Virtualization-based Techniques for Enabling
Multi-tenant Management Tools

Chang-Hao Tsaj Yaoping Ruah, Sambit Saht, Anees Shaikh and Kang G. Shih

! Real-Time Computing Laboratory, EECS Department
The University of Michigan, Ann Arbor, Ml 48109-2121, USA
{cht sai , kgshi n}@ecs. uni ch. edu,
2 IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA
{yaopruan, sanbi t s}@s. i bm com aashai kh@wat son. i bm com

Abstract. As service providers strive to improve the quality and efficiency of
their IT (information technology) management services, the need fat adsian-
dard set of tools and processes becomes increasingly important yideypriaulti-
tenant capable tools is a key part of this standardization, since a single instance
can be used to manage multiple customer environments, and multi-tenkmnt too
have the potential to significantly reduce service-delivery costs. Hemvevost
tools are not designed for multi-tenancy, and providing this suppouinesjex-
tensive re-design and re-implementation.

In this paper, we explore the use of virtualization technology to enable multi-
tenancy for systems and network management tools with minimal, if aagges

to the tool software. We demonstrate our design techniques by creatinglia m
tenant version of a widely-used open source network managemsiensyWe
perform a number of detailed profiling experiments to measure the nasoer
quirements in the virtual environments, and also compare the scalabilityoof tw
multi-tenant realizations using different virtualization approaches. \Wes $hat

our design can support roughly 20 customers with a single tool instamce,
leads to a scalability increase of 60—90% over a traditional design in whath ea
customer is assigned to a single virtual machine.

1 Introduction

As service providers look for new ways to achieve high qualitd cost efficiency in

the way they manage IT infrastructure for customers, an ilapbemerging theme is
the need to adopt a standard set of management tools anggescéhis goal is com-
plicated by the complex variety of customer environments @guirements, as well
as the increasingly distributed nature of infrastructuemagement in which technical
teams provide support for systems and networks locatedsitine globe.

One recent strategy being pursued by IT service provideaddoess this challenge
is to deploy a relatively small set of “best-of-breed” maemgnt tools that support
multi-tenancy, i.e., a single instance can support multiple customers. Multaité tools
have a number of important advantages in terms of cost arplisitp. They require de-
ployment of a much smaller infrastructure, in contrast taitngua dedicated installation
for each customer, which can significantly reduce suppastsctor the infrastructure

hosting the tool itself. Moreover, in some cases, multatdrtools have more advan-
tageous software licensing models, for example, with alsihigense used to manage
multiple customers. Finally, multi-tenant tools are a @lielement of the higher-level

goal of consolidating tools to reduce training, managerrard support costs.

A major barrier to adopting multi-tenant tools is that theided management tool
may not have been designed for multiple customer envirotenend would thus re-
quire a significant rewrite to provide the needed suppoit.rRulti-tenant support re-
quires adequate, auditable, protection against the rishatd leakage between cus-
tomers, performance that approaches the single-tenaatfeagach customer, and a
relatively high density to realize the benefits of multidany.

In this paper, we explore the use of virtualization techggl enable multi-tenancy
for systems and network management tools with minimal, y§ ahanges to the soft-
ware itself. We consider virtualization at several layans|uding full system virtual-
ization, OS-level virtualization, and data virtualizatioMe describe and evaluate the
trade-offs of these approaches through investigationswaral design choices and ex-
perimental evaluations of their performance and scatgbili

Our study focuses on OpenNMS, a popular open source, eiseignade network
management tool that performs a number of functions inolydievice discovery, ser-
vice and performance monitoring, and event management\jddesign multi-tenant-
capable configurations of OpenNMS using the Xen virtual rreecmonitor (VMM) [2],
and the OpenVZ virtual private server environment [3]. Wentiperform a number of
detailed profiling experiments in which we measure the nesorequirements and per-
formance of OpenNMS in the virtual environments. Theseltesiso allow us to accu-
rately configure Xen or OpenVZ in order to provide suitablefgrenance. Finally, we
compare the scalability of our virtualization-based desigith a baseline deployment
in which each customer is assigned to a single Xen VM whiclshsthe entire Open-
NMS stack. We find that both Xen and OpenVZ can support mettaht deployments
for nearly 20 customer networks (customer density with Gfaeis slightly higher than
with Xen), although each approach has its own relative adgms. Both, however, pro-
vide an overall scalability increase of 60—90% over the lr@seonfiguration.

