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Abstract. Randomly deployed sensor networks often make initial com-
munication gaps inside the deployed area even in an extremely high-
density network. How to add relay sensors such that the underlying graph
is connected and the number of relay sensors added is minimized is an
important problem in wireless sensor networks. This paper presents an
Efficient Relay Sensors Placing Algorithm (ERSPA) for solving such a
problem. Compared with minimum spanning tree algorithm and greedy
algorithm, ERSPA achieves a better performance in terms of number of
relay sensors added. Simulation results show that the average number of
relay sensors added by minimal spanning tree algorithm is approximately
up to two times than ERSPA algorithm.

1 Introduction

Randomly deployed networks often make initial communication gaps inside
the deployed area even in an extremely high-density networks. In the random
sensor network topology, the sensors may be sparsely located and the connec-
tivity is no guaranteed. Therefore, finding an efficient algorithm for improving
connectivity in wireless sensor networks and minimizing the number of relay
sensors added is an important topic of researches.

In a finite domain, the connectivity of random network depends only on the
probability distribution of critical transmission range. Many studies try to find
efficient algorithms for determining the critical transmission range for connec-
tivity [1-3]. The asymptotic distribution of the critical transmission radius for
k-connectivity is derived in [1]. This study proved the critical transmission range
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network nodes and & is a constant. The critical transmitting range for connec-
tivity in mobile ad hoc networks is proved in [2]. The author showed the critical

in the unit-area square is r,, =

transmission range (CTR) for a mobility model M is ras = ¢y/22 for some con-
stant ¢ > 1 where n is the number of nodes in the network. The mobility model
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M is assumed to be obstacle free and nodes are allowed to move only within a
certain bounded area. In addition, many researches focus on maintaining sens-
ing coverage and connectivity in wireless sensor networks [4-7]. The transmission
range (R;) must be at least twice of the sensing range (R;) is the sufficient con-
dition to ensure that complete coverage preservation implies connectivity among
active nodes [4]. Another study [5] enhanced the work in [4] to prove that the
sufficient condition for complete coverage implies connectivity is Ry = 2Rs. In
[7], a coverage configuration protocol is proposed to achieve guaranteed degrees
of coverage and connectivity. This work provided different degrees of coverage
requested by applications. To measure the coverage, the work divides the sensing
area into 1m x 1m patches. The coverage degree of a patch is approximately by
measuring the number of active nodes that cover the center of the patch.

Note that the above studies [1-7] do not discuss how to place relay sensors to
improve connectivity for a disconnected ad hoc network. Thus, there are many
papers proposed for finding the optimal location to place the additional nodes to
achieve network connectivity [8-11]. This problem can be reduced to a minimal
Steiner tree problem. In [8], a relay sensor placement algorithm to maintain con-
nectivity is proposed. They formulated this problem into a network optimization
problem, named Steiner Minimum Tree with Minimum Number of Steiner Points
(SMT-MSP). This study restricts transmission power of each sensor to a small
value and adds relay sensor to guarantee connectivity. Simulation results show
that their method can achieve better performance in terms of total consumed
power and maximum degree, especially for sparse network topology. However,
their algorithm runs a time complexity in O(N?). Some heuristic algorithms for
the bounded edge-length Steiner tree problem with a good approximate ratio
are proposed in [9-11]. Nevertheless, these heuristic algorithms do not consider
the heterogeneous transmission ranges of terminal nodes and relay nodes.

Many researches focus on finding efficient heuristic algorithms to solve the
minimal additional nodes placing problems and prolong the network lifetime
[12-14]. A heuristic algorithm for energy preserving problem is proposed in [12].
This algorithm transforms the mixed-integer nonlinear problem into a linear pro-
gramming problem. This study provides additional energy on the existing nodes
and deploys relay nodes into the network to prolong network lifetime. In [13],
three heuristic algorithms are proposed for achieving connectivity of a randomly
deployed ad hoc wireless networks. This work connects the network with a min-
imum number of additional nodes and maximize utility from a given number
of additional nodes for the disconnected network. The time complexity of the
greedy algorithms is O(N?) in a two dimension space where N is the number of
terminal nodes.

