
An Efficient Computing-Checkpoint Based
Coordinated Checkpoint Algorithm

Men Chaoguang1,2 Wang Dongsheng1,2 Zhao Yunlong2

1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084,
P.R.China

{mencg,wds}@tsinghua.edu.cn
2 Research Center of High Dependability Computing Technology, Harbin Engineering Uni-

versity, Harbin, Heilongjiang, 150001, P.R.China

Abstract. In this paper, the concept of “computing checkpoint” is introduced,
and then an efficient coordinated checkpoint algorithm is proposed. The algo-
rithm combines the two approaches of reducing the overhead associated with
coordinated checkpointing, which one is to minimize the processes which take
checkpoints and the other is to make the checkpointing process non-blocking.
Through piggybacking the information including which processes have taken
new checkpoint in the broadcast committing message, the checkpoint sequence
number of every process can be kept consistent in all processes, so that the un-
necessary checkpoints and orphan messages can be avoided in the future run-
ning. Evaluation result shows that the number of redundant computing check-
points is less than 1/10 of the number of tentative checkpoints. Analyses and
experiments show that the overhead of our algorithm is lower than that of other
coordinated checkpoint algorithms.

1 Introduction

Checkpointing and rollback-recovery has been an attractive technique for providing
fault-tolerance in distributed computing system. When a fault occurs, the processes
can reload the checkpoints state to recover the system [1-2]. Due to its simple, dom-
ino-free, and the minimal requirement for storage, coordinated checkpointing is effi-
cient. Two approaches are used to reduce the overhead of coordinated checkpoint
algorithm: one is to minimize the number of checkpoints [3-6]; the other is to make
the checkpointing process non-blocking [7-8]. To reduce the overhead of coordinated
checkpoint algorithm, the concept of computing checkpoint is introduced. And, an
efficient coordinated checkpoint algorithm based on computing checkpoint is pro-
posed.
The paper is organized as follows: Section 2 introduces the system model and defini-
tions. Section 3 presents an efficient low-cost non-blocking coordinated checkpoint
algorithm (LNCC). Section 4 gives its correctness proofs. Section 5 evaluates the
number of redundant computing checkpoints. Section 6 shows the experiment results.
Section 7 compares LNCC with some earlier relative coordinated checkpoint schemes.
Section 8 draws a conclusion.

2 Preliminaries

The distributed computation consists of N sequential processes denoted by P1 ,P2,K ,
PN running concurrently on fail-stop. Processes do not share a common memory or a
common clock. Message passing is the only way for the processes to communicate
with each other. The computation is asynchronous, i.e., each process progresses at its
own speed and messages are exchanged through reliable communication channels,
whose transmission delays are finite but arbitrary. The messages generated by the
underlying distributed application will be referred to as computation messages. The
messages generated by the processes to advance checkpoints will be referred to as
system messages. A process can execute internal, send and delivery statements. Each
process Pi produces a sequence of events ei,1, K , ei,s, K , which can be finite or
infinite. Every process Pi has an initial local state denoted σi,0. The sequence of
events ei,1, K , ei,s applied to the initial state σi,0 result the state σi,s. Every process
saves its local state on stable memory to produce its local checkpoint and each check-
point taken by a process is assigned a unique checkpoint sequence number (CSN).
The checkpoint taken by the initiator or a process on which the initiator depends is