Many systems and network management tools adopt an archigesimilar to Open-
NMS, consisting of a web-based user interface applicationanagement server appli-
cation which performs most of the monitoring or managememttions, and a database
that stores configuration information, collected data, andlysis reports. While our
implementation considers multi-tenancy support in Oper8\iWe expect that the tech-
niques and findings described in the paper will be applicadbke number of manage-
ment tools that use this canonical architecture. Hencewouk represents an initial set
of guidelines for leveraging virtualization technologyr&alize the increasingly impor-
tant requirement to support multi-tenancy in systems memagt platforms.

The next section describes some background on network reareag systems.
Section 3 illustrates our design choices in making the Opé8Nrchitecture multi-
tenant-capable. We describe our testbed and experimenafabgion in Sect. 4. A brief
discussion of related work appears in Sect. 5, and the papeiudes in Sect. 6.

discover nodes/monitor services Outage notification/performance report

real-time

o | [ovens e 8
Network (main program) || notifications || Tomeat ﬁD‘F:)
JVM JVM =<
retrieve node list/
new nodes/services/ current outal es/... .
outages/resume/... l gn(:eref;oﬁse
store service \‘ grap

response time -
PostgreSQL measurements | Response Time
Nodes/Services/Events/Outages/ (RRD files)

Notifications/SNMP configuration/...

Fig. 1. OpenNMS architecture

2 Background

Network management is a standard service in current ergerpnvironments. These
systems are a combination of hardware and software thattansrie topology, avail-
ability, and traffic of various network devices like routersd switches, as well as
servers that provide services on the network.

While network management tools can be provided as a servieg,differ from
other services because they must connect to customer risttiough firewalls at their
network edge and customers may use network address tiangI4AT) to employ pri-
vate Internet addressing in the local network. For muhiat® management tools, this
presents two challenges. First, the tool cannot be deplaydn one customer net-
work because it needs to monitor multiple customer networkains and these private
addresses are not publicly accessible. Second, privatessis may cause confusion
to the tool because of overlapping addresses between ogigtom

We use a popular open-source NMS, OpenNMS, as our targatafph. Open-
NMS is billed as an enterprise-grade network managemetfopia and is used in
a variety of commercial and non-commercial environmenis @enNMS monitors
network-service availability, generates performancerepand provides asset-management
capability. Figure 1 shows major components of OpenNMS hait interactions.

The management server software is implemented in Java adtiatineaded ap-
plication. We call this part thback-end. The front-end user interface (Ul) consists of
a number of servlets and Java server pages (JSPs) deplogaddpache Tomcat ap-
plication server. Both the front-end and back-end connee PostgreSQL database
for various management information. Response time of ndtwervices and SNMP
counters are stored in Round Robin Database (RRD) files aedfdbptted in the user
interface. Besides notifying users via the Ul, OpenNMS dao &e integrated with
email or instant messaging systems to send timely notifinatof critical events.

