
Virtualization-based Techniques for Enabling
Multi-tenant Management Tools

Chang-Hao Tsai1, Yaoping Ruan2, Sambit Sahu2, Anees Shaikh2, and Kang G. Shin1

1 Real-Time Computing Laboratory, EECS Department
The University of Michigan, Ann Arbor, MI 48109-2121, USA

{chtsai,kgshin}@eecs.umich.edu,
2 IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA

{yaopruan,sambits}@us.ibm.com,aashaikh@watson.ibm.com

Abstract. As service providers strive to improve the quality and efficiency of
their IT (information technology) management services, the need to adopt a stan-
dard set of tools and processes becomes increasingly important. Deploying multi-
tenant capable tools is a key part of this standardization, since a single instance
can be used to manage multiple customer environments, and multi-tenant tools
have the potential to significantly reduce service-delivery costs. However, most
tools are not designed for multi-tenancy, and providing this support requires ex-
tensive re-design and re-implementation.
In this paper, we explore the use of virtualization technology to enable multi-
tenancy for systems and network management tools with minimal, if any, changes
to the tool software. We demonstrate our design techniques by creating a multi-
tenant version of a widely-used open source network management system. We
perform a number of detailed profiling experiments to measure the resource re-
quirements in the virtual environments, and also compare the scalability of two
multi-tenant realizations using different virtualization approaches. We show that
our design can support roughly 20 customers with a single tool instance,and
leads to a scalability increase of 60–90% over a traditional design in which each
customer is assigned to a single virtual machine.

1 Introduction

As service providers look for new ways to achieve high quality and cost efficiency in
the way they manage IT infrastructure for customers, an important emerging theme is
the need to adopt a standard set of management tools and processes. This goal is com-
plicated by the complex variety of customer environments and requirements, as well
as the increasingly distributed nature of infrastructure management in which technical
teams provide support for systems and networks located across the globe.

One recent strategy being pursued by IT service providers toaddress this challenge
is to deploy a relatively small set of “best-of-breed” management tools that support
multi-tenancy, i.e., a single instance can support multiple customers. Multi-tenant tools
have a number of important advantages in terms of cost and simplicity. They require de-
ployment of a much smaller infrastructure, in contrast to having a dedicated installation
for each customer, which can significantly reduce support costs for the infrastructure

hosting the tool itself. Moreover, in some cases, multi-tenant tools have more advan-
tageous software licensing models, for example, with a single license used to manage
multiple customers. Finally, multi-tenant tools are a crucial element of the higher-level
goal of consolidating tools to reduce training, management, and support costs.

A major barrier to adopting multi-tenant tools is that the desired management tool
may not have been designed for multiple customer environments, and would thus re-
quire a significant rewrite to provide the needed support. Full multi-tenant support re-
quires adequate, auditable, protection against the risk ofdata leakage between cus-
tomers, performance that approaches the single-tenant case for each customer, and a
relatively high density to realize the benefits of multi-tenancy.

In this paper, we explore the use of virtualization technology to enable multi-tenancy
for systems and network management tools with minimal, if any, changes to the soft-
ware itself. We consider virtualization at several layers,including full system virtual-
ization, OS-level virtualization, and data virtualization. We describe and evaluate the
trade-offs of these approaches through investigations of several design choices and ex-
perimental evaluations of their performance and scalability.

Our study focuses on OpenNMS, a popular open source, enterprise-grade network
management tool that performs a number of functions including device discovery, ser-
vice and performance monitoring, and event management [1].We design multi-tenant-
capable configurations of OpenNMS using the Xen virtual machine monitor (VMM) [2],
and the OpenVZ virtual private server environment [3]. We then perform a number of
detailed profiling experiments in which we measure the resource requirements and per-
formance of OpenNMS in the virtual environments. These results also allow us to accu-
rately configure Xen or OpenVZ in order to provide suitable performance. Finally, we
compare the scalability of our virtualization-based designs with a baseline deployment
in which each customer is assigned to a single Xen VM which houses the entire Open-
NMS stack. We find that both Xen and OpenVZ can support multi-tenant deployments
for nearly 20 customer networks (customer density with OpenVZ is slightly higher than
with Xen), although each approach has its own relative advantages. Both, however, pro-
vide an overall scalability increase of 60–90% over the baseline configuration.