called basic checkpoint. The ith (i≥ 0) checkpoint of process Pk is assigned a sequence
number i and is denoted by Ck,i. Any event ek,x exist between Ck,i-1 and Ck,i is said “ek,x
belongs to Ck,i”. The ith checkpoint interval of process Pp denotes all the computation
performed between its ith and (i+1)th checkpoint, including the ith checkpoint but not
the (i+1)th checkpoint, denoted as I(p,i). In distributed systems, orphan messages and
in-transit messages may result in the inconsistency.
Orphan messages: A message M sent by process Pi to process Pj is called an orphan
message with respect to the ordered pair of local checkpoints (Ci,x,Cj,y), if the delivery
of M belongs to Cj,y while its sending event does not belong to Ci,x.
In-transit messages: A message M sent by process Pi to process Pj is called an in-
transit message with respect to the ordered pair of local checkpoints (Ci,x,Cj,y), if the
sending of M belongs to Ci,x while its delivery does not belong to Cj,y.
If a fault occurs, in-transit messages will be lost. By logging and replaying them out
when process recovering, the in-transit messages lost can be avoided. An orphan
message will result in the system becoming inconsistent when rollback recovery.
Definition 1, dependency relation: A process Pi sends a message to process Pj with
respect to the ordered pair of local checkpoints (Ci,x,Cj,y), we say that Pj at its yth
checkpoint interval depends on Pi at its xth checkpoint. Simply we say Pj depends on
Pi, denoted as Rj(i)=1. If Pj depends on Pk, and Pk depends on Pi, we say Pj transi-
tively depends on Pi. We simply call the two cases Pj depends on Pi.
Definition 2, computing checkpoint: Assume that Pi has taken its (x+1)th tentative
checkpoint and sends a computation message M to Pj. Before receiving M, Pj knows
Pi in its xth checkpoint. Hence Pj must take forced checkpoint before delivering M.
The checkpoint taken by Pj is called a computing checkpoint.
Definition 3, global consistent checkpoint: A global checkpoint is a set of local
checkpoints, one from each process. A global checkpoint is consistent if no message
is orphan with respect to any pair of its local checkpoints [9-10].

3 The Low-Cost Non-blocking Coordinated Checkpointing (LNCC)

Two-phase scheme and computing checkpoint are used to improve the efficiency of
algorithm. When a process takes a computing checkpoint, it does not request these
processes on which it depends to take checkpoints. A computing checkpoint should
be transformed to a tentative checkpoint or be discarded according to the process
receiving request or not. In the second phase, the initiator broadcasts committing
message to all processes in the system, piggybacking the information including which
processes have taken checkpoints. According to the information, each process can
ensure the CSNs of all processes are consistent so that orphan message and unneces-
sary checkpoint can be avoided. When the checkpoints are taken, the dependent rela-
tions of the processes will be updated to avoid taking unnecessary checkpoints [11].

3.1 The Data Structure of LNCC

Ri: a Boolean array. Ri(j)=1 means Pi depends on Pj. Ri is initialized to 0, but Ri(i)=1.
Tem_Ri: a Boolean array. It is used to save temporary dependent relation when taking
tentative checkpoint. It is initialized to 0, but Tem_Ri(i)=1 in every Pi.
Rep_Ri: a Boolean array. It is used to save which process has taken a new checkpoint.
CSNi[j]: an integer array. CSNi[j]=X means process Pj takes Xth checkpoint that Pi
expects. CSN is initialized to 0 in every process.
Cp_state: a Boolean variable. Cp_statei=1 marks a process in its checkpointing.
Com_state: a Boolean variable, marking a process takes a computing checkpoint.
Weight: a non-negative variable of type real with maximum value of 1. It is used to
detect the termination of the checkpointing.
Trigger: a tuple (pid,inum). pid indicates the checkpoint initiator that triggered this
node to take its latest basic checkpoint. inum indicates the CSN at node pid when it
takes its local basic checkpoint on initiating consistent checkpointing.

3.2 The LNCC Algorithm Description

A formal description of the two-phase checkpoint algorithm is given in Fig.1.

3.3 An Example of LNCC Algorithm

Fig.2 is an example of LNCC executing. Solid line means transmitting computing
message and dashed line means request message. P4, as the initiator, takes checkpoint
C4,1 and sends request to the processes on which it depends. After taking checkpoint
C3,1, P3 sends M4 to P2 with CSN3(3)=1. Due to CSN2(3)=0 and CSN2(3)<CSN3(3), P2
takes computing checkpoint C2,1 before delivering M4. Due to CSN1(2)=0 and
CSN2(2)=1, P1 takes computing checkpoint C1,1 before delivering M5. After receiving
request, P1 makes computing checkpoint C1,1 tentative and sends request to P2. P2
makes computing checkpoint C2,1 tentative. The system is consistent. When receiving

committing message, P6 cancels the dependent relation of P6 depending P5. P6 in-
creases CSN6(5), CSN6(4), CSN6(3), CSN6(2) , CSN6(1).

