
Register Array Structure for Effective Edge Filtering
Operation of Deblocking Filter

Jongwoo Bae1, Neungsoo Park2*, and Seong-Won Lee3

1 System LSI Division, Samsung Electronics, Co. Ltd., Suwon, Korea
jwp.bae@samsung.com

2 Dept. of Computer Engineering, Konkuk University, Korea
neungsoo@konkuk.ac.kr

3 Dept. of Computer Engineering, Kwangwoon University, Korea
swlee@kw.ac.kr

Abstract. In this paper we propose a novel deblocking filter architecture using
register array structure for standard video codec hardware. The proposed regis-
ter array consists of multiple sub-macroblocks for a single macroblock and sev-
eral sub-macroblock registers for the up and left neighboring macroblocks. The
operation procedure of the register array is also presented. The proposed regis-
ter array achieves fast operating speed and small circuit size at the same time.

1 Introduction

Most modern image processing systems use compressed image data that are gener-
ated by standard video codec. Widely used standard codecs are MPEG-1, MPEG-2,
and MPEG-4 of International Telecommunication Union (ITU) and Motion Picture
Experts Group (MPEG) recommendations. Recently new standard of MPEG-4 AVC
(H.264) [1] has great attention because of its higher compression ratio. Research and
standardization of H.264 are actively performed worldwide to achieve even higher
compression ratio [2,3].

A video decoder system consists of a processor, multiple hardware modules to de-
code the compressed image data, memory, and peripherals such as DMA and PCI.
The decoding hardware modules are Parser, Entropy Decoder, Inverse Transformer,
Predictor, and Deblocking Filter. The compressed image data are restored to the
original image sequence by sequential processing of the hardware modules.

During the compression process, image data are divided into “macroblocks” that
are the basic unit of compression. Due to the individual processing of each macrob-
lock, the restored image data has blocking effect which indicates the distortion of data
discontinuity at the macroblock boundary. Since the blocking effect is appeared as a
lattice in which the size of a square matches the size of a macroblock, the distortion is
highly perceptual and seriously degrades subjective image quality. Deblocking is a
process to reduce the blocking effect and deblocking filter [4] is the hardware module

* Corresponding author

that performs deblocking. The detail algorithm of deblocking is presented in the
H.264 documentation [1].

In this paper, we present register array structure of deblocking filter to reduce cal-
culation time of filtering operations. The proposed register array structure effectively
reduces vertical filtering operation time. The efficient operation procedure for the
proposed register array structure is also proposed.

Section 2 describes general operation of deblocking filter. The structure and opera-
tion of the proposed deblocking filter are presented in Section 3. In the Section 4 we
analyze the performance of the proposed deblocking filter. Finally, we conclude the
paper in Section 5.

2 Background Information

Deblocking filter operates on the uncompressed image data that is the largest data in
the H.264 decoder system. Thus many researchers have studied efficient operation of
the deblocking filter. Sima et al. proposed the pipelined deblocking filter [5]. In the
pipelined deblocking filter, steps of the deblocking filtering are pipelined to improve
processing performance. Li et al. propose the parallelized deblocking filter [6]. In
addition to pipelining of the deblocking filter, they rearrange processing elements to
improve the parallelism of the deblocking filter. Huang et al. proposed a small regis-
ter array structure [7]. However, the Huang’s register array does not have enough
performance to process full size HDTV.

Internal /
External

Memories
Register Array

Selecting
Boundary

Pixels

Decision on
pixel values

Decision on
filtering
strength

Comparison
with threshold

value

Boundary
filtering

Display
Device

Fig. 1. Block diagram of deblocking filter operation

Fig. 1 shows general operations of a deblocking filter. In the figure the deblocking
filter first selects boundaries to perform filtering, then reads corresponding pixel data
from memory to a register array. Filtering strength is decided to prevent excessive

filtering on real edges. Threshold value is compared to check if the filtering operation
is performed or not. Once filtering operation is decided to perform, pixels in the reg-
ister array is processed with the deblocking filter and output to the display device.

Fig. 2. A macroblock (MB) and its neighboring macroblocks for the deblocking filter.

Since the individual compression of macroblocks cause blocking effect, the de-
blocking filter also individually operates on macroblocks. Fig. 2 shows that a macrob-
lock to be processed and its neighboring macroblocks (A and B) that is necessary to
the deblocking filgering.

Filtering operation on a single macroblock respectively performs on a Luminance
component and two Chrominance components. A macroblock consists of 16×16
pixels. The 16×16 of a macroblock is divided into 16 sub-macroblocks of 4×4 pixels.
The deblocking filtering also removes blocking effect at the boundaries of the sub-
macroblocks.

 (a) (b)

Fig. 3. Pixels used in deblocking filtering (a) Pixels in vertical filtering (b) Pixels in horizontal
filtering

Fig. 3(a) shows pixels used in vertical deblocking filter and Fig. 3(b) shows pixels
in horizontal deblocking filter. As shown in Fig. 3, 8 consecutive pixels are necessary
to the deblocking filter. Thus, the conventional deblocking filtering, especially verti-
cal filtering, using 8 vertical consecutive pixels for a single filtering operation is ac-
companied 8 memory accesses. As to a single macroblock, the total required memory
access cycle is 768. This long latency cause serious problems to real-time processing
of high resolution videos such as HDTV programs.