Many systems and network management tools adopt an architecture similar to Open-
NMS, consisting of a web-based user interface application,a management server appli-
cation which performs most of the monitoring or management functions, and a database
that stores configuration information, collected data, andanalysis reports. While our
implementation considers multi-tenancy support in OpenNMS, we expect that the tech-
niques and findings described in the paper will be applicableto a number of manage-
ment tools that use this canonical architecture. Hence, ourwork represents an initial set
of guidelines for leveraging virtualization technology torealize the increasingly impor-
tant requirement to support multi-tenancy in systems management platforms.

The next section describes some background on network management systems.
Section 3 illustrates our design choices in making the OpenNMS architecture multi-
tenant-capable. We describe our testbed and experimental evaluation in Sect. 4. A brief
discussion of related work appears in Sect. 5, and the paper concludes in Sect. 6.

Fig. 1.OpenNMS architecture

2 Background

Network management is a standard service in current enterprise environments. These
systems are a combination of hardware and software that monitors the topology, avail-
ability, and traffic of various network devices like routersand switches, as well as
servers that provide services on the network.

While network management tools can be provided as a service, they differ from
other services because they must connect to customer networks through firewalls at their
network edge and customers may use network address translation (NAT) to employ pri-
vate Internet addressing in the local network. For multi-tenant management tools, this
presents two challenges. First, the tool cannot be deployedwithin one customer net-
work because it needs to monitor multiple customer network domains and these private
addresses are not publicly accessible. Second, private addresses may cause confusion
to the tool because of overlapping addresses between customers.

We use a popular open-source NMS, OpenNMS, as our target application. Open-
NMS is billed as an enterprise-grade network management platform, and is used in
a variety of commercial and non-commercial environments [1]. OpenNMS monitors
network-service availability, generates performance reports, and provides asset-management
capability. Figure 1 shows major components of OpenNMS and their interactions.

The management server software is implemented in Java as a multi-threaded ap-
plication. We call this part theback-end. The front-end user interface (UI) consists of
a number of servlets and Java server pages (JSPs) deployed inan Apache Tomcat ap-
plication server. Both the front-end and back-end connect to a PostgreSQL database
for various management information. Response time of network services and SNMP
counters are stored in Round Robin Database (RRD) files and later plotted in the user
interface. Besides notifying users via the UI, OpenNMS can also be integrated with
email or instant messaging systems to send timely notifications of critical events.

3 Design

In this section, we describe the design of our multi-tenant-capable OpenNMS using
virtualization with minimum changes to the original system. With virtualization tech-

Fig. 2.Design overview of the multi-tenant-capable OpenNMS

nology, the brute-force solution is to select a virtualization platform and run one Open-
NMS tenant in each virtual execution environment (VEE), including all components
described in Fig. 1. However, this solution is not efficient —as shown in our evaluation,
memory becomes the bottleneck of the system. We propose an approach to virtualize
only the back-end, and share a common database among all tenants.

An overview of this design is given in Fig. 2, where the OpenNMS back-end of each
tenant sits in an VEE, and communicates with its managed network domain via VPN
connections. The database and Tomcat are co-located in one VEE. Database queries
from the back-ends are configured to use the tenant ID in the database name. All of
these components can be organized together by configurationchanges, to meet our goal
of no modification to the source code.

3.1 Virtualization for the Back-end

The back-end of OpenNMS is the core of the system. It loads configuration files when
it starts and instantiates internal service modules accordingly. The configuration files
usually include customer-specific parameters such as the network address range for
automatic service discovery, service-polling frequency,etc. Once the configurations are
loaded, it starts probing of the customer network domain foreach service accordingly.

We choose a virtualization implementation that provides low overhead but neces-
sary isolation required by OpenNMS to work properly. First,it should provide file sys-
tem virtualization so persistent states of each tenant suchas configuration files are pro-
tected. Second, it should provide process and memory isolation so tenants on the same
platform do not interfere with each other. Finally, since each tenant needs to commu-
nicate with its own network domain, the network layer shouldbe virtualized as well.
Especially when two tenants have identical private networkaddresses, packets from
each tenant should be routed correctly. This requirement implies that each host should
maintain its own protocol stack. For these reasons, virtualization technologies such as
Java virtual machine (JVM) and FreeBSD Jail are not sufficient.

