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Abstract. We present a transaction processing scheme for structured
overlay networks and use it to develop a distributed Wiki application
based on a relational data model. The Wiki supports rich metadata and
additional indexes for navigation purposes.

Ensuring consistency and durability requires handling of node failures.
We mask such failures by providing high availability of nodes by con-
structing the overlay from replicated state machines (cell model). Atom-
icity is realized using two phase commit with additional support for fail-
ure detection and restoration of the transaction manager. The developed
transaction processing scheme provides the application with a mixture
of pessimistic, hybrid optimistic and multiversioning concurrency control
techniques to minimize the impact of replication on latency and optimize
for read operations. We present pseudocode of the relevant Wiki func-
tions and evaluate the di�erent concurrency control techniques in terms
of message complexity.
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1 Introduction

Structured overlay networks (SONs) provide a scalable and e�cient means for
storing and retrieving data in distributed environments without central control.
Unfortunately, in their most basic implementation, SONs do not o�er any guar-
antees on the ordering of concurrently executed operations.

Transaction processing provides concurrently executing clients with a single,
consistent view of a shared database. This is done by bundling client operations
in a transaction and executing them as if there was a global, serial transaction
execution order. Enabling structured overlays to provide transaction process-
ing support is a sensible next step for building consistent decentralized, self-
managing storage services.

We propose a transactional system for an Internet-distributed content man-
agement system built on a structured overlay. Our emphasis is on supporting
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transactions in dynamic decentralized systems where nodes may fail at a rela-
tively high rate. The chosen approach provides clients with di�erent concurrency
control options to minimize latency.

The article is structured as follows: Section 2 describes a general model
for distributed transaction processing in SONs. The main problem addressed
is masking the unreliability of nodes. Section 3 presents our transaction pro-
cessing scheme focusing on concurrency control. This scheme is extended to the
relational model and exempli�ed using the distributed Wiki in Section 4. Fi-
nally, in Section 5, we evaluate the di�erent proposed transaction processing
techniques in terms of message complexity.

2 Transactions on Structured Overlays

Transaction processing guarantees the four ACID properties: Atomicity (either
all or no data operations are executed), consistency (transaction processing never
corrupts the database state), isolation (data operations of concurrently execut-
ing transactions do not interfere with each other), durability (results of suc-
cessful transactions survive system crashes). Isolation and consistency together
are called concurrency control, while database recovery refers to atomicity and
durability.

Page model. We only consider transactions in the page model [1]: The database
is a set of uniquely addressable, single objects. Valid elementary operations are
reading and writing of objects, and transaction abort and commit. The model
does not support predicate locking. Therefore, phantoms can occur and consis-
tent aggregation queries are not supported. The page model can naturally be
applied to SONs. Objects are stored under their identi�er using the overlay's
policy for data placement.

2.1 Distributed Transaction Processing

Distributed transaction processing guarantees the ACID properties in scenarios
where clients access multiple databases or di�erent parts of the same database
located on di�erent nodes. Access to local databases is controlled by resource
manager (RM) processes at each participating node. Additionally, for each active
transaction, one node takes the role of the transaction manager (TM). The
TM coordinates with the involved RMs to execute a transaction on behalf of
the client. The TM also plays an important role during the execution of the
distributed atomic commit protocol.

Distributed transaction processing in a SON requires distribution of resource
and transaction management. The initiating peer can act as TM. For resource
management, it is necessary to minimize the communication overhead between
RM and storing node. Therefore, in the following, we assume that each peer of the
overlay performs resource management for all objects in its keyspace partition.



2.2 The Cell Model for Masking Churn

Distributing the resource management over all peers puts tight restrictions on
messages delivered under transaction control. Such messages may only be de-
livered to nodes that are currently responsible for the data. This property is
known as lookup consistency. Without lookup consistency, a node might erro-
neously grant a lock on a data item or deliver outdated data. It is an open
question how lookup consistency can be guaranteed e�cienty in the presence of
frequent and unexpected node failures (churn). Some authors (e.g. [2]) have sug-
gested protocols that ensure consistent lookup if properly executed by all joining
and leaving nodes. Yet large-scale overlays are subject to considerable amounts
of churn [3] and therefore correct transaction processing requires masking it.