3 Design

In this section, we describe the design of our multi-tereagable OpenNMS using
virtualization with minimum changes to the original systeffith virtualization tech-

Host OS Aoach
©om0) ||t 1 ||| || openNms 1 ||| [, ven ¢ Tenant
P e = Network
— JVM 1 192.168.8.1...8.200
VEE 1 . 9.200
PgSQL| O . \
VPN Tenantn
rro | [|LUn]|| [|LOpentims]|f f Ve (& Terants
files Tomcat JVM N
JVM VEE N Q 7//\ VPN
Network Management Service Provider Emulated Tenant Network

Fig. 2. Design overview of the multi-tenant-capable OpenNMS

nology, the brute-force solution is to select a virtuali@atplatform and run one Open-
NMS tenant in each virtual execution environment (VEE) Juding all components
described in Fig. 1. However, this solution is not efficienas-shown in our evaluation,
memory becomes the bottleneck of the system. We proposepanaah to virtualize
only the back-end, and share a common database among alldena

An overview of this design is given in Fig. 2, where the OpenBiivack-end of each
tenant sits in an VEE, and communicates with its managedarktdomain via VPN
connections. The database and Tomcat are co-located in BRe Database queries
from the back-ends are configured to use the tenant ID in tkebdae name. All of
these components can be organized together by configuctéomges, to meet our goal
of no modification to the source code.

3.1 Virtualization for the Back-end

The back-end of OpenNMS is the core of the system. It loadEgumation files when
it starts and instantiates internal service modules a@ogld The configuration files
usually include customer-specific parameters such as ttveorieaddress range for
automatic service discovery, service-polling frequerty,Once the configurations are
loaded, it starts probing of the customer network domairefarh service accordingly.

We choose a virtualization implementation that provides dwerhead but neces-
sary isolation required by OpenNMS to work properly. Fiitsshould provide file sys-
tem virtualization so persistent states of each tenant asdwonfiguration files are pro-
tected. Second, it should provide process and memory ignlab tenants on the same
platform do not interfere with each other. Finally, sinceteéenant needs to commu-
nicate with its own network domain, the network layer shdoédvirtualized as well.
Especially when two tenants have identical private netwaitllresses, packets from
each tenant should be routed correctly. This requiremepliésthat each host should
maintain its own protocol stack. For these reasons, vigatbn technologies such as
Java virtual machine (JVM) and FreeBSD Jail are not sufftcien

We use Xen and OpenVZ as our virtualization platforms in ooplementation.
Both of them provide virtualized network protocol stackse \WWfeate multiple VEEs
within a host and run an instance of OpenNMS in each VEE. Siacé VEE also pro-
vides a resource boundary, performance isolation can alsoflemented. We measure

the performance of each tenant and identify the locationrevhiser-perceived perfor-
mance is degraded.

3.2 VPN Connections

Traditionally, a management system is deployed inside eastomer’s network do-
main. With multi-tenancy, the system has to be located ateepivhere all customers
can reach. However, most enterprise networks are not rekectiam outside. Changing
firewall configuration at each customer’s network edge t@acnodate this communi-
cation may introduce potential security risks. One apgrdacsolve this problem is to
use probing devices within each tenant’s premise. Whileghsoach might be feasible
in real deployment, we choose to create Virtual Private Metv(VPN) connections to
each tenant’s network. Creating VPNSs is better for poritglithan probing devices, and
is easier for setting up an experimental testbed. In thiepape use OpenVPN [4], an
open source SSL VPN solution. We configure OpenVPN to estaldyer 2 (L2) VPN
connections to tenant networks to support services suclO&® and DHCP servers,
although most of the services can be monitored via a layer33 VIPN. When there
are multiple L2 networks to be monitored, several VPN cotinas can be established
simultaneously.

Using VPN connections to connect NMSs to tenant networks daeir some over-
head in packet transmission due mainly to round-trip timictv depends on network
congestion and the geographical distance between VPN aridpHowever, for man-
agement systems, this delay makes little impact on thetee$idr example, when mon-
itoring service-availability, the added overhead doespuste any problem as long as
the probing returns without timeout, which is 3 seconds.

3.3 Database Sharing

Since each OpenNMS instance only needs a database usenaticatore data in a
PostgreSQL database server, we opt to use mechanismsmaltabase to provide the
isolation for each tenant.