We use Xen and OpenVZ as our virtualization platforms in our implementation.
Both of them provide virtualized network protocol stacks. We create multiple VEEs
within a host and run an instance of OpenNMS in each VEE. Sinceeach VEE also pro-
vides a resource boundary, performance isolation can also be implemented. We measure

the performance of each tenant and identify the location where user-perceived perfor-
mance is degraded.

3.2 VPN Connections

Traditionally, a management system is deployed inside eachcustomer’s network do-
main. With multi-tenancy, the system has to be located at a place where all customers
can reach. However, most enterprise networks are not reachable from outside. Changing
firewall configuration at each customer’s network edge to accommodate this communi-
cation may introduce potential security risks. One approach to solve this problem is to
use probing devices within each tenant’s premise. While thisapproach might be feasible
in real deployment, we choose to create Virtual Private Network (VPN) connections to
each tenant’s network. Creating VPNs is better for portability than probing devices, and
is easier for setting up an experimental testbed. In this paper, we use OpenVPN [4], an
open source SSL VPN solution. We configure OpenVPN to establish layer 2 (L2) VPN
connections to tenant networks to support services such as BOOTP and DHCP servers,
although most of the services can be monitored via a layer 3 (L3) VPN. When there
are multiple L2 networks to be monitored, several VPN connections can be established
simultaneously.

Using VPN connections to connect NMSs to tenant networks does incur some over-
head in packet transmission due mainly to round-trip time, which depends on network
congestion and the geographical distance between VPN endpoints. However, for man-
agement systems, this delay makes little impact on the results. For example, when mon-
itoring service-availability, the added overhead does notpose any problem as long as
the probing returns without timeout, which is 3 seconds.

3.3 Database Sharing

Since each OpenNMS instance only needs a database user account to store data in a
PostgreSQL database server, we opt to use mechanisms built in database to provide the
isolation for each tenant.

We configure each tenant to use a different database user nameand database in-
stance to store the data. This approach provides adequate security isolation, since data
belongs to one tenant is not accessible by the others. As far as performance is con-
cerned, database access usually is not the bottleneck in a multi-tenancy environment.
High-availability database design can be used to prevent any database crash. We do not
use these designs so as to compare results with the brute-force solution.

3.4 The Front-end

Similar to consolidating databases, we deploy multiple instances of the Java servlets
and JSPs in Apache Tomcat. This allows customizing the front-end user interface to fit
each customer’s management policy and preferences. Each tenant has a different base
URL to its web console. In addition to log-in credentials, access control can be applied
to restrict access further.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70

M
em

or
y

us
ag

e
(M

B
)

Time (minute)

OpenNMS
OpenNMS JVM heap

PostgreSQL

Fig. 3. Memory-usage profile of OpenNMS,
PostgreSQL and JVM heap

 0

 1

 2

 3

 0 10 20 30 40 50 60 70

C
P

U
 u

til
iz

at
io

n
(%

)

Time (minute)

Total
OpenNMS

PostgreSQL

Fig. 4. CPU-utilization profile of the entire sys-
tem, OpenNMS, and PostgreSQL

4 Evaluation

In this section we describe our experimental evaluation which comprises two sets of
experiments. The first set of experiments profiles and determines the working set and
resource bottlenecks of our setup. The key results are: (i) memory is the bottlenecked
resource, and (ii) the minimum memory required for each OpenNMS setup is about
144MB. The second set of experiments compares the benefit of our multi-tenancy ap-
proach with that of the baseline approach that is void of any multi-tenancy capabilities.
We find that even with our “limited multi-tenancy” approach,as many as 60–90% more
tenants can be supported with similar or better perceived quality.

4.1 Testbed Setup

We use two similarly-equipped machines to emulate the management server and the
tenant networks. Each of them has an Intel Core 2 Duo E6600 CPU(without using
Intel Virtualization Technology), 4GB of main memory, and two 7200rpm hard drives.
The management station and the emulated tenant network are connected with a Gigabit
Ethernet network. Debian GNU/Linux 4.0 is used as the host OSenvironment with
PostgreSQL database server and Apache Tomcat 5.0. The OpenNMS we used in this
study is version 1.2.9. Sun Java 5.0 is used to compile and runOpenNMS.

