Probabilistic Fault Diagnosis using Adaptive
Probing

Maitreya Natu and Adarshpal S. Sethi

Dept. of Computer and Information Science,
University of Delaware, Newark, DE, USA, 19716,
{natu,sethi}@cis.udel.edu

Abstract. Past research on probing-based network monitoring provides
solutions based on preplanned probing which is computationally expen-
sive, is less accurate, and involves a large management traffic. Unlike
preplanned probing, adaptive probing proposes to select probes in an in-
teractive manner sending more probes to diagnose the observed problem
areas and less probes in the healthy areas, thereby significantly reduc-
ing the number of probes required. Another limitation of most of the
work proposed in the past is that it assumes a deterministic dependency
information between the probes and the network components. Such an
assumption can not be made when complete and accurate network infor-
mation might not be available. Hence, there is a need to develop network
monitoring algorithms that can localize failures in the network even in
the presence of uncertainty in the inferred dependencies between probes
and network components. In this paper, we propose a fault diagnosis tool
with following novel features: (1) We present an adaptive probing based
solution for fault diagnosis which is cost-effective, failure resistant, more
accurate, and involves less management traffic as compared to the pre-
planned probing approach. (2) We address the issues that arise with the
presence of a non-deterministic environment and present probing algo-
rithms that consider the involved uncertainties in the collected network
information.

1 Introduction

Modern network environments impose several challenges on the fault localization
problems which include (1) presence of multiple failures, (2) incomplete and
inaccurate information about the network, (3) non-determinism in the system
structure and its observed state, (4) the demand for fault diagnosis with minimal
management traffic etc.

One promising approach to effective and efficient fault diagnosis is adap-
tive probing. Probing based approaches perform network monitoring by sending

! Prepared through collaborative participation in the Communications and Networks
Consortium sponsored by the U.S. Army Research Laboratory under the Collabora-
tive Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The
U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.

probes to determine if the components are in good health. Since probes generate
additional traffic in the network, it is important to carefully select probes such
that the desired diagnostic capability can be achieved with less traffic overhead.
Adaptive probing addresses this concern by adapting the probe set to the ob-
served network conditions by sending less probes in the healthy areas of the
network and more probes where a failure is detected.

The past work on probing relies on a complete, accurate, and deterministic
information about the underlying dependencies between the end-to-end probes
and the probed components. A non-deterministic model is needed to address the
issues that arise when the causal relationships among the system elements cannot
be learned with certainty. For instance, if the dependencies change dynamically,
or when the information about these dependencies provided to the management
system is not guaranteed to be accurate.

A fault diagnosis solution for modern communication systems should have the
following properties: (1) Ability to perform reasoning under uncertainty about
the underlying dependencies, (2) Diagnosis of multiple failures, (3) Low man-
agement traffic overhead, (4) Small deployment cost, (5) High accuracy and low
computational complexity.

With adaptive probing, we attempt to meet the above stated requirements
of a fault diagnosis tool. We provide adaptive probing solutions assuming the
availability of non-deterministic dependency information. We attempt to find
multiple failures. Adaptive probing attempts to minimize overhead of probe traf-
fic. Unlike the traditional way of deploying passive monitors over a large part of
the network, probing solutions reduce the instrumentation overhead by requir-
ing instrumentation of a smaller number of nodes as probe stations. Adaptive
probing is computationally much less complex that the preplanned approach of
probe selection. We show through simulation results that the adaptive probing
approach provides a high detection ratio and low false positive ratio as compared
to preplanned probing.

This paper is structured as follows. We present the related work in Section 2.
We introduce the probabilistic dependency model and the system architecture
in Section 3. We then present an adaptive and preplanned probing algorithm in
Section 4. We present an experimental evaluation of the proposed algorithms in
Section 5 followed by conclusion in Section 6.

2 Related work

Network probing with low overhead has prompted development of many moni-
toring approaches. Due to space reasons, we survey only those approaches that
directly relate to probe selection.