Our motivation is to find an efficient relay sensors placing algorithm to con-
struct a connected communication graph for connectivity and minimize total
relay sensors. Assume that all terminal and relay sensors have the same trans-
mission range and all sensors are location aware. Simulation results show that
ERSPA algorithm gives better performance in terms of the average number of
relay sensors with respect to minimal spanning tree algorithm and greedy al-



An Efficient Relay Sensors Placing Algorithm 3

gorithm [13]. The average number of relay sensors in minimum spanning tree
algorithm is approximately up to two times than ERSPA algorithm. This is be-
cause the ERSPA places relay sensors in optimal location to connect the maximal
number of initial connected sub-graphs.

The remainder of this paper is organized as follows. In section 2, we de-
scribe problem formulation and network model. Section 3 illustrates the details
of ERSPA algorithm. The simulation results and performance analysis are shown
in section 4. Finally, the conclusions are given in section 5.

2 Problem Formulation and Network Model

Consider a wireless sensor network. We assume that the sensing area is in a
two dimension space which is a bounded convex subset R of the Euclidean space.
In this sensing area, the initially deploy sensors, called as terminal nodes, have
been placed and a set of relay sensors are available to be added for connectivity.
All terminal nodes and relay nodes are location aware such that the location
information can be collected. The set of the terminal nodes is denoted as N; =
{Ni1, Nt2, ..., Ngp b The transmission range of each terminal node is adjustable.
Initially, the terminal nodes can adjust their transmission range to convey their
location information to base station, then limit their transmission range in a
bounded value R; for energy efficient. The set of the locations of n terminal
nodes denoted as Ly = {p; € R | i = 1,..,,n}. The set of the initial network
topology is in the form of undirected graph denoted as G(N;, E(L;, R;)). Where
E(L, Ry) = {(li,1) | i,l; € Lyyi # 4, |l li = I; ||< Ry} In order to construct
the connected communication graph, we can add the relay sensors to connect
the initial separated sub-graphs. A solution is a set of locations to place relay
sensors, L, = {q; € R | i = 1,..,7}. The set of the relay sensors denoted as
N, = {Ny1, Npa,...; Ny }. We formulate our problem as follows: A randomly
deployed sensor network with nR; X nR; sensing area in the two dimension
space. Given N; and Ry, find the L, for minimum relay sensor set IV, to make
the graph G(N;U N, E(L; U L., R;)) connected.

3 The Details of ERSPA Algorithm

The ERSPA algorithm includes the following three phases: 1) Find the initial
graph G(Ng, E(L¢, R;)); 2) Construct Delaunay; and 3) Add relay nodes. The
details of the algorithm are given as follows.

Phase 1: Find the initial graph G(N, E(L:, Ryt))

Initially, divide the sensing area into n x n grids. The grid width is equal
to the transmission range R;. Connect all sensor nodes within the transmission
range to construct initial connected sub-graphs by grid range searching method
(see Figure 1). The details are described as follows.

Step 1: Search each grid using R; x R; searching range (see Figure 1-(a)). The
area of R; X Ry is equal to the area of each grid. If there exists any pair of nodes
within this range, then connect them. This operation formed the sub-graphs G';
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Fig. 1. An example of grid range searching method. (a) Searching range is R: X Ry.
(b) Searching range is R: X 2R;. (c) Searching range is 2R; x R;. (d) Searching range

is 2Ry X 2Ry.
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Fig. 2. The initial connected sub-graphs for a randomly deployed network with 30
sensors. The transmission range is 10 percentage of the side of the square sensing field.
The initial disconnected terminal nodes indicated by the 'o’-sign. The initial connected
sub-graphs indicated by the coarse solid line.
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where i =1,...,n,j =1, ...,n. G;; are the connected graphs in each grid.

Step 2: Search the sensing area from left to right and from top to down using
R; X 2R; searching range. If the distance between any disconnected pair of nodes
is equal or less than Ry, then connect them (see Figure 1-(b)). This operation
formed the sub-graphs G;; U G j4+1. The 'U’-sign indicated connecting the con-
nected graph in adjacent grids.