Our Xen-based implementation uses an experimental versionof Xen, including a
modified Linux kernel 2.6.18 as the kernel in both privilegedand unprivileged domains.
We optimize the setup by having the tenants share a common NFS-mounted/usr since
all of them use the same program and do not need to contain identical files in their
virtual disk images. Sharing file systems also improves the cache-hit ratio in the host
OS. Another approach to reducing the file system size is to usecopy-on-write disks.
Unfortunately, this feature is not stable in our testing. The result is a 150MB root file
system for each tenant and a 350MB/usr file system shared by all tenants. We also
give each guest OS a 256MB swap space.

For the testbed using OpenVZ, we use a patch set (version 028stab027.1) for Linux
kernel 2.6.18 in this work. A VEE created by OpenVZ shares thesame patched Linux

kernel but has its own root file system, network device,etc. We configure the software
installation identically as in Xen.

In order to test our design, we emulate a tenant network as shown in Fig. 2. All
tenants share the same emulated tenant network, which is created on a dummy network
interface configured with 1,000 IP addresses. An Apache HTTPserver listens on all
IP addresses to create an illusion of 1,000 web servers. System parameters, such as
increasing buffer size, are tuned to make sure that network and the client machine are
not the bottlenecks.

4.2 Resource Profiling

The intent of this evaluation is to profile the resource usageof our proposed multi-
tenancy-capable network management tooling using OpenNMSand provides parame-
ters to use in multi-tenant evaluations. We determine resource bottlenecks, the working
set for the proposed setup, and any trends as the number of clients being monitored are
scaled. The first three parts of resource profiling are ran without any VMM.

Memory is the Bottlenecked Resource.We first ran OpenNMS with the database
server within one OS, just as the typical setup for single tenant system. The OpenNMS
is set up to use at most 256MB memory as JVM heap and monitor 200hosts via a VPN
connection.

Figure 3 presents the system memory used by OpenNMS, PostgreSQL and Open-
NMS JVM heap usage as a function of time progression. When OpenNMS starts up, it
first loads its configuration and previously-monitored hosts and services (none in this
evaluation) from the database. It starts by discovering theclients to be monitored 5
minutes after the boot-up. During this stage, although the heap utilization is increased,
memory used by the OpenNMS remains flat. Once auto-discoverystarts, OpenNMS
uses considerably more memory and the garbage collection ofJVM kicks in period-
ically, generating a zig-zag shape of heap utilization between 49MB and 78MB. The
increase in memory usage by the OpenNMS can be attributed to dynamic class loading
and objects in the permanent generation, which is not included in heap utilization.

The auto-discovery procedure is paced by OpenNMS to avoid generating too much
traffic in the network. Therefore, the duration of this stageis proportional to the number
of probes and the number of hosts being monitored. Using the default configuration,
it takes about 45 minutes to run all probes over 200 hosts. Since the emulated client
network has only one Apache HTTP server running, most of the time is spent on waiting
timeouts. Both OpenNMS and PostgreSQL use more memory as theauto-discovery
procedure goes on.

After the auto-discovery completes, OpenNMS only periodically probes previously-
discovered and manually-configured hosts and services, andthus, creates new Java
objects at a slower rate, which leads to less-frequent garbage collection. PostgreSQL
server also frees some memory as most data, such as event logsof each host, are not
actively being used. The VPN connection, OpenVPN, uses 2.5MB memory constantly
which is not plotted in the figure.