Probing tools proposed in the past consist of connectivity, latency and band-
width measurement tools such as [3], [4], [5] etc. Li et. al. in [6] propose to use
source routed probes to measure end-to-end performance metrics. Bejarano et.
al. [1] propose a probe selection algorithm for monitoring network links based on
a greedy heuristic of selecting a probe that covers maximum number of uncov-

ered network components. In the past, Rish et. al. [10] have proposed adaptive
probing approach for fault localization. In our previous work, we have presented
algorithms for adaptive probe selection in [8], [9] assuming a deterministic envi-
ronment.

Most of the work proposed in the past suffer from two main limitations: (1) a
preplanned approach is used to build a probe set to localize all possible failures
in the network. (2) an assumption of availability of deterministic dependency
information is made. An important contribution in this paper is to propose
an adaptive probing approach for localizing faults while considering the non-
determinism present in the system. We present algorithms for probe selection in
a non-deterministic environment where the dependencies between the probes and
network components are represented using a probabilistic dependency model.

3 System architecture

Figure 1 presents the proposed system architecture. The two main components
of the architecture are probe station selection and probe selection. The probe
station selection module finds suitable locations in the network where probe
stations should be deployed. As part of our ongoing research, we are working on
the probe station selection problem. The probe selection module refers to the
selection of probes such that faults in the network can be detected and localized.
Using adaptive probing, we divide the probing task into two sub-tasks which we
call Failure Detection and Fault Localization. Through the Failure Detection
module, we first send a small number of probes that can only detect the presence
of a failure in the network. They might not be able to localize the exact failure.
Once a failure is detected in the network, we perform Fault Localization by
sending additional probes over the selected area of the network in an interactive
manner to localize the exact cause of failure.

The Probe Station Selection and Probe Selection modules of the architec-
ture use the dependencies between probes and the nodes through which these
probes pass which are stored in a dependency model. To address the uncertain-
ties involved in the dependency information, we propose to use a probabilistic
dependency model. Each node n is associated with a probability of its inde-
pendent failure p(n). The dependency between a probe-path p and a node n is
represented with the probability of the causal implication, P(p|n), which rep-
resents the probability that the failure of node n may cause failure of probe p.
The causal probabilities can be computed in a variety of ways. For instance, in
a scenario of multi-path routing, the probabilities could be based on the policy
that the routers or load balancers use to select the next hops. In the presence
of mobility, if different dependency models are available for different times, then
probabilities could be based on the temporal closeness of the failure time of a
path and the built time of the dependency models [7]. We represent the fault-
symptom dependencies using a matrix where each column represents a fault and
each row represents a symptom. In our case, a fault represents a node failure
and a row represents a probe. A cell(i,j) in the matrix represents the probability

that the node failure represented by column j can cause failure of probe j. In
other words, it represents the probability that the probe represented by row j
passes through node represented by column j.

TOPOIORY Discovery Probe Station Selection
gents
Probe Selection
Probes
D Failure Dstection Probe resulls
ependency | _[
Model
| Detected
¢ failed probes
Probes
Inferred
Network i iioeatizaton Frobe results
State i

l Localized faults

Fig. 1. System architecture for fault diagnosis using adaptive probing.

4 Probe selection

In this section, we present algorithms for probe selection using preplanned and
adaptive probing. Preplanned probing involves a high computational complexity
and we later show through simulation results that preplanned probing is less
accurate and requires much larger number of probes as compared to adaptive
probing.