Cell model. Instead of constructing the overlay network using single nodes, we
propose to build the overlay out of cells. Each cell is a dynamically sized group
of physical nodes [4] that constitute a replicated state machine (RSM, [5]). Cells
utilize the chosen RSM algorithm to provide replicated, atomic operations and
high availability. This can be exploited to

� mask churn and therefore guarantee lookup consistency,

� provide stable storage for transactional durability,

� ensure data consistency using atomic operations,

� minimize overhead for routing to replicas (cell nodes form a clique).

For the underlying nodes, we assume the crash-stop failure model. This model
is common for SONs because it is usually unknown wether a disconnected node
will rejoin again later. We do not cover the distribution of physical nodes on
cells, nor do we consider Byzantine failures. We assume that cells never fail
unexpectedly and always execute the overlay algorithm orderly. If too many cell
nodes fail, the cell destroys itself by executing the overlay's leave protocol. The
data items are re-distributed among neighboring cells. For simpli�cation, we
also assume that the keyspace partition associated to each cell does not change
during transaction execution.
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Fig. 1. Cell routing using dirty reads.



Cell routing. The execution of replicated operations within the cells comes at
a considerable cost: RSMs are implemented using some form of atomic broad-
cast which in turn depends on an implementation of a consensus protocol. Yet,
modern consensus algorithms like Fast Paxos [6] require at least N(b2N/3c+ 1)
messages for consensus between N nodes. While this cost is hardly avoidable
for consistent replication, it is as well unacceptable for regular message routing.
Hence we propose to use dirty reads (i.e. to read the state of one arbitrary node).
When the state of a node and its cell are temporarily out of sync, routing errors
may occur. To handle this, the presumed target cell will pre-deliver the message
using a replicated operation (Fig. 1). Pre-delivery �rst checks, wether the pre-
sumed target cell is currently responsible for the message. If that is the case,
the message is delivered and processed regularly. Otherwise, message routing is
restarted from the node that initiated pre-delivery.

Replicated operations will only be executed at a node after all of its predeces-
sor operations have been �nished. Therefore, at pre-delivery time, the presumed
target cell either actually is responsible for the message or a previously executed
replicated operation has changed the cell's routing table consistently such that
the correct follow-up routing hop or target cell for the message is known. A
messages reaches its destination under the assumption that cell routing table
changes are su�ciently rare, and intermediate hops do not fail.

3 Concurrency Control and Atomic Commit in SONs

In this section, we present appropriate concurrency control and atomic commit
techniques for overlays based on the cell model.

Atomic Operations. Using RSMs by de�nition [5] allows the execution of atomic
and totally ordered operations. This already su�ces to implement transaction
processing, e.g. by using pessimistic two phase locking (2PL) and an additional
distributed atomic commit protocol. However, each replicated operation is ex-
pensive, thus any e�cient transaction processing scheme for cell-structured over-
lays should aim at minimizing the number of replicated operations.

Optimistic concurrency control (OCC). OCC executes transactions against a
local working copy (working phase). This copy is validated just before the trans-
action is committed (validation phase). The transaction is aborted if con�icts
are detected during validation. As every node has (a possibly temporarily devi-
ating) local copy of its cell's shared state, OCC is a prime candidate for reducing
the number of replicated operations by executing the transaction against single
nodes of each involved cell.

3.1 Hybrid Optimistic Concurrency Control

Plain OCC has the drawback that long-running transactions using objects which
are frequently accessed by short-running transactions may su�er starvation due



to consecutive validation failures. This is addressed by hybrid optimistic con-
currency control (HOCC, [7]) under the assumption of access invariance, i.e.
repeated executions of the same transaction have identical read and write sets.

HOCC works by executing strong two phase locking (SS2PL) for the trans-
action's read and write sets at the beginning of the validation phase. In case
of a validation failure, locks are kept and the transaction logic is re-executed.
Now, access invariance ensures that this second execution cannot fail because all
necessary locks are already held by the transaction. However, it is required that
optimistically read values do not in�uence the result of the re-execution phase.
Otherwise, consistency may violated.

The use of SS2PL adds the bene�t that no distributed deadlock detection
is necessary if a global validation order between transactions is established. A
possible technique for this has been described by Agrawal et. al [8]: Each cell v
maintains a strictly monotonic increasing timestamp tv for the largest, validated
transaction. Before starting the validation, the transaction manager suggests
a validation time stamp t > tv to all involved cells. After each such cell has
acknowledged that t > tv and updated tv to t, the validation phase is started.
Otherwise the algorithm is repeated. Gruber [9] optimized this approach by
including the current tv in every control message.