In terms of CPU utilization, which is plotted in Fig. 4 shows the CPU utilization
as a function of progression of time. Note that the peak utilization occurs when the

 44

 46

 48

 50

 52

 54

 56

 58

 0 60 120 180 240 300

H
ea

p
ut

il.
 (

af
te

r
G

C
, M

B
)

Time (minute)

200 hosts
400 hosts
600 hosts
800 hosts

1000 hosts

Fig. 5.Heap utilization vs. client network size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 60 120 180 240 300

C
P

U
 U

til
iz

at
io

n
(%

)

Time (minute)

200 hosts
400 hosts
600 hosts
800 hosts

1000 hosts

Fig. 6.CPU utilization vs. client network size

 1

 2

 3

 4

 64 80 96 112 128
 0

 5

 10

 15

 20

 25

 30

 35

G
C

 fr
eq

ue
nc

y
(t

im
es

/m
in

)

T
im

e
sp

en
t i

n
G

C
 (

s)

Maximum heap size (MB)

GC Frequency
Time spent in GC

Fig. 7.GC frequency and time vs. heap size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 60 120 180 240 300

C
P

U
 u

til
iz

at
io

n
(%

)

Time (minute)

64MB heap
72MB heap
80MB heap
96MB heap

128MB heap

Fig. 8.CPU utilization vs. heap size

 0

 32

 64

 96

 128

 160

 192

 224

 256

 0 20 40 60 80 100 120 140 160 180
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

M
em

or
y

A
llo

ca
te

d/
U

se
d

(M
B

)

C
P

U
 U

til
iz

at
io

n
(%

)

Time (minute)

VM Memory
OpenNMS Memory

Swap Used
OpenNMS CPU

Fig. 9.Swap activity vs. VM memory size

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 10 11 12 13 14

U
I r

es
po

ns
e

tim
e

(s
)

Number of tenants

with RRD
w/o RRD

Fig. 10.Scalability of the baseline multi-tenancy

 0

 1

 2

 3

 4

 5

 15 16 17 18 19

U
I r

es
po

ns
e

tim
e

(s
)

Number of tenants

OpenVZ
Xen

Xen w/errors

Fig. 11.Front-end UI response time with differ-
ent number of tenants

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 16 17 18 19 20 21 22

U
I r

es
po

ns
e

tim
e

(s
)

Number of tenants

OpenVZ
Xen

Xen w/errors

Fig. 12. Front-end UI response time when re-
sponse time logging is disabled

auto-discovery phase starts. The CPU utilization then stays around 1% during the auto-
discovery stage and drops to almost 0 afterward, where the OSoverhead is around 0.3%.
From these two figures, we conclude that system memory is the potential bottleneck
when multiple instances of OpenNMS are hosted on the same machine.

Effect of Client Network Size. We then study the impact of the client network size on
the resource utilization by varying the client size from 200hosts to 1,000 hosts,i.e., the
typical network size in small to medium size businesses. Themaximum JVM heap size
is also 256MB as in the previous experiment.

While the memory used by OpenNMS does not differ much with different client
network sizes, we observed that the heap utilization, aftereach garbage collection, is
proportional to the number of hosts being monitored. From Fig. 5 we observe that for
every 200 monitored hosts, OpenNMS uses 2MB of additional memory in heap. Com-
paring to the size of the OpenNMS process, this incremental cost is low.

Figure 6 shows that CPU utilization is only slightly affected by the client network
size. This result reinforces our previous observation thatsystem memory size is the
bottleneck for OpenNMS when multi-tenancy is enabled.

Effect of JVM Heap Size. Next, we evaluate the effect of JVM heap size on our
proposed multi-tenant-capable network management tool. We configure OpenNMS to
monitor a client network consisting 1,000 hosts, and reducethe maximum heap size
from the default 256MB to 64MB to investigate their relationship.

As we can see in Fig. 7, the garbage collection frequency is inversely related to
the maximum heap size. The frequency is measured after auto-discovery is completed.
When the maximum heap size is reduced to 64MB, garbage collection happens as fre-
quent as 4 times a minute. In spite of this frequent garbage collection, the total time
spent in the garbage collection in an hour is as little as 33 seconds, which is less than
1% CPU utilization. In addition, we observe that the JVM spent much less time in
garbage collection if there are 128MB or more heap space, where a different garbage
collection algorithm might be used. We also tried a 56MB heapconfiguration but the
JVM could not survive.

The increase in CPU utilization is more pronounced in auto-discovery stage as can
be seen in Fig. 8. With as little as 64MB heap size, OpenNMS uses as much as 2.5%
CPU time at the end of auto-discovery stage. The increase in the CPU utilization with
the number of host discovered suggests the garbage collector needs more time to sweep
out dead objects among an increasing number of alive ones, and this phenomenon is
more obvious when the heap size is smaller.