4.1 Preplanned probing

The preplanned probing approach proposes to select a set of probes such that
all possible fault scenarios can be uniquely diagnosed. As explained in Section
3, we represent the fault-symptom relationships using a dependency matrix. For
the preplanned probing, we extend the dependency matrix such that, along with
single-node failures, columns also represent states of combinations of more than
one faults that can occur in the system. The algorithm assumes a limit on total
number of failures than can be diagnosed, which decides the number of fault
combinations that are represented in the matrix. Thus, a cell(i, j) in the matrix
represents the probability that failure of fault combinations represented by col-
umn j can cause failure of probe . In other words, it represents the probability
that the probe j passes through the nodes represented by column j. For a par-
ticular system state corresponding to a column j, the vector of probe outcomes
of success or failure would be based on dependency of the probes on the faults
represented by the column j. That is, a probe ¢ with high probability value in
cell(i, j) is more likely to fail in the given system state as compared to the probe

with a smaller probability value. Thus each system state can be represented by a
vector of probe outcomes. The problem of probe selection can then be formulated
as finding the smallest set of probes such that each state can be represented by
a unique probe vector. In that case, the state of failure can be determined by
observing the vector of probe outcomes. In this section, we present a heuristic
based algorithm to select such a probe set.

Algorithm PPFL: Preplanned-Probing Fault Localization Algorithm

Initialize partition statePartition = all non-probe-station nodes; set SP = Null;
while statePartition does not consist of singleton sets do
Compute splitOverhead(statePartition,p) and
splitBelie f (state Partition, p) for each unused probe p, where
splitOverhead(state Partition, p) =
ZVsetsestatﬁPa'rtition splitOverhead(& p)
splitBelie f (state Partition, p) =
splitBelief (S, p)))/|state Partition|

(ZVsetSESMtePaMition (
where

splitOverhead(S, p) = ((|S™/|SD)log(|S™1)) + ((IS*|/IS])log(IS™]))
splitBelie f(S,p) = ([[,cg+ P(pls)-([[,es- 1 — P(pls))
where S~ and S are the subsets of the set S such that
Vnes(P(p|n) > dependencyThreshold) — (n € S1), and
Vnes(P(p|n) <= dependencyThreshold) — (n € S7);
Select a probe ppmin that minimizes the value
0.5.splitOverhead(state Partition, pmin) + 0.5.(1 —
splitBelie f (state Partition, pmin));
Add pmin to the set SP;
total Split Belie f (state Partition, SP) = split Belie f (state Partition, pmin);
while totalSplit Belie f (state Partition, SP) < splitBelie fThreshold do
Select a probe g that maximizes the splitBelief(statePartition, q),
where S~ and ST are the sets built by probe pmin on splitting each set
S € statePartition;
total Split Belie f (statePartition, SP) =
total Split Belie f (state Partition, SP) + split Belief(S, q) —
(splitBelief (S, q).total Split Belie f (state Partition, SP));
Add ¢ to SP;
end
Divide each set S € statePartition into subsets S~ and St as computed by
the probe pmin;
end

The algorithm starts with partition P consisting of a single set of all possible
system failure states under consideration. With each new probe selected, each set
in the partition P gets split into two subsets keeping the states that are less likely
to fail in one set and those that are more likely to fail in the other set. In the past,
work has been done by Brodie et. al. [2] to select probes for fault localization for a
deterministic environment (where the dependency matrix only has 0 or 1 values).

Algorithm GFD: Greedy Failure Detection Algorithm

Initialize the NodeCoverage(n) = 0 for each node n; UncoveredNodes =
{N — ProbeStationNodes};
while |UncoveredNodes| > 0 do
foreach node n € UncoveredNodes do
Entropy(n) = Z(peAvailableProbes)&(P(p|n)>0) —P(pln)log(P(pln));
end
Select the node target with smallest Entropy(target);
foreach (probe p € Available Probes)and(P(p|target) > 0) do
InformationGain(p) =
0.5 * (P(p|target) — P(pltarget) x Coverage(target)) + 0.5 *
(P(p|m) — P(p|m) * NodeCoverage(m));

mée{UncoveredNodes—target}
end
Select the probe p with maximum InformationGain(p); Add p to
F D Probes; Remove probe p from Awvailable Probes;
foreach node n € UncoveredNodes do
NodeCoverage(n) =
NodeCoverage(n) + P(p|n) — P(p|n) * NodeCoverage(n);
Remove n from UncoveredNodes if
NodeCoverage(n) > coverageT hreshold;
end
end

In this section, we consider a non-deterministic environment and incorporate
the probabilistic dependency information in computing the probe set. In what
follows, we describe our approach to probe selection for preplanned probing in
a non-deterministic environment.