Step 3: Repeat step 2 and replace the searching range by using 2R; X R; (see
Figure 1-(c)). This operation constructed the sub-graphs G;; U G441 ;.

Step 4: Repeat step 2 and replace the searching range by using 2R; X 2R;
(see Figure 1-(d)). This operation constructed the sub-graphs (G;; UGit1,j4+1)U
(Gijr1 UGig1j)-

After above operations, the initial resulting graphs are constructed (see Fig-
ure 2). The resulting graphs are illustrated as equation (1).

G = (Gij UGij11)U(Gij UGit1;) U (Gij UGt j+1) U(Gijra UG j) (1)

where ¢ = 1,...,n,5 = 1,...,n. G;; are the connected graphs in each grid. The
'U’-sign indicated connecting the connected graphs in adjacent grids.

Phase 2: Construct Delaunay

Construct the Delaunay by using terminal nodes [15]. The construction of
Delaunay is illustrated as follows. Let S be a set of points in a two dimension
space. The Voronoi diagram of S, denoted as Vol(S) which is decomposed into
Voronoi cells {V, : a € S} defined as equation (2).

Vo={r€R*:|z—a|l <|z—bVbe S} (2)

The dual of the Voronoi diagram is the Delaunay triangulation Del(S). Del(S)
is geometrically realized as a triangulation of the convex hull of S (see Figure 3).
As shown in Figure 3, the convex hull of initial connected sub-graphs in phase
1 is indicated by the coarse solid line. The purpose of constructing delaunay is
used to find the nearest neighbor node for given node to connect by adding relay
node(s). For example, nodes 3, 22, 10, 30, 27, and 19 are the neighbor nodes of
node 16 (see Figure 3). Node 10 is the nearest neighbor node of node 16. Thus,
for node 16, we can choose node 10 to connect in the next phase (phase 3).

Phase 3: Add relay nodes

After constructing Delaunay, we add the relay nodes to connect the discon-
nected sub-graphs.

Step 1: We only search the triangle including three points on its apexes and
the three points are belong to three different sub-graphs. The triangles inside
the convex hull of initial connected sub-graphs are not required to search. Then
add a node on the circumcenter of the triangle and check whether the node can
connect three sub-graphs or not. The circumcenter is the intersection of the per-
pendicular bisectors of the sides of the triangle. For example, triangle (30, 26, 22)
includes three points on its apexes that are belong to three different sub-graphs
(see Figure 4). Ry is the circumcenter of the triangle (30, 26, 22). If the distance
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Fig. 3. An example of constructing Delaunay using 30 terminal nodes. The dash lines
represented the edges of Delaunay triangulation that are not connected. The initial
disconnected terminal nodes indicated by the 'o’-sign. The initial connected sub-graphs
indicated by the coarse solid line.
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Fig.4. An example of adding relay sensors with 30 terminal nodes. Place one relay
node to connect three nodes is indicated by the circle centered at Ri. The relay sensors
indicated by the ’+’-sign. The initial disconnected terminal nodes indicated by the
‘e’-sign. The coarse solid line represented initial connected sub-graphs. The dash line
represented the edge of Delaunay triangulation that are not connected. After adding
relay node, the edge becomes connected that is indicated by slight solid line.
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Table 1. The pseudo code of ERSPA algorithm.

begin Connect
Randomly deploy N nodes
for (every N¢) //N; is the set of terminal nodes
while (d(u,v) < R ) // u,v are any two terminal nodes
Connect (u,v)
end while
end for
end Connect
begin Construct Delaunay
for ( every N )
Construct Delaunay
end for
end Construct Delaunay
begin Add relay nodes
for ( every nearest pair of nodes (Gi,Gj) )
while (K x Ry < d(u,v) < (K +1)x R, K =0,1,...,n)
Add K relay nodes //K is the number of relay nodes
end while
end for
end Add relay nodes

from R1 to each apex of the triangle is less than transmission range Ry, then add
this relay node. The relay sensors indicated by the ’+’-sign. The ’e’-sign repre-
sented initial disconnected terminal nodes and the initial connected sub-graphs
represented by the coarse solid line.