Working Set Estimation. Next, we determine the memory working set size for Open-
NMS. While OpenNMS takes up as much as 160MB of memory to run, like most ap-
plications, the working set size is usually much smaller than the size of the total virtual
memory segments that reside in physical memory. In the following, we take advantage
of Xen’s dynamic memory resizing capability and reduce the memory allocation of a
VM from 256MB down to 96MB (at a rate of 16MB/20min), and monitor the swap

space usage. In this experiment, only OpenNMS and OpenVPN are running in a VM,
PostgreSQL has been moved to domain 0 as the database server will be shared between
multiple instances of OpenNMS.

In Fig. 9, we observe that the dirty memory pages begin to be swapped out to the
swap partition when physical memory is reduced to 192MB. Swap space usage in-
creases again when VM is reduced further by 32MB. When only 128MB is allocated,
Linux suddenly swaps out all the memory used by OpenNMS. Although the working
set was reloaded immediately, the dramatic drop in CPU utilization implies that most of
the time were spent in dealing with page faults. Therefore, we conclude that OpenNMS
with OpenVPN requires at least 144MB to perform smoothly.

4.3 Evaluation of Multi-tenancy Benefits

We evaluate the number of tenants that can be supported for both baseline multi-tenancy
and our proposed multi-tenancy capability. The metric usedfor this evaluation is the
increase in the number of tenants that can be supported by thesame amount of re-
sources while providing similar or better quality of service compared to the baseline
multi-tenancy capability. The quality of service metric isthe UI response time in the
measurement process, and correctness of discovery and availability results.

For this evaluation, we configure the testbed so that each tenant has 400 emulated
clients to be monitored. All the instances are started simultaneously, thus it can be
considered as the worst-case scenario. We wait 2 hours for the auto-discovery process
to complete and start polling results from the UI. For each tenant, we first log-in to the
web console, list the number of hosts being monitored, and randomly pick 10 hosts to
list their details. We report the average response time for the UI operations where the
average is computed across all the tenants over all the clients.

Scalability of Baseline Multi-tenancy. We first evaluate the scalability of a baseline
multi-tenant OpenNMS installation, where each instance not only includes the back-end
and OpenVPN but also the database and the Apache Tomcat server on top of a dedicated
OS. Each tenant is hosted in a Xen VM with 256MB memory. Figure10 shows that the
UI response time increases with the number of tenants hosted. Although 14 tenants
can be hosted on one server and discover all hosts and services, the UI response is an
awfully 22s, which is completely unusable. If we set a response time threshold of 3s,
only 10 tenants can be hosted.

While the bottleneck is the main memory size, the performanceof the system can
be improved by eliminating the disk activities resulting from keeping response time log
files (RRD files). The UI becomes much more responsive and, as aresult, the scalability
improves to 12 tenants. However, we were not able to start 15 tenants due to out-of-
memory errors.

Proposed Multi-tenancy Scalability. We then evaluate the scalability of our proposed
multi-tenancy solution, where the database and the Apache Tomcat server are shared
among all the tenants. Figure 11 shows that the average response time is significantly
reduced. Also note that 16 and 19 tenants can be hosted when Xen and OpenVZ based

virtualization is used, respectively. Comparing to baseline multi-tenancy approach, our
proposed multi-tenancy solution can support as much as 60–90% more number of ten-
ants with similar or better UI response time.

When 17 tenants are hosted using Xen virtualization, we have observed some tran-
sient outages while the emulated network did not undergo anyfailure. When the number
of tenants increased to 18 or more, there are many hosts that were not discovered and
lots of false alarms. We considered these cases failed to meet the standard and plotted
with dashed lines.

On the other hand, OpenVZ is able to host 19 tenants without any failure but failed
to run with 20 tenants. The average response time is higher than that in Xen because
Apache Tomcat and the database server also need to compete for main memory with
OpenNMS JVMs — in Xen OpenNMS JVMs are confined in their own domains.