Algorithm PPFL assumes a dependencyT hreshold value to consider a probe
to be dependent or independent of the failure represented by a certain system
state. Thus the dependencies below a dependencyT hreshold are considered zero
and those above the dependencyT hreshold are considered one. Based on this
criteria, a metric can be computed to represent the overhead of the split that
can be obtained from a probe. If a probe p splits a set S into subsets S~ and
ST, then the splitOverhead for S obtained from p can be computed as:

splitOverhead(S,p) = (1S~ |/15)log(1S™ 1)) + ((1S1/[S)log(1S™1)) (1)
where |[S™|/|S| and |ST]|/|S| represent the probability that the failure lies in the
set S~ and ST respectively. log(]S™|) and log(|S™]|) represent estimates of the
number of additional probes required for localization within the subsets S~ and
ST respectively.

However, since the model is probabilistic, it can not be declared with ab-
solute certainty that failure of nodes represented by some state will not cause
failure of probes that have dependencies less than the dependencyT hreshold
value and will surely cause failure of probes with dependency greater than the
dependencyT hreshold value. Hence together with splitOverhead we also com-
pute a metric splitBelief to indicate our confidence in the set split obtained by

selecting a probe:

splitBelief(S,p) = [[Pwls). [] - Pls)) 2)
sest sES™
The metric represents the belief that a probe does not pass through the nodes

represented by states in the set S~ and does pass through the nodes represented
by states in the set S*.

The partition P starts with a single set, and splits into multiple sets in
subsequent iterations. Thus the splitOverhead and splitBelief obtained from a
probe p is computed over all the sets of the partition to compute a splitBelief
and splitOverhead value for a partition P obtained by a probe p as follows:

splitOverhead(P, p) = Z splitOverhead(S;, p) (3)
S;eP
splitBelief(P,p) = (> _ splitBelief(S:,p))/|P| (4)

Based on these two metrics, the asufgegrithm selects the probe that minimizes
the splitOverhead and maximizes the splitBelief of the current partition P.

Note that because of the involvement of both factors, the selected probe
might not provide an acceptable belief value for the splits of the sets of partition
P. That is, failure of p,,;, might not state with enough confidence the success
of states in set ST and failure of states in set S~. Hence, we select additional
probes to strengthen the belief in the splits. Probes are selected that maximize
the splitBelief and thus maximize the confidence in obtaining the partition per-
formed by the probe p,i,. If the probe p,,;, splits a set S into two subsets S~
and S*, then the splitBelief for a set S and thus for the partition P obtained
by a probe p in obtaining the same split is also computed using the Equation 2
and 4. Note that the subsets ST and S~ derived from the set S are obtained by
the split performed by p,in. Probe p simply reinforces the belief of getting the
same split as defined by pin.

Let SP represent the set of probes selected in the current iteration. We denote
as TSP(P, SP) the total belief of getting the split of partition P by the probes
in the set SP. Set SP is initialized to p:n and T'SP(P, SP) is initialized to
splitBelie f (P, pmin) When a probe p is added to the set SP, the TSP(P, SP)
is updated as:

TSP(P,SP) + splitBelief (P,p) — (T'SP(P, SP).splitBelief(P,p)) (5)
Algorithm PPFL selects additional probes until the T'SP(P, SP) value reaches
the desired acceptable split Belie fThreshold. At the end of each iteration, each
set S in the partition P is split into subsets ST and S~ as divided by the probe
Pmin- This new partition is further split in further iterations till all sets in the
partition become singleton sets or no probes are left for selection.

4.2 Adaptive probing

In this section, we present adaptive probing based algorithms for failure detection
and fault localization for a non-deterministic environment.

Failure detection The algorithm is based on identifying the nodes where the
uncertainty in selection is minimum, and then applying the Greedy approach of
selecting a probe that gives maximum coverage of nodes among all the probes
that pass through this node.