Actions taken when Pi sends a computation message to Pj :
If Pi is in its checkpointing, Pi sends message with its CSN and Trigger.

Actions for the initiator Pj :
The initiator Pj increases its CSNj[j], sets weight:=1, trigger:=(Pj, CSNj[j]), marks
that it is in its checkpointing and takes local checkpoint. The initiator sends request
message with a half of its residuary weight to the processes on which the initiator
depends to request them take checkpoints too.

Actions at process Pi , on receiving a checkpoint request from Pj :
If Pi has taken a computing checkpoint, it makes computing checkpoint basic tenta-
tive, propagates the checkpoint request to these processes with a half of its residu-
ary weight on which it depends but Pj does not depend. Pi replies message with re-
siduary weight to the initiator. If Pi doesn’t take computing checkpoint and
CSNj[j]>CSNi[j], Pi increases CSNi[i], takes tentative checkpoint, propagates the
checkpointing requiring with a half of its residuary weight to the processes on
which it depends but Pj does not depend. Pi replies message with residuary weight
to the initiator.

Actions at process Pi, on receiving a computation message from Pj :
 Pi receives a computation message from Pj with CSNj[j] and trigger. If
CSNj[j]>CSNi[j] then Pi takes a computing checkpoint, increases CSNi[i], then de-
livers the message.

Actions in the second phase for the initiator Pi:
If the sum of weight which piggyback in every reply messages is equal to one, it
means all processes on which initiator depends have taken checkpoints, the initiator
broadcasts committing message with the information including which processes
have taken checkpoint; otherwise initiator broadcast negative message. The initiator
updates the dependent relations.

Actions at other process Pj on receiving a broadcast message from Pi:
If a process receives a committing message, the receiver makes tentative permanent
or discards computing checkpoint. The receiver updates the dependent relations and
the CSNs of each process according to the information that which processes have
taken checkpoints. If a process receives a negative message, the receiver discards
tentative checkpoint or computing checkpoint, and updates the dependent relations
and CSNs of each process.

Fig.1. The LNCC algorithm description

Fig.2. An example of a distributed system with LNCC algorithm

4 Correctness of the algorithm

Theorem 1: Computing checkpoint is necessary.
Proof: Assume that Pj sends M piggybacking CSNj[j] to Pi. If CSNj[j]>CSNi[j], it
means Pj has taken a checkpoint before sending M. Assume that Pi doesn’t take com-
puting checkpoint before delivering M. Since the future running situations of proc-
esses are unforeseen, later, Pi may receive a request from another process Pk. Pi will
take checkpoint, M becomes an orphan. If Pi takes computing checkpoint before
delivering M, when receiving a checkpoint request, Pi will transform the computing
checkpoint to basic tentative checkpoint, so M is avoided to become an orphan. After
making computing checkpoint tentative, Pi propagates request of taking checkpoint to
the processes on which it depends but Pk does not depend. If Pi doesn’t receive any
request message, the computing checkpoint will be discarded, and the system still is
consistent.□
Theorem 2: An initiator Pi takes checkpointing, all the processes on which Pi de-
pends should take relative checkpoints too.
Proof: If initiator Pi directly depends on a process Pj, there is Ri(j)=1. Pj will receive a
request from Pi. So Pj will take tentative checkpoint caused by Pi. If the initiator Pi
transitively depends on Pj, there must be processes P1, P2, K , Pn, having Pi directly
depends on P1, P1 directly depends on P2, K , Pn directly depends on Pj. Pj will re-
ceive the request and take tentative checkpoint.□
Theorem 3: LNCC is a consistent checkpoint algorithm.
Proof: Assume that there is an inconsistent after the LNCC. There is a message M
sent from Pi to Pj such that Pj saves the event of delivering M and Pi doesn’t save the
event of sending M. Pj is an initiator or a process on which initiator depends because
of its taking a checkpoint. M is sent from Pi to Pj, so there is Rj(i)=1. If Pj takes
checkpoint, Pi must take checkpoint too. Contradiction.□