3 Proposed Deblocking Filter

In this paper, register array is composed of 3 parts: the main register, the left register,
the upper register. For the filtering operation, the current macroblock is divided into
several sub-macroblocks of the same size. Each sub-macroblock are stored into and
read from the main register in order. The left boundary data of the sub-macroblock
stored in the main register are stored into the left register. The upper boundary data of
the sub-macroblock stored in the main register are stored into the upper register. In
the upper register, the initial data for the current macroblock comes from the upper
macroblock, and then the data coming out from the main register after the sub-
macroblock computation is stored.

The Upper
Macroblock

B

The Left
Macroblock

A

1 2 3 4

5

6 7 8 9

10

11 12 13 14

15

16 17 18 19

20

The 1st row of
sub-macroblock

The 2nd row of
sub-macroblock

The 3rd row of
sub-macroblock

The 4th row of
sub-macroblock

16

4

16

4
Fig. 4. The order of filtering operation for a macroblock

3.1 Implementation of Deblocking Filtering

Fig. 4 shows the order of filtering operation for a macroblock. The dotted line is the
horizontal and vertical boundary for filtering operations. As shown in Fig. 4, the
current macroblock is divided into 4 rows of sub-macroblocks. The size of a row is
16×4. For the 1st row of sub-macroblocks, horizontal filtering operation is performed
sequentially, and then the vertical filtering operation is performed. These filtering
operations are applied to the 2nd, 3rd, and 4th row of sub-macroblocks.

Predictor Deblocking Filter
Module

External Memory

Internal Memory

Buffer

Buffer

Buffer

Buffer

Fig. 5. The block diagram of the deblocking filter module for filtering operation

As shown in Fig. 5, the prediction results are stored into the dual buffer. The lumi-

nance and chrominance component of the current macroblock read from the dual
buffers are stored into internal register arrays of the deblocking filter module. The left
macroblock A and the upper macroblock B adjacent to the current macroblock as
shown in Fig. 4 are read from the external memory, stored into the internal memory,
and then re-stored into the register arrays.

As discussed in Fig. 4, the current macroblock is divided into 4 rows of sub-
macroblocks and then filter operations are performed. The data of the 1st row of the
sub-macroblocks are stored into register arrays. From the upper macroblock B, the
16×4 data adjacent to the 1st row of sub-macroblocks are read from the external
memory, stored into the internal memory, and then re-stored into register arrays.
From the left macroblock A, the 4×16 data adjacent to the current macroblock are
stored into the internal memory and then the only upper 4×4 data block are re-stored
into register arrays. Therefore, the 4×16 data from the macroblock A and the 16×4
data from the macroblock B are stored into the internal memory. The deblocking
filter module performs the filter operation with the data in register arrays and then
stores the result into the dual buffer.

3.2 Implementation of the Proposed Register Array

Vertical
Filtering

Horizontal
Filtering

Register
A

Register
B

Register
X

Fig. 6. Horizontal and vertical filtering operation with register arrays

As shown in Fig. 6, the register arrays is composed of 16×4 Register X, 4×4 Regis-
ter A, and 4×16 Register B. The Register X is decomposed of 4 4×4 sub-
macroblocks. It stores the 1st row of sub-macroblocks of the current macroblock
which are read from the dual buffer storing the prediction results. Register A stores
the upper 4×4 sub-macroblock of the left macroblock in the internal memory. Regis-
ter B as same as Register X is decomposed to 4 4×4 sub-macroblocks and stores
16×4 data of the upper macroblock in the internal memory.

If each register stores the data for the filtering operation, horizontal filtering opera-
tions for the current row of sub-macroblocks in the Register X are performed with the
data in Register A. And then, vertical filtering operations are performed with data in
Register B.

At first, the horizontal filter operation with the sub-macroblock in Register X takes
the data in Register A and the 4 leftmost data in Register X. It performs on the verti-
cal boundary data between 4-pixel data.

Fig. 7. Shift operation of the register array for horizontal filtering

As shown in Fig. 7, if the filtering operation with the sub-macroblock X1 is com-

pleted, the data in each register are shifted left by 4×4. So, the data in X1 sub-
macroblock are moved to register A, X2 to X1, X3 to X2, X4 to X3, and then the data
in Register A(A1) to X4. After that, the same procedure (filtering shifting) is re-
peated until the horizontal filtering operations are completed with the data in Register

X. After 4 times shift operation, the data in Register A is moved to the X1 position.
Therefore, the data is moved to the initial position by one more left shift operation.

The vertical filtering operation is performed with the row data of sub-macroblocks
in Register X. This vertical operation takes the data in Register B. There is one hori-
zontal boundary between data in Register X and Register B. The vertical filtering
operation is performed to 16 pixels on this horizontal boundary.