We configure each tenant to use a different database user aaangatabase in-
stance to store the data. This approach provides adequatétgésolation, since data
belongs to one tenant is not accessible by the others. Assfpedormance is con-
cerned, database access usually is not the bottleneck iftatemancy environment.
High-availability database design can be used to preventlatabase crash. We do not
use these designs so as to compare results with the bragdolution.

3.4 The Front-end

Similar to consolidating databases, we deploy multipl¢ainees of the Java servlets
and JSPs in Apache Tomcat. This allows customizing the-feontuser interface to fit
each customer’s management policy and preferences. Baahtteas a different base
URL to its web console. In addition to log-in credentials;ess control can be applied
to restrict access further.

180 3

160
T 140 _/— OpenNMS —— = Total
=3 OpenNMS JVM heap < OpenNMS
o 120 POStgreSQL s 5 2r PostgreSQL]
g 100 ©
S N
S 80 =
IS
(7} 40 o
s (@]

20 -uun‘" L —

0 0 N
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time (minute) Time (minute)

Fig. 3. Memory-usage profile of OpenNMS,Fig. 4. CPU-utilization profile of the entire sys-
PostgreSQL and JVM heap tem, OpenNMS, and PostgreSQL

4 Evaluation

In this section we describe our experimental evaluatiorctvltiomprises two sets of
experiments. The first set of experiments profiles and détesrthe working set and
resource bottlenecks of our setup. The key results are:ginony is the bottlenecked
resource, and (ii) the minimum memory required for each QOiM8 setup is about
144MB. The second set of experiments compares the benefitraholti-tenancy ap-
proach with that of the baseline approach that is void of anitirenancy capabilities.
We find that even with our “limited multi-tenancy” approaels,many as 60-90% more
tenants can be supported with similar or better perceivaditgu

4.1 Testbed Setup

We use two similarly-equipped machines to emulate the memagt server and the
tenant networks. Each of them has an Intel Core 2 Duo E6600 @Rtblout using
Intel Virtualization Technology), 4GB of main memory, amabt7200rpm hard drives.
The management station and the emulated tenant networbanected with a Gigabit
Ethernet network. Debian GNU/Linux 4.0 is used as the hoste®8ronment with
PostgreSQL database server and Apache Tomcat 5.0. The ®f&mé used in this
study is version 1.2.9. Sun Java 5.0 is used to compile an@pamNMS.

Our Xen-based implementation uses an experimental veddidfen, including a
modified Linux kernel 2.6.18 as the kernel in both privileged unprivileged domains.
We optimize the setup by having the tenants share a commomiNfeted usr since
all of them use the same program and do not need to contaitiddEefiles in their
virtual disk images. Sharing file systems also improves twhe-hit ratio in the host
OS. Another approach to reducing the file system size is tacapg-on-write disks.
Unfortunately, this feature is not stable in our testinge Tasult is a 150MB root file
system for each tenant and a 350MBsr file system shared by all tenants. We also
give each guest OS a 256MB swap space.

For the testbed using OpenVZ, we use a patch set (versiona®ff8y.1) for Linux
kernel 2.6.18 in this work. A VEE created by OpenVZ sharesstimae patched Linux

kernel but has its own root file system, network devate, We configure the software
installation identically as in Xen.

In order to test our design, we emulate a tenant network asrsio Fig. 2. All
tenants share the same emulated tenant network, whichaiedren a dummy network
interface configured with 1,000 IP addresses. An Apache H3&ver listens on all
IP addresses to create an illusion of 1,000 web serversei®ygarameters, such as
increasing buffer size, are tuned to make sure that netwualitfze client machine are
not the bottlenecks.

4.2 Resource Profiling

The intent of this evaluation is to profile the resource usafgeur proposed multi-
tenancy-capable network management tooling using OpenBiiorovides parame-
ters to use in multi-tenant evaluations. We determine mnesooottlenecks, the working
set for the proposed setup, and any trends as the numbeenfscheing monitored are
scaled. The first three parts of resource profiling are rahawitany VMM.