3.2 Distributed Atomic Commit

Distributed atomic commit (DBAC) requires consensus between all transaction
participants on the transaction's termination state (committed or aborted). If
DBAC is not guaranteed, the ACID properties are violated.

We propose a blocking DBAC protocol that uses cells to treat TM failures by
replicating transaction termination state. Every transaction is associated with a
unique identi�er (TXID). The overlay cell corresponding to that TXID is used to
store a commit record holding the termination state and the address of the TM
node (an arbitary, single node of the TXID cell). If no failures occur, regular
two-phase atomic commit (2PC) is executed. Additionally, after all prepared-
messages have been received and before the �nal commit messages are sent,
the TM �rst writes the commit record. If the record is already set to abort,
the TM aborts the transaction. If RMs suspect a TM failure, they read the
record to either determine the termination state or initiate transaction abort.
Optionally, RMs can restore the TM by selecting a new node and updating the
record appropriately. Other RMs will notice this when they reread the modi�ed
record.

3.3 Read-only Transactions

In many application scenarios simple read-only transactions are much more com-
mon than update transactions. Therefore we optimize and extend our transaction
processing scheme for read-only transactions by applying techniques similar to
read-only multiversioning (ROMV, [10]).



All data items are versioned using unique timestamps generated from each
node's loosely synchronized clock and globally unique identi�er. Additionally, we
maintain a current version for each data item. This version is accessed and locked
exclusively by HOCC transactions as described above and implicitly associated
with the cell's maximum validation timestamp tv. The current version decouples
ROMV and HOCC.

Our approach moves newly created versions to the future such that they
never interfere with read operations from ongoing read-only transactions. This
avoids the cost associated with distributed atomic commit for read-only trans-
actions but necessitates it to execute reads as replicated operations. Read-only
transactions are associated with their start time. Every read operation is exe-
cuted as a replicated operation using the standard multiversioning rule [11]: The
result is the oldest version which is younger than the transaction start time. If
this version is the current version, the maximum validation timestamp tv will be
updated. This may block the read operation until a currently running validation
is �nished. Update transactions create new versions of all written objects using
t > tv during atomic commit.

4 Algorithms for a Distributed Wiki

In this section, we describe the basic algorithms of a distributed content man-
agement system built on a structured overlay with transaction support.

4.1 Mapping the Relational Model

So far we only considered uniquely addressable, uniform objects. In practice,
many applications use more complex, relational data structures. This raises the
question of how multiple relations with possibly multiple attributes can be stored
in a single structured overlay. To address this, �rst, we assume that the overlay
supports range queries [12, 13] over a �nite number of index dimensions.

Storing multiple attributes requires mapping them on index dimensions. As
the number of available dimensions is limited, it is necessary to partition the
attributes into disjoint groups and map these groups instead. The partition must
be chosen in such a way that fast primary-key based access is still possible.
Depending on their group membership, attributes are either primary, index,
or non-indexed data attributes. Multiple relations can be modeled by pre�xing
primary keys with a unique relation identi�er.

4.2 Notation

Table 1 contains an overview of the pseudocode syntax from [14]. Relations
are represented as sets of tuples and written in Capitals. Relation tuples are
addressed by using values for the primary attributes in the �xed order given by
the relation. For reasons of readability, tuple components are addressed using
unique labels (Such labels can easily be converted to positional indexes). Range
queries are expressed using labels and marked with a "?".



Table 1. Pseudocode notation

Syntax Description

Procedure Proc (arg1, arg2, . . ., argn) Procedure declaration
Function Fun (arg1, arg2, . . ., argn) Function declaration

begin . . . commit (abort) transaction Transaction boundaries

Address"ZIB" Read tuple from relation

Address"ZIB" ← ("Takustr. 7", "Berlin") Write tuple to relation

Πattr1, ..., attrn(M) = {πattr1, ..., attrn(t) | t ∈ M} Projection

∀t ∈ tuple set : Relation
+← t bzw.

−← t Bulk insert and delete

DHT
?
key1 ="a", key2

or DHT?
key1 ="a", key2 =∗ Range query with wildcard

4.3 Wiki

AWiki is a content management system that embraces the principle of minimiz-
ing access barriers for non-expert users. Wikis like www.wikipedia.org comprise
millions of pages written in a simpli�ed, human-readable markup syntax. Each
page has a unique name which is used for hyperlinking to other Wiki pages. All
pages can be read and edited by any user, which may result in many concurrent
modi�cation requests for hotspot pages. This makes Wikis a perfect test-case for
our distributed transaction algorithm.