Step 2: The disconnected terminal node only require to connect to its nearest
node along the edge of the triangle. For example, the disconnected terminal node
16 has six neighbors. The distance between node 16 and node 10 is the smallest.
Add a relay node to connect node 16 and node 10. This new connected edge is
indicated by slight solid line. The number of required relay sensors to add into
the edge of the nearest pair of nodes is illustrated as equation (3).

K xR <d(u,v) <(K+1)xR;,K=0,1,...,n (3)

Where K is the number of relay nodes. d(u,v) is the distance between node u
and node v. Repeat phase 3 until the complete communication graph is con-
nected.

In phase 1, the grid search takes O(N?) time. In phase 2, construct Delau-
nay takes O(NlogN) times. Phase 3 requires O(N) times to add relay sensors.
Where N is the number of terminal nodes. The total time complexity of ERSPA
algorithms is O(N?). It is feasible in a two dimension space. The pseudo code of
ERSPA is illustrated as in table 1.
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4 Simulation Results

4.1 Performance Metrics and Environment Setup

This section presents the performance analysis of the ERSPA algorithm. The
metrics for performance are given as follows.

1) Average number of relay sensors: The average number of relay sensors is
defined as the required minimal average number of additional sensors to make
the network connected.

2) Time complexity: Time complexity is defined as the time to run the algo-
rithm.

The environment setup of simulation is described as follows. There are dif-
ferent number of terminal sensors that randomly deployed in a 100 x 100 two-
dimensional sensing area. The maximum transmission range is 10 percentage of
the side of the square sensing field. The network can convey location information
of terminal nodes to base station, then limit the transmission range to a bounded
value R; for energy efficient.

4.2 Numerical Results

Comparisons of the two performance metrics were made for three schemes:
ERSPA algorithm, Minimum Spanning Tree (MST) algorithm and greedy al-
gorithm [13]. The MST algorithm has two steps. First, generates a minimum
spanning tree to connect the terminal nodes. Then, place the relay nodes on the
edges of the minimal spanning tree that are longer than the transmission range
R;. The MST algorithm takes O(NlogN) times.

The performance metrics includes the total number of relay sensors and the
time complexity. The details will illustrate as follows.

1) Average number of relay sensors: Figure 5 shows that the average number
of relay nodes of ERSPA is smaller than minimum spanning tree algorithm and
greedy algorithm when the the number of terminal nodes are 50 and 90. Figure
6 shows that the average number of relay nodes of ERSPA is smaller than min-
imum spanning tree algorithm and greedy algorithm under different terminal
nodes. The average number of relay sensors in MST is approximately up to two
times than ERSPA algorithm. This is because ERSPA find the optimal location
to place relay sensors and connected the maximal number of disconnected sub-
graphs.

2) Time complexity: The time complexity of ERSPA algorithm is O(N?). The
minimum spanning tree takes O(NlogN) times. Greedy algorithm takes O(N?)
times. IV is the number of terminal nodes. The time complexity of ERSPA is
feasible in a two dimension space.
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Fig. 5. (a)The average number of relay nodes for connectivity with 50 terminal nodes.
(b)The average number of relay nodes for connectivity with 90 terminal nodes. The
transmission range is 10 percentage of the side of the square sensing field.
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Fig. 6. The average number of relay nodes for connectivity under different terminal
nodes. The transmission range is 10 percentage of the side of the square sensing field.
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5 Conclusions

This paper presents an efficient relay sensors placing algorithm for connectiv-
ity in wireless sensor networks. Compared with minimal spanning tree algorithm
and greedy algorithm, our ERSPA algorithm gives better performance in terms
of the average number of relay sensors. This is because ERSPA places the relay
sensors in optimal place to connect the maximum number of initial connected
sub-graphs such that the average number of relay sensors can be minimized. We
are confident that ERSPA is an efficient and useful algorithm for further wireless
ad hoc sensor networks.
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