When more than 19 tenants are hosted, we observe heavy disk activities from read-
ing and writing RRD files. In stead of optimizing disk performance, we evaluate the
scalability again without the response time logging. The results are plotted in Fig. 12.
The response time is reduced significantly again for both Xenand OpenVZ. Xen and
OpenVZ can host 19 and 22 tenants respectively without any false alarms. When host-
ing more tenants, memory becomes bottleneck again and causes errors. Compared to
the baseline multi-tenancy model, we observe 58–83% scalability improvements, while
providing much better response time.

5 Related Work

The concept of multi-tenancy is usually applied to enterprise software such as ERP
and CRM. It reduces the cost of operating a software application by sharing the as-
sociated hardware and software licensing cost with other customers. Successful multi-
tenant-capable applications are usually designed from theground-up [5]. In this work,
we apply multi-tenancy to a specific kind of application, systems and network man-
agement, using virtualization as the enabler. Comparing toother applications, network
management cannot live in application layer alone. It interacts with customers’ network
infrastructure and must deal with facts like IP address conflicts between customers.

One approach to handle IP address conflicts is to use network address translation
(NAT) to map conflicting addresses into non-overlapped addresses in network manage-
ment service provider’s network. This approach is proposedwith management payload
address translation (MPAT) to deal with IP addresses in SNMPpayload by Raz and
Sugla in [6]. While it enables servicing multiple tenants with one network management
software installation, this scheme cannot deal with unstructured use of IP addresses in
protocols such as command line interface (CLI) of various network devices.

The overhead of virtualization has been evaluated by several researchers[7, 8]. In
particular, using Xen incurs some overhead in disk and network I/O and Linux-VServer,
which is another OS-level virtualization mechanism and performs closely to native OS
performance. As our evaluation result shows, the bottleneck of our testbed is either the
amount of main memory or in the disk sub-system. Neither of them results from the use
of virtualization. Implementing anticipatory schedulingin a VMM with guest context
awareness as in [9] may improve disk throughput.

The memory footprint of each Xen VM is fixed in our implementation. Workload
characterization helps us determine the optimal setting. Another approach to control
memory allocation is to monitor its actual usage on-line [10, 11]. Unfortunately, JVM
heap size cannot be changed accordingly at run-time. Without increasing JVM heap
size with VM memory size, JVM cannot benefit much from additional memory. On the
other hand, reducing VM memory allocation alone can lead to unnecessary swapping
of dead objects.

6 Conclusion

In this paper we have described an approach to enabling multi-tenant capability in one
of the popular network management tools, OpenNMS. We study the architecture of the
management tool, and divide the system into different components including front-end,
back-end engine, and storage database. We use virtualization as the base platform to
ensure the isolation between different tenants. One singledatabase is shared between
multiple tenants to reduce the cost of hosting database servers and improve scalabil-
ity. Our implementation using Xen and OpenVZ virtualization technology shows that
both systems meet the requirements of multi-tenancy, and are able to provide about 20
tenants without reducing service quality.

References

1. OpenNMS Group: OpenNMS.http://www.opennms.com
2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,

I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP’03). (2003) 164–177

3. OpenVZ Group: OpenVZ.http://www.openvz.org
4. OpenVPN Project: OpenVPN.http://www.openvpn.net
5. Fisher, S.: Service computing: The appexchange platform. In: 2006 IEEE International

Conference on Services Computing (SCC ’06). (Sept. 2006) xxiv (Keynote).
6. Raz, D., Sugla, B.: Economically managing multiple private data networks. In: 2000

IEEE/IFIP Network Operations and Management Symposium (NOMS ’00). (2000) 491–503
7. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing perfor-

mance overheads in the xen virtual machine environment. In: 1st ACM/USENIX Interna-
tional Conference on Virtual Execution Environments (VEE ’05). (2005) 13–23

8. Soltesz, S., Herbert-Pötzl, Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based op-
erating system virtualization: A scalable, high-performance alternative tohypervisors. In:
2006 EuroSys Conference (EuroSys ’06). (2006)

9. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.:Antfarm: Tracking processes in
a virtual machine environment. In: 2006 USENIX Annual Technical Conference (USENIX
’06). (June 2006) 1–14

10. Waldspurger, C.A.: Memory resource management in vmware esx server. SIGOPS Operating
Systems Review36 (2002) 181–194

11. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Geiger: Monitoring the buffer
cache in a virtual machine environment. In: The 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-XII). (2006)
14–24