Modern Wikis provide a host of additional features, particularly to simplify
navigation. In this paper we exemplarily consider backlinks (a list of all the other
pages linking to a page) and recent changes (a list of recent modi�cations of all
Wiki pages). We model our Wiki using the following two relations:

Relation Primary attributes Index attributes Data attributes

Content pageName ctime (change time) content
Backlinks referencing (page), - -

referenced (page)

Wiki operations use transactions to maintain global consistency invariants:

� Content always contains the current content for all pages,
� Backlinks contains proper backlinks for all pages contained in Content,
� users cannot modify pages whose content they have never seen (explained
below).

The function WikiRead (Alg. 4.1) delivers the content of a page and all back-
links pointing to it. This requires a single read for the content and a range query
to obtain the backlinks. Both operations can be executed in parallel.



The function WikiWrite (Alg. 4.2) is more complex because con�icting writes
by multiple users must be resolved. This can be done by serializing the write
requests using locks or request queues. If con�icts are detected during (atomic)
writes by comparing last read and current content, the write operation is aborted.
Users may then manually merge their changes and retry. This approach is similar
to the compare-and-swap instructions used in modern microprocessors and to
the concurrency control in version control systems.1 We realize the compare-
and-swap in WikiWrite by using transactions for our distributed Wiki. First, we
precompute which backlinks should be inserted and deleted. Then, we compare
the current and old page content and abort if they di�er. Otherwise all updates
are performed by writing the new page content and modifying Backlinks. The
update operations again can be performed in parallel.

Algorithm 4.1 WikiRead:Read page content

1: function WikiRead (pageName)
2: begin transaction read-only

3: content ← πcontent(ContentpageName)
4: backlinks ← Πreferenced(Backlinks?referencing=pageName, referenced)
5: commit transaction
6: return content , backlinks
7: end function

Algorithm 4.2 WikiWrite:Write new page content and update backlinks

1: procedure WikiWrite (pageName, contentold , contentnew )
2: refsold ← Refs (contentold)
3: refsnew ← Refs (contentnew)
4: refsdel ← refsold \ refsnew � precalculation
5: refsadd ← refsnew \ refsold

6: txStartTime ← CurrentTimeUTC()
7: begin transaction
8: if πcontent(ContentpageName) = contentold then
9: ContentpageName = (txStartTime, contentnew )

10: ∀t ∈ {(ref , pageName) | ref ∈ refsadd} : Backlinks
+← t

11: ∀t ∈ {(ref , pageName) | ref ∈ refsdel} : Backlinks
−← t

12: else
13: abort transaction
14: end if
15: commit transaction
16: end procedure

1 Most version control systems provide heuristics (e.g. merging of di�erent versions)
for automatic con�ict resolution that could be used for the Wiki as well.



Algorithm 4.3 SetPageMetadata: Write page metadata attributes

Require: changeEnv environment describing changes to be made
1: procedure SetPageMetadata (pageName, contentold , changeEnv)
2: begin transaction
3: if πcontent(ContentpageName) = contentold then
4: ∀(anAttrName ⇐ anAttrValue) ∈ changeEnv :
5: MetadatapageName, anAttrName ← anAttrV alue
6: else
7: abort transaction
8: end if
9: commit transaction
10: end procedure

The list of recently changed pages can be generated by issuing a simple range
query inside a transaction and sorting the results appropriately.2

4.4 Wiki with Metadata

Often it is necessary to store additional metadata with each page (e.g. page au-
thor, category). To support this, we add a third relationMetadata with primary
key attributes pageName and attrName and data attribute attrValue. Alterna-
tively we could also add metadata attributes to Content. But this would not be
scalable as current overlays only provide a limited number of index dimensions.

Modifying page metadata (Alg. 4.3) requires verifying that the page has not
been changed by some other transaction. Otherwise new metadata could be
associated wrongly to a page (This is similar to storing wrong backlinks). For
reading page metadata, a simple range query su�ces [14].

5 Evaluation

The presented algorithms for ensuring consistency mainly require the atomicity
property while only few restrictions are placed on the serial execution order of
operations. Thus in theory, a high degree of concurrency is possible. This is
especially interesting for range queries like RecentChanges which can utilize the
overlay's capabilities to multicast to many nodes in parallel.

Table 2 shows the communication overhead of various concurrency control
schemes. We compare the di�erent schemes using an example transaction that
consists of k serial steps. Each step executes data operations in parallel on N
cells (one operation per cell).