Consider a case where a node n is probed by only one probe. In this case, the
only probe probing node n must always be selected in the probe set for failure
detection. In a non-deterministic scenario, consider a case where a node nl is
probed by 2 probes with probability 0.9 and 0.1 respectively, and another node
n2 is also probed by 2 probes with probability 0.5 and 0.5. In this scenario, the
case of node nl involves less uncertainty making it an easier choice to select the
probe that probes node n1 with probability 0.9. Hence the algorithm would first
choose node nl to cover. In a deterministic environment, a node with minimum
probe selection uncertainty can be identified as the node through which least
number of probes pass. However, with a probabilistic dependency model, we
identify the node with minimum probe selection uncertainty by computing the
entropy of the probabilities by which the node is probed by probes [2]. The
entropy for a node n is computed as follows:

Algorithm GFL: Greedy Fault Localization Algorithm

foreach Probe p € PassedProbes do
foreach Node n € SuspectedNodes do
if P(p|n) =1, SuspectedNodes -= n; PassedNodes += n;
if P(pln) > 0, belief(n)x = ax (1 — P(p|n));
end

end
foreach Probe p € FailedProbes do
foreach Node n € SuspectedNodes do
PathSuspectedNodes = ProbePathNodes(p) N SuspectedN odes;
Remove the node € PathSuspectedNodes from SuspectedNodes and
add to FailedNodes if |PathSuspectedNodes| = 1;
if P(p|n) > 0, belief(n)x = B x P(p|n);
end
foreach Node n € SuspectedNodes do
if belief(n) > failureBeliefThreshold then
Remove the node € PathSuspectedNodes from SuspectedN odes;

Add the node € PathSuspectedNodes to FailedN odes;
end
end
end
foreach node s € SuspectedNodes do
Select a probe p € Available Probes that maximizes the probeWorth(p):
probeWorth(p) = 0.5P(p|s) + 0'5(Hne{suspectchodes—s} (1= P(p|n)))
Remove probe p from Available Probes; Add probe p to F'LProbes;
end
Return (FLProbes, PassedNodes, FailedNodes);

)

H(n) = > —P(p|n)log(P(p|n)) (6)
(p€ Available Probes)&(P(p|n)>0)
where P(p|n) represents the probability that probe p passes through node n.
The node with minimum entropy is chosen as the next node to cover.

Once a node n is selected, of all the probes that probe this node, the probe
that gives maximum coverage is selected. In a deterministic environment, of all
the probes that pass through node n, the probe that passes through maximum
number of other nodes can be selected. However, in a non-deterministic environ-
ment, two factors decide the probe selection for failure detection: (1) probability
gain obtained in covering node n, and (2) probability gain obtained in covering
other nodes. For each node m, we maintain a value Coverage(m) to represent
the probability that the node m has been covered by the probes selected so far.
For probe selection, we compute a metric to identify the improvement that can
be obtained in the probability of covering node n and probability of covering
other nodes by selecting a certain probe. We represent this metric as:

0.5 % P(p|n)(1 — Coverage(n)) + 0.5 x Z P(p/m)(1 — Coverage(m)) (7)
me{N—n}
After selecting the probe p, it is removed from the available probes and the
value Coverage(n) is updated for each node as follows:

Coverage(n) = Coverage(n) + P(p|n) — P(p|n) * Coverage(n) (8)
Any node n with Coverage(n) greater than a coverageThreshold is considered
covered and is removed from the node set. The process of probe selection con-
tinues till all nodes are covered. Algorithm GFD presents this Greedy algorithm
for failure detection.

Fault localization In this section, we present Algorithm GFL for probe analysis
and selection in a non-deterministic environment.

Probe analysis:
We use a belief metric to express the confidence associated with a given node
failure relative to the failure of other nodes. The belief value is initialized to the
probability of independent failure of the node, which we represent by P(n). We
update this belief value on observing probe successes and failures. This belief
value should not be interpreted as the probability of failure of a node, given the
observed probe successes and failures. The belief metric only encodes the relative
confidence in the failure of a node in the space of all considered explanations.