5 Evaluating the redundant computing checkpoints

A computing checkpoint that isn’t transformed into a tentative is a redundant check-
point. If there is not any redundant computing checkpoint, the checkpoint algorithm is
a minimum algorithm. We analyze the proportion of redundant computing checkpoint
among all checkpoints.

5.1 The model and assumption

A checkpoint interval can be denoted by two parts: the period of not taking check-
pointing (denoted as TNC) and the period of taking checkpointing (denoted as TC) as
shown in Fig.3.
Obviously there is TNC>>TC. Psc initiates checkpointing and the processes on which
Psc depends take checkpoint too. The set ND includes the processes on that Psc de-

pends and the set DN includes the processes on that Psc does not depend. Computing

checkpoints are produced in period of TC only. The computing checkpoints that are
produced in ND will be transformed into tentative and the computing checkpoints that

are produced in DN are redundant computing checkpoints. In order to compute the
redundant checkpoint, denoted as Ncomp, assume that the message sending and receiv-
ing rate are the same, denoted as λM, and receiver receives message in no delay.

Fig.3. The example of redundant computing checkpoints

5.2 The number of processes on that initiator does not depend

In the last TNC period, the number of messages received by Psc,)(NCSC TN , is:

{ } () NCMT

m
NCM

NCSC e
m
T

mTNP λλ
!

)(==
 .

(1)

The expectation number, SCN , is:

() ∑
∞

=

==
0 !

)(
)(

m

T
m

NCM
NCSCSC

NCMe
m
T

mTNEN λλ

NCM
TT

NCM TeeT NCMNCM λλ λλ =×= −

 .
 (2)

The probability that Psc receives a message from iP is ρ ＝)1/(1 −N . The prob-

ability that Psc does not receive a message from iP is:

 NCMsc TN N λρρ))1/(11()1()0(−−=−= .

(3)

The probability that K out of)1(−N processes does not send messages to Psc is:

() KNK

K
N

KxP −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
== 1))0(1()0(

1
ρρ

 .

(4)

Its expectation number is:

NCMT

KNk
NK

K

ND

NNN

K
N

KKKPKEN

λρ

ρρ

))1/(11)(1()0()1(

))0(1()0(
1

)()(1
1

0

−−−=−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=== −−

−=

=
∑ ∑

 .
 (5)

That is, in the last TNC period, the expectation number of processes that have not sent
any message to Psc equals to NND. Assume that there are two sets, SS1={Pi|Pi has sent a
message to Psc in the last TNC period} and SNS1={Pi|Pi has not sent any message to Psc

in the last TNC period}. Assume that Pi∈SNS1 in the last TNC period, the probability
that the message sent by Pi has not sent to SS1 is:
 NNNDND /=ρ . (6)

In the last TNC period, the expectation number of processes that belong to set SNS1 and
have not sent any message to set SS1 is NND1.

NCMT
NDNDNDND NNN λρρ)(1 ==

 NCMNCM TT NNNNN λλ)/))1/(11)(1(())1/(11)(1(−−−−−−= . (7)

In turn, the processes which belong to SNS1 can be parted into two sets, SS2={Pi|Pi has
sent a message to SS1 in the last TNC period} and SNS2={Pi|Pi has not sent any message
to SS1 in the last TNC period}. |SNS2|= 1NDN .The number of processes which belong to
SNS2 and not send message to SS1 is NND2.

212 ρNDND NN =

 .
(8)

Thereinto,
() NCMT

ND
λρρ 22 =

 .
(9)

 NNNDND /12 =ρ .