Memory is the Bottlenecked Resource.We first ran OpenNMS with the database
server within one OS, just as the typical setup for singlamésystem. The OpenNMS
is set up to use at most 256MB memory as JVM heap and monitoh@&8 via a VPN
connection.

Figure 3 presents the system memory used by OpenNMS, P8&grand Open-
NMS JVM heap usage as a function of time progression. When @@dé&hstarts up, it
first loads its configuration and previously-monitored bastd services (none in this
evaluation) from the database. It starts by discoveringctiemts to be monitored 5
minutes after the boot-up. During this stage, although #eptutilization is increased,
memory used by the OpenNMS remains flat. Once auto-discatarys, OpenNMS
uses considerably more memory and the garbage collectidiwMdf kicks in period-
ically, generating a zig-zag shape of heap utilization leetw49MB and 78MB. The
increase in memory usage by the OpenNMS can be attributeghtnuic class loading
and objects in the permanent generation, which is not iraud heap utilization.

The auto-discovery procedure is paced by OpenNMS to avaidrgéing too much
traffic in the network. Therefore, the duration of this stegeroportional to the number
of probes and the number of hosts being monitored. Using défieutt configuration,
it takes about 45 minutes to run all probes over 200 hostseSime emulated client
network has only one Apache HTTP server running, most ofithe is spent on waiting
timeouts. Both OpenNMS and PostgreSQL use more memory aautioediscovery
procedure goes on.

After the auto-discovery completes, OpenNMS only perialliggrobes previously-
discovered and manually-configured hosts and servicestharg] creates new Java
objects at a slower rate, which leads to less-frequent garballection. PostgreSQL
server also frees some memory as most data, such as evewif legsh host, are not
actively being used. The VPN connection, OpenVPN, uses B.Bimory constantly
which is not plotted in the figure.

In terms of CPU utilization, which is plotted in Fig. 4 shovwsetCPU utilization
as a function of progression of time. Note that the peakzatiibon occurs when the

58 1.6
o 200 hosts —a— 200 hosts —=—
S 56 400 hosts —=— = 1.4 400 hosts —&— 1
- 600 hosts —*— ST 600 hosts —*— |
Q 54| 800 hosts —x— = L2 800 hosts —=—
o 1000 hosts —+— s IR 1000 hosts —+— |
o 52 e
5 N 08
— 50 =
= S5 06
S 48 2 04
g 46 © o2
T
44 0
0 60 120 180 240 300 0 60 120 180 240 300
Time (minute) Time (minute)
Fig. 5. Heap utilization vs. client network size Fig. 6. CPU utilization vs. client network size
4 35 3
= ~ GC Frequency —+— 64MB heap —+——
g Time spent in GC - 30 & —~ 25| 72MBheap —x—
B ~ X ’ 80MB heap —*—
Q 25 O =t 96MB heap —&—
£ 37T © S 2[128MBheap —=—
= 20 £ =
2 2 8 15
g B2 3
g °l 0o > !
e g a
o 5 £ © o5
o B S 0
64 80 96 112 128 0 60 120 180 240 300
Maximum heap size (MB) Time (minute)
Fig. 7. GC frequency and time vs. heap size Fig. 8. CPU utilization vs. heap size
—~ 256 1.4
1] VM Memory —+ 10 -
2 o OpenNMS Memox = 1., 9t with RRD —&—
> Swap Used - PN %) w/o RRD —=—
® 192 OpenNMS CPU &~ N - 8
7] 11 = Q
-t c g 7r
3 160 % o = 6}
5 {08 & ©
T 128 N @ 5
8 106 B S 4t
= 96 00000 | o %
< d 0a D o 37
> 64 SRHAA % = 2t
S =)
£ 32 102 1t
— 0 Fid g 0
0 20 40 60 80 100 120 140 160 180 10 11 12 13 14
Time (minute) Number of tenants

Fig. 9. Swap activity vs. VM memory size Fig. 10.Scalability of the baseline multi-tenancy

