparison of system performance 

algorithm checkpoints blocking time messages distributed 

Koo–Toueg[3] Nmin Nmin*Tch 3*Nmin* Ndep * Cuni yes 
Cao-Singhal [6] Nmin 2* Tmsg Cbroad+2*Cuni*(N+Nmin) yes 
Elnozahy [7] N 0 2*Cbroad+ N * Cuni no 
LNCC Nmin+ Ncomp 0 ≈ 2*Cuni*Nmin+Cbroad yes 

Cuni: cost of sending a message from one process to another process; Cbroad: cost of 
broadcasting a message to all processes; Tdisk: delay incurred in saving a checkpoint 
on the stable storage; Tdata: delay incurred in transferring a checkpoint to the stable 
storage; Tmsg: delay incurred by transferring system messages during a checkpointing 
process; Tch: the checkpointing time, Tch=Tmsg+Tdata+Tdisk; Tcomp: delay incurred in 
saving a computing checkpoint; Nmin is the number of processes that need to take 
checkpoints using the Koo–Toueg algorithm [3], N is the total number of processes in 
the system, Ncomp is the number of redundant computing checkpoints during a check-
pointing, Ndep is the average number of processes on which a process depends.  
Since a computing checkpoint can be saved on the main memory, the delay of saving 
computing checkpoint can be ignored comparing with the delay of saving tentative 
checkpoint. The overhead of LNCC is Nmin*Tdisk+ Ncomp*Tcomp+2*Cuni*Nmin+Cbroad, 
which is less than the overhead of other algorithms. 



8. Conclusion 

In this paper, a low-cost non-blocking coordinated checkpoint algorithm is presented. 
Through using computing checkpoint and piggybacking the information including 
which processes have taken checkpoint in the broadcast committing message, the 
unnecessary checkpoints and orphan messages can be avoided in the future running. 
The algorithm is consistent coordinated checkpoint algorithm which combines the 
two approaches of reducing the overhead associated with coordinated checkpointing. 
Analyses and simulations show that our algorithm is better than other coordinated 
checkpoint algorithms. 
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