(10)

In turn, the processes which belong to SNS(i-1) can be parted into two set, SSi={Pi|Pi has
sent a message to SS(i-1) in the last TNC period} and SNSi={Pi|Pi has not sent any mes-
sage to SS(i-1) in the last TNC period}. The probability of a process Pi which belongs to
SNSi and does not send message to SS(i-1) is:
 NN ii NDND /)1(−=ρ . (11)

The probability of the processes which belong to SNSi and don’t send message to SS(i-1)

is:

() NCMT
NDii

λρρ =
 .

(12)

The expectation number of processes which belong to SNSi and don’t send message to
SS(i-1) is:

iNDiiND NN ρ=+)1(.

 (13)

If (NNDi-NND(i+1)) ≤ 1, the number of processes on which PSC does not depends is
NND(i+1). Set NID= NND(i+1), NID is the number of processes on which PSC does not de-
pend.

5.3 The number of redundant computing checkpoints

Assume that there are two sets, SID={Pi|PSC does not depend on Pi directly or indi-
rectly} and SD={Pi|PSC depends on Pi directly or indirectly}.
In the TC period, Pi that belongs to SID receives a message sent by a process Pj that
belongs to SD. If the CSN which is appended by Pj is larger than the CSN which Pi
expects Pj has, Pi must take computing checkpoint. This computing checkpoint is
redundant computing checkpoint that should be discarded in the future. If the CSN
which is appended by Pj isn’t larger than the CSN which Pi expects Pj has, Pi does not
take computing checkpoint. For simplifying analysis, we consider the worst situation
that Pi takes computing checkpoint when it receiving a message sent from Pj, regard-
less its CSN and the appended CSN.

The ratio that the processes belonged to SID receive the messages sent from the proc-
esses belonged to SD is λD.

 MIDD NNN λλ)/)((−= . (14)

In the TC period, the probability of taking computing checkpoint is:

CDT

C e λρ −−= 1
 .

(15)

The expectation number of redundant computing checkpoints is:

∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

ID
ID

N

K

KN
C

K
C

ID
Ccomp K

N
KKEN

0
)1()(ρρ

)1()/)((CMID TNNN

IDCID eNN λρ −−−== . (16)

Table 1 shows the redundant computing checkpoints ratio（E%） to tentative check-
points under N=20.

 Table 1. The efficiency of LNCC algorithm under parameters

TNC 300 300 600 600 300 300 600 600
TC 10 10 10 10 20 20 20 20
λM 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001
NID 11.97 18.12 7.29 17.27 11.97 18.12 7.29 17.27
ρC 0.04 0.00046 0.061 0.0014 0.07 0.0019 0.12 0.0027
Ncomp 0.48 0.08 0.45 0.23 0.84 0.034 0.86 0.047
E (%) 5.6 4 3.4 7.8 9.5 1.8 6.3 1.7

 Table 1 shows that the number of redundant computing checkpoints depends on the
values of TNC, TC and λM, but it is always less than 10% of the total tentative check-
points. The computing checkpoints ratio is in the worst situation. In fact the real ratio
is less than the ratio listed in table 1, because the action of taking computing check-
point relies on the CSNs of processes too.

6 Experiment

A system with 16 nodes is simulated, the nodes are connected through a LAN which
has 100Mbps bandwidth and each node has one process running on it. The length of
each computation message is 1KB, and the length of each system message is 50Bytes.
The computer’s CPU is PⅣ2.4GHz, memory is 512MB. The rate of memory bus
with 64bit width is 100MHz. The length of checkpoint is 1MB. Fig.4 shows the num-
ber of redundant computing checkpoints and tentative checkpoints change with the
change of message sending rate.
As shown in Fig.4, when the massage sending rate increasing, the number of redun-
dant computing checkpoints increases at first, then gets its maximum, and then de-
creases. This can be explained as follows: a process takes a computing checkpoint
only when it receives a computation message from a process that has taken a tentative
checkpoint. If the message sending rate is low, processes have low probability of
sending messages and they have low probability of receiving messages during the TC