If these horizontal and vertical filtering operations are completed with a 16×4 row
of sub-macroblock, the next row of sub-macroblocks are filled into the Register X.
The previous data in Register X are moved to the Register B, and the new 4×4 data
in Register A are read from the internal memory. The first data in Register A and
Register B are sent to the external memory. This overall procedure is repeated with an
entire macroblock. Therefore, the movement between the new sub-macroblock data
and sub-macroblock data after filtering operation and output from Register A and B
are concurrently performed.

3.3 Implementation of Register I/O

(a) (b)

(c) (d)

Fig. 8. The I/O operation of register array

Fig.8 shows the I/O operation of the register array. As shown in Fig. 8(a), the left-
most sub-macroblock in the 2nd row are stored into register X1 and the next sub-
macroblock (a2) of macroblock A in the internal memory is stored into Register A.
The previous data (x1) in register X1 is shifted into register B1 and the previous data
(b1) in register B1 is sent out the external memory.

As shown in Fig. 8(b), the next sub-macroblock (x6) in the 2nd row are inputted
into register X2. The previous data (x2) in register X1 are shifted into register B2 and

the previous data (b2) in the register B2 are sent out. At the same time, the horizontal
filtering operations are performed on data (a2 and x5) in register A and X1. After
filtering operation for register X1, data in each Register A and X are shifted left by
4×4 as shown in Fig. 8(c). The data in Register B is also shifted by 4×4. After the
shift operation, the horizontal filtering operation is performed on the x6 and x5 in
Register X1 and A, respectively. Concurrently, the 3rd sub-macroblock in the 2nd row
is stored into the register X2 and the previous 3rd sub-macroblock (x3) in the 1st row
is shifted into register B2. The previous data (b3) in register B2 is sent out.

After fourth sub-macroblock data (x8) of the 2nd row of sub-macroblocks is loaded
into register X2, the rest of filtering operation is performed as shown in Fig. 8(d).
Once horizontal deblocking filtering of a row of sub-macroblocks is completed, data
is shifted to go back their original position. Then vertical deblocking filtering is per-
formed on the data of X-register.

The procedures are repeated with the other rows of sub-macroblocks until process-
ing of the entire macroblock is finished. It should be noticed that data is loaded into
X1-register at the initial state. For all other case, data is loaded into X2-register.

4 Performance Analysis

The proposed deblocking filtering can process a single macroblock as followings:
First data loading into A-register and X1-register takes 4 cycles. Since four lines of
horizontal filtering takes 8 cycles (2 cycles per single position), the total cycle to
perform horizontal deblocking filtering of a row of sub-macroblocks is 36. In order to
perform vertical deblocking filtering the original location of data should be restored.
The shift for restoring data locations takes 1 cycle. There are 16 positions to perform
the vertical deblocking filtering. Thus vertical filtering for a row of sub-macroblock
takes 32 cycles. With 14 overhead cycles, total cycles to perform deblocking filtering
on a single macroblock is 14+4×(37+32)=306. Adding cycles for chrominance com-
ponents (306×0.5=153) makes the total cycle 459 that is sufficiently short time for
processing high resolution sequences.

5 Conclusion

In this paper we propose a high performance register array structure for deblocking
filter architecture. The implementation cost of the proposed structure is relatively
small compared with the conventional deblocking filter architectures. Data loading,
filtering, data movement and data output are concurrently processed to achieve high
performance of the deblocking filter architecture. In order to handle the proposed
register array structure efficiently, the operation procedure of the proposed structure
is also presented.

Acknowledgement

This work is partly supported by Samsung Electronics Co. Ltd. under Blue Architec-
ture Project and partly supported by the Ministry of Information and Communication,
Korea, under the ITRC program supervised by the IITA.

References

1. Draft ITU-T recommendation and final draft international standard of joint video
specification (ITU-T) Rec. H.264/ISO/IEC 14 496-10 AVC. Document JVTG050. Joint
Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG (2003)

2. Wiegand, T., Sullivan, G., Bjntegaard, G., Luthra, A.: Overview of the H.264/AVC video
coding standard. IEEE Trans. Circuits Syst. Video Technol. 13 (2003) 560-576

3. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer,
T., Wedi, T.: Video coding with H.264/AVC: Tools, performance, and complexity. IEEE
Mag. Circuits and Syst. 4 (2004) 7-28

4. P. List, A. Joch, J.L.G.B., Karczewicz, M.: Adaptive deblocking filter. IEEE Trans. Circuits
Syst. Video Technol. 13 (2003) 614-619

5. M. Sima, Y.Z., Zhang, W.: An efficient architecture for adaptive deblocking filter of
h.264/AVC video coding. IEEE Trans. Consum. Electron. 50 (2004) 292-296

6. Li, L., Goto, S., Ikenaga, T.: A highly parallel architecture for deblocking filter in
H.264/AVC. IEICE Trans. Inf. & Syst. E88-D (2005) 1623-1629

7. Huang, Y.W., Chen, T.W., Hsieh, B.Y., Wang, T.C., Chang, T.H., Chen, L.G.: Architecture
design for deblocking filter in H.264/JVT/AVC. In: IEEE Proc. Int. Conf. Multimedia and
Expo 2003. Volume 1. (2003) 693-696