For every scheme, we distinguish the number and type of operations neces-
sary to carry out the transaction: U is a simple unreplicated operation, R is
a replicated operation, and L is a lookup (routing) operation. The cost is split
into one-time (initial and DBAC) overhead, the cost per step, and the total cost.

2 The complete range query is: {Content?
pageName=∗, ctime=∗}

←−−−
ctime
#<resultLimit



Table 2. Comparison of concurrency control methods

Transaction type One-time Ops per step Total for
overhead on N cells k serial steps
for N cells in parallel

(1) Atomic Write 1 L 1 R 1 L + 1 R, because k, N = 1
(2) Read-Only Trans. N L N R N L + kN R
(3) Pess. 2PL + 2PC N L + 2N R N R N L + (k + 1)N R
(4) Hyb.Opt. + 2PC N L + 2N R N U N L + (k − 1)N U + 2N R
(5) Hyb.Opt. + 2PC N L + 3N R 2N U N L + (2k − 2)N U + 3N R
+ Validation Error

(2) to (4) use the 2PC variant described in 3.2. For our evaluation, we assume that no
failures occur during the commit.

Totals include DBAC costs and take the possible combined sending of messages
into account (e.g. combining last write operation with validate and prepare).
The evaluated concurrency control schemes are:

(1) a simple, replicated operation on a single cell,
(2) a read-only multiversioning transaction (Sec. 3.3),
(3) a pessimistic 2PL transaction,
(4) a HOCC (Sec. 3.1) transaction without validation failure, and
(5) a HOCC transaction with validation failure and re-execution of

transaction logic.

HOCC reduces the number of necessary replicated operations for k > 1.
For k = 1 and a transaction on a single cell, ACID is already provided by
using a RSM and no DBAC is necessary. For k = 1 and a transaction over
multiple cells, HOCC degenerates into 2PL: the data operations on the di�erent
cells are combined with validate-and-prepare messages and executed using single
replicated operations.

Read-only transactions use more replicated operations but save the DBAC
costs of HOCC. This makes them well-suited for quick, parallel reads. But long
running read transactions might be better o� using HOCC if the performance
gained by optimism outweights DBAC overhead and validation failure chance.

Using cells yields an additional bene�t. If replication was performed above
the overlay layer, additional routing costs of (r−1)N lookup messages would be
necessary (r is the number of replicas).

6 Related Work

Mesaros et. al describe a transaction processing scheme for overlays based on
2PL [15]. Lock con�icts are resolved by giving higher priority to older transac-
tions and forcing the loosing transaction into the 2PL shrinking phase. Trans-
actions are executed by forming a dynamic multicast group consisting of all



participating nodes. The article does not address issues of lookup consistency
and replication.

OceanStore [16] uses a two-tier approach for multiversioning-based replica-
tion. On the �rst layer, a small set of replicas forms a primary ring. On the sec-
ond layer, additional replicas cache object versions. Replicas are located using
the Tapestry overlay network. Primary ring replicas use a Byzantine agreement
protocol to serially execute atomic operations.

Etna [17] is a system for executing atomic read and write operations in a
Chord-like overlay network. Operations are serialized using a primary copy and
replicated over k sucessors using a consensus algorithm.

Both articles do not describe how full transaction processing can be built on
top of atomic operations. For OceanStore, multiversioning [11] is proposed [16].
The inherent cost of replicated transaction execution is handled using the caching
tier. However, this comes at the price of reduced consistency.

As an alternative to our solution for atomic commitment, Moser et al. [18]
describe a non-blocking approach based on Paxos commit. Their solution treats
the set of all replicas of all accessed items as a whole and �xes this set at commit
time. They suggest the use of symmetric replication [19] to achieve availability.
Instead of using RSMs inside cells, encoding schemes like Reed-Solomon codes
could be used, as proposed by Litwin et al. [20] to ensure proper availability.

7 Summary

We presented a transaction processing scheme suitable for a distributed Wiki
application on a structured overlay network. While previous work on overlay
transactions has not addressed node unreliability, we identi�ed this as a key
requirement for consistency and proposed the cell model as a possible solution.

The developed transaction processing scheme provides applications with a
mixture of concurrency control techniques to minimize the required communi-
cation e�ort. We showed core algorithms for the Wiki that utilize overlay trans-
action handling support and evaluated di�erent concurrency control techniques
in terms of message complexity.
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