time. Thus, processes have low probability of taking computing checkpoints. So, the
number of redundant computing checkpoints is less too. If the message sending rate
enhancing, it is more likely for a process to receive a message and take a computing
checkpoint during the TC time. If the message sending rate enhancing further, the
initiator is more likely to depend on other processes. The computing checkpoints are
also more likely to be turned into tentative checkpoint. The number of redundant
computing checkpoint decreases. If the message sending rate is large enough, the
number of redundant computing checkpoint will be zero. Simulations show that the
number of redundant computing checkpoints always less than 5 percent of the tenta-
tive checkpoints, less than the number computed in table 1. Because we assume that a
process always takes a computing checkpoint when the process receives a computa-
tion message from another process that has taken tentative checkpoint in table 1, in
despite of the CSN of them. Fig.5 shows the comparison result of the algorithms’
overhead. As shown in Fig.5, LNCC has the low overhead than other algorithms.

Fig.4. The comparison of redundant comput-
ing checkpoints and tentative checkpoints

Fig.5. The comparison of the overhead of
checkpoint algorithms

7 Comparisons with existing work

Many coordinated checkpointing schemes have been proposed for the distributed
computing. In ref.[3], a min-process coordinated checkpointing scheme has been
proposed, in which only minimal processes need to take new consistent globe check-
point while others needn’t change their old checkpoints. But it must block processes
when taking checkpointing. Blocking algorithms may dramatically degrade system
performance [7]. To address this issue, non-blocking algorithms are proposed [7-8].
In the algorithms, processes use a checkpoint sequence number to identify orphan
messages. However, these algorithms require all processes to take checkpoints during
checkpointing, even though many of them may not be necessary.
Prakash–Singhal’s algorithm was the first algorithm to attempt to combine these two
approaches [12]. It only forces minimum number of processes to take checkpoints
and does not block the underlying computation during the checkpointing. However,
this algorithm may result in an inconsistency [6,11]. Cao-Singhal improves Prakash–
Singhal’s algorithm by using mutable checkpoint [11]. According to Cao-Singhal’s

algorithm, when Pi receives a computation message M from Pj, Pi should take a mu-
table checkpoint if following three conditions have been satisfied: (1) Pj is in check-
pointing process before sending M; (2) Pi has sent a message since last checkpoint; (3)
Pi has not taken a checkpoint associated with the initiator [11]. But there is still an
inconsistency in some situations.
Fig.6 illustrates the inconsistency of Cao-Singhal’s algorithm. P4 (as an initiator)
takes checkpoint and asks P3 and P5 to take checkpoints (dashed represents request
messages). After taking a checkpoint, P3 sends M4 to P2, and P2 sends M5 to P1. Con-
dition 2 isn’t satisfied, so P2 needn’t take mutable checkpoint. Due to transmission
delays, later, P1 may receive a checkpoint request after receives M5. Then P1 takes a
checkpoint and requires P2 to take checkpoint. Then M4 becomes an orphan.

Fig.6. An inconsistent example of Cao-Singhal’s algorithm

In table 2, we use four parameters to compare LNCC with other algorithms: the num-
ber of tentative checkpoints required during a checkpointing process, the blocking
time (in the worst case), the system message overhead, whether the algorithm is dis-
tributed or not.