[&)]
=

OpenvVz —=— OpenvVzZ —=—
w 4 Xen —8— D 0.8 Xen —&—
° Xen wlerrors o o Xen w/errors 8
IS 1S
=3 = 0.6
3 3
22 S 0.4
))
< - W
=] —
S 1 S 0.2
0 0
15 16 17 18 19 15 16 17 18 19 20 21 22
Number of tenants Number of tenants

Fig. 11. Front-end Ul response time with differ-Fig. 12. Front-end Ul response time when re-
ent number of tenants sponse time logging is disabled

auto-discovery phase starts. The CPU utilization therssaiagund 1% during the auto-
discovery stage and drops to almost O afterward, where the/&&ead is around 0.3%.
From these two figures, we conclude that system memory isdtenfial bottleneck
when multiple instances of OpenNMS are hosted on the sambingac

Effect of Client Network Size. We then study the impact of the client network size on
the resource utilization by varying the client size from 2@3ts to 1,000 hostse., the
typical network size in small to medium size businesses.rmaemum JVM heap size
is also 256MB as in the previous experiment.

While the memory used by OpenNMS does not differ much withedéft client
network sizes, we observed that the heap utilization, a&féeh garbage collection, is
proportional to the number of hosts being monitored. Frogr &iwe observe that for
every 200 monitored hosts, OpenNMS uses 2MB of additionaharg in heap. Com-
paring to the size of the OpenNMS process, this incrementlis low.

Figure 6 shows that CPU utilization is only slightly affettey the client network
size. This result reinforces our previous observation fiystem memory size is the
bottleneck for OpenNMS when multi-tenancy is enabled.

Effect of JVM Heap Size. Next, we evaluate the effect of JVM heap size on our
proposed multi-tenant-capable network management toelc®figure OpenNMS to
monitor a client network consisting 1,000 hosts, and redbeemaximum heap size
from the default 256MB to 64MB to investigate their relabip.

As we can see in Fig. 7, the garbage collection frequencyvisrgely related to
the maximum heap size. The frequency is measured afterdistovery is completed.
When the maximum heap size is reduced to 64MB, garbage doletappens as fre-
quent as 4 times a minute. In spite of this frequent garbafiection, the total time
spent in the garbage collection in an hour is as little as 88rsds, which is less than
1% CPU utilization. In addition, we observe that the JVM dpenich less time in
garbage collection if there are 128MB or more heap spacerendnéifferent garbage
collection algorithm might be used. We also tried a 56MB heapfiguration but the
JVM could not survive.

The increase in CPU utilization is more pronounced in auscayery stage as can
be seen in Fig. 8. With as little as 64MB heap size, OpenNMS asenuch as 2.5%
CPU time at the end of auto-discovery stage. The increadeei€PU utilization with
the number of host discovered suggests the garbage colfeds more time to sweep
out dead objects among an increasing number of alive ondsthisiphenomenon is
more obvious when the heap size is smaller.

Working Set Estimation. Next, we determine the memory working set size for Open-
NMS. While OpenNMS takes up as much as 160MB of memory to ria,iost ap-
plications, the working set size is usually much smallenttie size of the total virtual
memory segments that reside in physical memory. In theuatig, we take advantage
of Xen’s dynamic memory resizing capability and reduce thamory allocation of a
VM from 256MB down to 96MB (at a rate of 16MB/20min), and manithe swap

space usage. In this experiment, only OpenNMS and OpenVekuaning in a VM,
PostgreSQL has been moved to domain 0 as the database siirsershhared between
multiple instances of OpenNMS.

In Fig. 9, we observe that the dirty memory pages begin to apped out to the
swap partition when physical memory is reduced to 192MB. [Baj@ace usage in-
creases again when VM is reduced further by 32MB. When on\WE& allocated,
Linux suddenly swaps out all the memory used by OpenNMS.cAlgfh the working
set was reloaded immediately, the dramatic drop in CPWatithn implies that most of
the time were spent in dealing with page faults. Therefoee¢anclude that OpenNMS
with OpenVPN requires at least 144MB to perform smoothly.