On observing the it" probe failure, the belief value of failure of node n, b(n), is
expressed using the probability of failure of node n and the probability that node
n explains the failure of observed failed probes that have a non-zero dependency
on node n. The belief value can be represented as follows:

bnew(n) = Bbora(n).P(p|n) 9)
where by (1) and byq(n) represent the new and old belief values for failure of
node n respectively.

On observing a successful probe p, we incorporate the probe success infor-
mation in the belief computation as follows:

brew(n) = Bbora(n).(1 — P(p|n)) (10)
The component (1 — P(p|n)) provides the probability that failure of node n has
not caused failure of probe p. This multiplier decreases the value of the belief
metric associated with failure of node n.

Probe selection:

After the probe analysis, appropriate probes need to be selected that can give
best information for further localization. We build a set of SuspectedNodes that
consist of all nodes that have non-zero probability of being on the failed probe
paths. In Algorithm GFL, for each suspected node s, a probe is chosen that
is (1) most likely to pass through node s, and (2) least likely to pass through
any other suspected nodes. Such a probe set can quickly localize the health of
its target node, due to high probability of passing through the target node and
less number of possible explanations of probe success or failure. For each probe
p under consideration, we compute a metric probeWorth(p) considering these
factors.

probeWorth(p) = 0.5P(p|s) + 0.5(H (1= P(pln))) (11)

n€{ShadowNodes—s}
where P(pl|s) represents the probability that probe p passes through node s,

and the term [[,c spnaa0wnodes—s} (1 — P(p|n)) represents the probability that
the probe p does not pass through other suspected nodes. The probe p with
maximum value for probeWorth(p) is selected to probe suspected node s.

5 Experimental evaluation

5.1 Simulation model

We simulated various network topologies with different network sizes and node
degrees. Let MD, AD, and N represent the maximum node degree, average node
degree, and the total number of nodes in the network respectively. Given these
three parameters, we create a network of N nodes, randomly introducing N*AD
links such that no node has a degree greater than MD, and also ensuring that the
network is connected. We conducted experiments on network sizes ranging from
10 to 50 nodes with an average node degree of 4, and maximum node degree set
to 10. Because of the involved computational and memory requirements of the
preplanned probing approach, we were not able to run the preplanned probing
algorithm on larger network sizes. We use a probabilistic dependency model to
represent dependencies between the probes and the nodes used on these probes.
We build this dependency model by computing multiple paths between nodes
and assigning probabilistic dependency weights to nodes on these paths. The
nodes on the longer path are assigned lower weight, while the nodes on the
smaller paths are assigned higher weight. We try to find two paths between
every end-to-end node by running a shortest path and a second shortest path

algorithm. We assume that a probe station can always probe the neighbors that
are directly connected to it. We present results to localize node failures in the
network.

g o
[F]
=8 40 £ - 40
o5 a0 5z 30
= § 2 _‘d:‘—‘:;d:_:—.‘_ 2E X0
S50 R e
=% 0 P ; e& sizizoa : .
o S
=] 10 20 a0 40 = 0 5 10 15 20 75
Murrher of nodes Frobe interyal
—#— Preplanned probing —=— A daptive probing —#— Freplanned probing —=— A daptive probing
a b
[P F]
5 BOD ES 10
{ = (=3
& o 400 5< &
E & w o2 5
S5 200 nogE
s mie | — — — — —
= 0 T T T k= E, u] T T T
L a 10 20 an 40 u] 10 0 30 40
Murrber of nodes Murrber of nodes
—— Freplanned probing —=— A daptiv e proking | |—0— Freplanned probing —=— Adaptive probing
c d
=]
=] w
= 1580 = 100
s '™ S s £ 50
-y o
G 50 2 md‘
= L - = P — =
a 0 : : : & 0 = = ?
u] 10 peili} an 40) u] 10 20 a0 40
Murrher of nodes Murrher of nodes
|—o— Freplanned probing —=— Adaptive probing | |+ Freplanned probing —=— Adaptive probing |
e f

Fig. 2. Comparison of (a) Number of localization probes, (b) Number of probes sent
per interval, (¢) Total number of probes sent, (d) localization time, (e) detection ratio,
and (f) false positive ratio obtained by adaptive and preplanned probing.