Table 2. A comparison of system performance

algorithm checkpoints blocking time messages distributed

Koo–Toueg[3] Nmin Nmin*Tch 3*Nmin* Ndep * Cuni yes
Cao-Singhal [6] Nmin 2* Tmsg Cbroad+2*Cuni*(N+Nmin) yes
Elnozahy [7] N 0 2*Cbroad+ N * Cuni no
LNCC Nmin+ Ncomp 0 ≈ 2*Cuni*Nmin+Cbroad yes

Cuni: cost of sending a message from one process to another process; Cbroad: cost of
broadcasting a message to all processes; Tdisk: delay incurred in saving a checkpoint
on the stable storage; Tdata: delay incurred in transferring a checkpoint to the stable
storage; Tmsg: delay incurred by transferring system messages during a checkpointing
process; Tch: the checkpointing time, Tch=Tmsg+Tdata+Tdisk; Tcomp: delay incurred in
saving a computing checkpoint; Nmin is the number of processes that need to take
checkpoints using the Koo–Toueg algorithm [3], N is the total number of processes in
the system, Ncomp is the number of redundant computing checkpoints during a check-
pointing, Ndep is the average number of processes on which a process depends.
Since a computing checkpoint can be saved on the main memory, the delay of saving
computing checkpoint can be ignored comparing with the delay of saving tentative
checkpoint. The overhead of LNCC is Nmin*Tdisk+ Ncomp*Tcomp+2*Cuni*Nmin+Cbroad,
which is less than the overhead of other algorithms.

8. Conclusion

In this paper, a low-cost non-blocking coordinated checkpoint algorithm is presented.
Through using computing checkpoint and piggybacking the information including
which processes have taken checkpoint in the broadcast committing message, the
unnecessary checkpoints and orphan messages can be avoided in the future running.
The algorithm is consistent coordinated checkpoint algorithm which combines the
two approaches of reducing the overhead associated with coordinated checkpointing.
Analyses and simulations show that our algorithm is better than other coordinated
checkpoint algorithms.

References

1. E.N.Elnozahy, L.Alvisi, Y.M.Wang and D.B.Johnson: A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. ACM Computing Surveys. 2002, 34(3):375-408.

2. S.Kalaiselvi, V.Rajaramana: A Survey of Checkpointing Algorithms for Parallel and Dis-
tributed Computers. Sadhana Academy Proceedings in Engineering Sciences. 2000,
25(5):489-510.

3. R.Koo, S.Toueg: Checkpointing and Rollback-Recovery for Distributed Systems. IEEE
Transactions on Software Engineering. 1987:13:23–31.

4. J.L.Kim, T.Park. An Efficient Protocol for Checkpointing Recovery in Distributed Systems.
IEEE Transactions on Parallel and Distributed Systems. 1993, 5(8):955–960.

5. Y.Deng, E.K.Park: Checkpointing and Rollback-Recovery Algorithms in Distributed Sys-
tems. Journal of Systems Software. 1994, 4:59–71.

6. Cao Guohong, M.Singhal: On the Impossibility of Min-Process Non-Blocking Checkpoint-
ing and an Efficient Checkpointing Algorithm for Mobile Computing Systems. Proceedings
of the 27th int’l International Conference on Parallel Processing, Minneapolis, USA.
1998:37-44.

7. E.N.Elnozahy, D.B.Johnson, W.Zwaenepoel: The Performance of Consistent Checkpointing.
Proceedings of the 11th Symposium on Reliable Distributed Systems, Houston. 1992:39-47.

8. L.M.Silva, J.G.Silva: Global Checkpointing for Distributed Programs. Proceedings of the
11th Symposium on Reliable Distributed Systems, Houston. 1992:155–162.

9. J.M.Helery, A.Mostefaoui, M.Raynal: Communication-Induced Determination of Consistent
Snapshots. IEEE Transactions on Parallel and Distributed Systems. 1999, 10(9):865-877.

10. J.M.Helary, A.Mostefaoui, R.H.B.Netzer and M.Raynal: Preventing Useless Checkpoints
in Distributed Computations. Proceedings of the 16th Symposium on Reliable Distributed
Systems. 1997:183-190.

11. Cao Guohong, M.Singhal: Checkpointing with Mutable Checkpoints. Theoretical Com-
puter Science. 2003,290:1127–1148.

12. R.Prakash, M.Singhal: Low-Cost Checkpointing and Failure Recovery in Mobile Comput-
ing Systems. IEEE Transactions on Parallel Distributed System. 1996, 7(10):1035–1048.