4.3 Evaluation of Multi-tenancy Benefits

We evaluate the number of tenants that can be supportedtfobbeeline multi-tenancy
and our proposed multi-tenancy capability. The metric Usedhis evaluation is the
increase in the number of tenants that can be supported byathe amount of re-
sources while providing similar or better quality of seevicompared to the baseline
multi-tenancy capability. The quality of service metrictliee Ul response time in the
measurement process, and correctness of discovery arabéitgiresults.

For this evaluation, we configure the testbed so that ea@ntdras 400 emulated
clients to be monitored. All the instances are started gamebusly, thus it can be
considered as the worst-case scenario. We wait 2 hoursdauto-discovery process
to complete and start polling results from the Ul. For eactai, we first log-in to the
web console, list the number of hosts being monitored, andamly pick 10 hosts to
list their details. We report the average response timehieril operations where the
average is computed across all the tenants over all thelien

Scalability of Baseline Multi-tenancy. We first evaluate the scalability of a baseline
multi-tenant OpenNMS installation, where each instan¢@nly includes the back-end
and OpenVPN but also the database and the Apache Tomcatserep of a dedicated
OS. Each tenant is hosted in a Xen VM with 256MB memory. Fiduirshows that the
Ul response time increases with the number of tenants hoatdtbugh 14 tenants
can be hosted on one server and discover all hosts and serifieeUl response is an
awfully 22s, which is completely unusable. If we set a reggotime threshold of 3s,
only 10 tenants can be hosted.

While the bottleneck is the main memory size, the performafthe system can
be improved by eliminating the disk activities resultingrfr keeping response time log
files (RRD files). The Ul becomes much more responsive andresidt, the scalability
improves to 12 tenants. However, we were not able to staredénts due to out-of-
memory errors.

Proposed Multi-tenancy Scalability. We then evaluate the scalability of our proposed
multi-tenancy solution, where the database and the Apaoheat server are shared
among all the tenants. Figure 11 shows that the averagenssione is significantly
reduced. Also note that 16 and 19 tenants can be hosted whean¥eOpenVZ based

virtualization is used, respectively. Comparing to basetulti-tenancy approach, our
proposed multi-tenancy solution can support as much as@8@-+8ore number of ten-
ants with similar or better Ul response time.

When 17 tenants are hosted using Xen virtualization, we hbserged some tran-
sient outages while the emulated network did not undergdailoye. When the number
of tenants increased to 18 or more, there are many hosts #ratiwet discovered and
lots of false alarms. We considered these cases failed tbtmestandard and plotted
with dashed lines.

On the other hand, OpenVZ is able to host 19 tenants withgufalre but failed
to run with 20 tenants. The average response time is higlerttiat in Xen because
Apache Tomcat and the database server also need to competaifomemory with
OpenNMS JVMs — in Xen OpenNMS JVMs are confined in their own dors.

When more than 19 tenants are hosted, we observe heavy diskexfrom read-
ing and writing RRD files. In stead of optimizing disk perfante, we evaluate the
scalability again without the response time logging. Trsults are plotted in Fig. 12.
The response time is reduced significantly again for both mh OpenVZ. Xen and
OpenVZ can host 19 and 22 tenants respectively without dag tdarms. When host-
ing more tenants, memory becomes bottleneck again andsausgs. Compared to
the baseline multi-tenancy model, we observe 58—83% stiglaimprovements, while
providing much better response time.

5 Related Work

The concept of multi-tenancy is usually applied to entsgioftware such as ERP
and CRM. It reduces the cost of operating a software appicdty sharing the as-
sociated hardware and software licensing cost with othstoooers. Successful multi-
tenant-capable applications are usually designed frongiitiend-up [5]. In this work,
we apply multi-tenancy to a specific kind of application, teyss and network man-
agement, using virtualization as the enabler. Compariraitter applications, network
management cannot live in application layer alone. It ates with customers’ network
infrastructure and must deal with facts like IP address tmafbetween customers.