5.2 Simulation results

Figure 2(a) shows the number of probes sent by both approaches to localize the
failure. The probe counts for the two algorithms are almost the same. Note that,
preplanned probing sends these probes at all times. On the other hand, adaptive
probing sends these probes only after detecting a failure. Consider a scenario
where a failure occurs in the 20*" interval. As shown in Figure 2(b), preplanned
probing sends the localization probes in all intervals, where as adaptive probing
sends a much smaller set of probes for first 20 intervals, and then sends the larger
set of localization probes. As can be seen from the graph in Figure 2(c) which
shows the total number of probes sent by both approaches over a period of 20

intervals, the adaptive approach sends significantly less number of probes than
the preplanned probing.

Figure 2(d) compares the localization time taken by the two algorithms.
Figure shows that adaptive probing is able to localize a failure in almost 2
probe trip intervals which is an acceptable localization time with the amount of
decrease in the required number of probes. Moreover, we show through graphs
in Figure 2(e) and Figure 2(f), that adaptive probing delivers a higher detection
ratio and smaller false positive ratio as compared to the preplanned probing.
This improvement can be attributed to the property of adaptive probing that it
can infer the network health from previous probe results to select most suitable
new probes, which avoids incorrect diagnosis.

6 Conclusion

In this paper, we presented failure-resistant adaptive probing solutions to mon-
itor a network in a non-deterministic environment. We presented a preplanned
probing algorithm to select a set of probes such that all possible failures can be
diagnosed. We then proposed adaptive probing based algorithms to select probes
for localizing faults in an interactive manner. We showed through simulation re-
sults that the adaptive probing approach provides significant improvement in the
probe traffic and accuracy of detection over the preplanned probing approach.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied of the Army Research Laboratory or the U.S. Government.

References

1. Y. Bejerano and Rajeev Rastogi. Robust monitoring of link delays and faults in
IP networks. In IEEE INFOCOM, San Francisco, CA, Mar 2003.

2. M. Brodie, I. Rish, and S. Ma. Optimizing probe selection for fault localization.
In Distributed Systems Operations Management, pages 1147-1157, 2001.

3. A. B. Downey. Using pathchar to estimate Internet link characteristics. In ACM
SIGCOMM, Cambridge, MA, 1999.

4. B. Huffaker, D. Plummer, D. Moore, and K. Claffy. Topology discovery by active
probing. In Symposium on Applications and the Internet, Nara, Japan, Jan. 2002.

5. K. Lai and M. Baker. Measuring bandwidth. In IEEE INFOCOM’99, New York
City, NY, Mar 1999.

6. F. Li and M. Thottan. End-to-end service quality measurement using source-
routed probes. In 25th Annual IEEE Conference on Computer Communications
(INFOCOM), Barcelona, Spain, Apr 2006.

7. M. Natu and A. S. Sethi. Adaptive fault localization in mobile ad-hoc battlefield
networks. In MILCOM’05, Atlantic City, NJ, 2005.

8. M. Natu and A. S. Sethi. Active probing approach for fault localization in computer
networks. In E2EMON’06, Vancouver, Canada, 2006.

9. M. Natu and A. S. Sethi. Efficient probing techniques for fault diagnosis. In Inter-
national Conference on Internet Monitoring and Protection (ICIMP’07), Silicon
Valley, CA, Jul. 2007. To appear.

10. I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik, and K. Her-
nandez. Adaptive diagnosis in distributed systems. IEEE Transactions on Neural
Networks, 6(5):1088-1109, Sep. 2005.