One approach to handle IP address conflicts is to use netwioldess translation
(NAT) to map conflicting addresses into non-overlapped esklrs in network manage-
ment service provider’s network. This approach is propagitil management payload
address translation (MPAT) to deal with IP addresses in SNeljoad by Raz and
Sugla in [6]. While it enables servicing multiple tenantshwohe network management
software installation, this scheme cannot deal with uiettined use of IP addresses in
protocols such as command line interface (CLI) of variousvoek devices.

The overhead of virtualization has been evaluated by sekesaarchers[7, 8]. In
particular, using Xen incurs some overhead in disk and né&Wo and Linux-VServer,
which is another OS-level virtualization mechanism andgrers closely to native OS
performance. As our evaluation result shows, the bottlenéour testbed is either the
amount of main memory or in the disk sub-system. Neither@fthesults from the use
of virtualization. Implementing anticipatory schedulimya VMM with guest context
awareness as in [9] may improve disk throughput.

The memory footprint of each Xen VM is fixed in our implemeidat Workload
characterization helps us determine the optimal settimptier approach to control
memory allocation is to monitor its actual usage on-line 1. Unfortunately, JVM
heap size cannot be changed accordingly at run-time. Witineueasing JVM heap
size with VM memory size, JVM cannot benefit much from additibmemory. On the
other hand, reducing VM memory allocation alone can leadittegessary swapping
of dead objects.

6 Conclusion

In this paper we have described an approach to enabling-tenkint capability in one
of the popular network management tools, OpenNMS. We stuglatchitecture of the
management tool, and divide the system into different camepts including front-end,
back-end engine, and storage database. We use virtuaiizagi the base platform to
ensure the isolation between different tenants. One sihgfi@base is shared between
multiple tenants to reduce the cost of hosting databaseiseand improve scalabil-
ity. Our implementation using Xen and OpenVZ virtualizati@chnology shows that
both systems meet the requirements of multi-tenancy, amdlale to provide about 20
tenants without reducing service quality.

References

1. OpenNMS Group: OpenNM&it t p: / / www. opennmns. com

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, B, M., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: Proceedings @& tlineteenth ACM
symposium on Operating systems principles (SOSP’03). (2003) ¥64-1

. OpenVZ Group: OpenVZhtt p: / / ww. openvz. org

. OpenVPN Project: OpenVPNuit t p: / / www. openvpn. net

. Fisher, S.: Service computing: The appexchange platform. @6 28EE International

Conference on Services Computing (SCC '06). (Sept. 2006) x>ayiiite).

6. Raz, D., Sugla, B.: Economically managing multiple private data n&svorin: 2000
IEEE/IFIP Network Operations and Management Symposium (NOME (2000) 491-503

7. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J.eAepoel, W.: Diagnosing perfor-
mance overheads in the xen virtual machine environment. In: 1st AGENIX Interna-
tional Conference on Virtual Execution Environments (VEE '05). &008-23

8. Soltesz, S., Herberté®zl, Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-baged o
erating system virtualization: A scalable, high-performance alternatihgpervisors. In:
2006 EuroSys Conference (EuroSys '06). (2006)

9. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, RAHtfarm: Tracking processes in
a virtual machine environment. In: 2006 USENIX Annual Technicahf@cence (USENIX
'06). (June 2006) 1-14

10. Waldspurger, C.A.: Memory resource management in vmvexreezver. SIGOPS Operating
Systems Revie\86 (2002) 181-194

11. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau,: RGtiger: Monitoring the buffer
cache in a virtual machine environment. In: The 12th International@ente on Architec-
tural Support for Programming Languages and Operating Syste®BL@AS-XII). (2006)
14-24

g b w

