
Market-Based Hierarchical Resource
Management using Machine Learning

Ramy Farha and Alberto Leon-Garcia

University of Toronto, Toronto, Ontario, Canada
ramy.farha@utoronto.ca, alberto.leongarcia@utoronto.ca

Abstract. Service providers are constantly seeking ways to reduce the
costs incurred in managing the services they deliver. With the increased
distribution and virtualization of resources in the next generation net-
work infrastructure, novel resource management approaches are sought
for effective service delivery. In this paper, we propose a market-based
hierarchical resource management mechanism using Machine Learning,
which consists of a negotiation phase where customers are allocated the
resources needed by their activated service instances, and a learning
phase where service providers adjust the prices of their resources in order
to steer the network infrastructure towards the desired goal of increasing
their revenues, while delivering the mix of services requested by their
customers. We present the operation of such a market where distributed
and virtualized resources are traded as commodities between autonomic
resource brokers performing the negotiation and learning on behalf of
service providers. We perform extensive simulations to study the perfor-
mance of the proposed hierarchical resource management mechanism.

1 Introduction

Service providers (SPs) are reacting to competitive pressures by transitioning
from being providers of individual services (voice, data, video) to providers of
service bundles. SPs must deal the challenge of reducing the costs of manag-
ing these services and the network infrastructure over which these services are
deployed and offered. The requirements for a powerful service management sys-
tem motivate the need to automate management by evolving to self-managing
infrastructures, in order to ensure automated service delivery to customers.

The Autonomic Computing [1] concept presented by IBM to reduce software
complexity and cost of service delivery in the IT domain is attractive in the sense
that a similar concept could be mapped in the telecommunications domain to
perform autonomic service management. In a previous work [2], we had intro-
duced the Autonomic Service Architecture (ASA), which aims to give SPs the
needed solutions to dynamically marshal their service delivery infrastructure and
to support the required service mix at a given point in time using a hierarchy of
Autonomic Resource Brokers (ARBs) which perform resource management.

The network infrastructure for telecommunications service delivery could be
viewed as a set of competing SPs, similar to players in a game-theoretic prob-
lem [3]. Given the difficulty to represent this game using classical game theory,

we explore an alternative approach using Machine Learning [4], where Reinforce-
ment Learning [5] agents built into the ARBs of ASA incrementally improve their
strategies according to trial-and-error interactions with the external world. As a
result, SPs adjust the prices of their resources to achieve better performance for
the autonomic resource management approach performed by ASA.

In this paper, we present a market-based hierarchical resource management
approach, using Machine Learning to autonomically steer the network infrastruc-
ture towards the desired goals for both SPs and their customers. The remainder
of this paper is structured as follows. In section 2, we review some related work.
In section 3, we summarize the design of ASA, prior to explaining the hier-
archical resource management approach in section 4. In section 5, we integrate
Machine Learning into ASA to improve the strategy of SPs. In section 6, we illus-
trate some simulation results to show the performance of the proposed scheme.
Finally, in section 7, we conclude the paper and suggest some future work.

2 Related Work

Game Theory is aimed at understanding situations in which several decision
makers (also called players) interact [3]. Classical game theory suffers from sev-
eral shortcomings, such as the need for perfect information about strategies of
other players, or about the probability distribution of their strategies. Such as-
sumptions are infeasible in an environment of competing service providers (SPs),
which are the players in the game-theoretic problem, hence the need for alter-
native ways to solve this game, such as Machine Learning [4].

Machine Learning is a branch of artificial intelligence that encompasses areas
such as Neural Networks, Genetic Algorithms, Ant Colony Optimization, and
Reinforcement Learning (RL) [5]. RL will be used to enable the decision makers,
in this case the competing SPs, to optimize their operation using trial-and-error
interactions with the external environment, in order to steer the operation of
the network infrastructure towards the greater good for both themselves and for
their customers, without the need to share any information with other SPs.

The closest work to this paper is presented by Wang and Li [6]. In their
approach, concepts from control theory are used to help selfish nodes in a ser-
vice overlay network incrementally adapt to the market, by making optimized
strategic decisions based on past experiences. While the techniques they use are
comparable to those adopted in this paper, their application is drastically differ-
ent. This paper involves a different negotiation mechanism since some customers
specify the rate required instead of only having a Best Effort service as is the case
in the work of Wang and Li. The complexity of the problem changes as well since
this paper uses a hierarchical architecture. Furthermore, this paper attempts to
improve the utilization of the network infrastructure’s virtual resources by SPs
while satisfying customer requirements, whereas Wang and Li are attempting to
force selfish nodes in a service overlay network towards more cooperation.

3 Autonomic Service Architecture Overview

The main task of the Autonomic Service Architecture (ASA) is to automate
the delivery of services offered by a service provider (SP) to its customers in
next generation networks. ASA achieves this goal through the interaction of
self-managing entities, called Autonomic Resource Brokers (ARBs), which auto-
nomically handle provisioning, management, and termination of offered services.

The layered structure of ARBs in ASA is shown in Fig. 1. When customers
activate service instances they have bought from SPs, these service instances are
managed by the SPs using Service Instance ARBs (SIARBs). The multiple ser-
vice instances of a particular service offered by a SP are managed by Composite
ARBs (CARBs). The different services offered by a SP (managed by CARBs) are
managed by a Global ARB (GARB), which handles all the resources available
at this SP’s disposal. Physical resources are virtualized into virtual resources to
deal with heterogeneity, using concepts similar to those in [7].

Resource management in next generation networks using ASA could be seen
as a market where virtual resources are exchanged between customers and SPs.
This view is becoming a reality with architectures such as the one used by Ama-
zon [8], or with the proliferation of Grids [9]. Virtual resources can be assimilated
to commodities with prices that vary depending on the demand. The market con-
sists of several competing SPs owning the different virtual resources and services
which are offered to customers. In the upcoming sections, we elaborate on how
the market model applies for hierarchical resource management in ASA.

Aggregate

Service
Instances
activated SIARB3SIARB2

VR1

CARB3
CARB2

SIARB1

Clusters

VR2

Routers

VR3

Switches

VR4

Servers

VR5

Storage

VR6

Routers

VR7

Links

Computing

Networking

Common

Format

GARB

SLA

CARB1

CARB4

SIARB4

SIARB3

Customers

SPs

Customers

Physical
Resource

Virtual

Resource

Diverse
Services

in SP
domain

Global
Resource

Manager

Service

Composed of Parent of

Individual Service Instances (ISIs)

Aggregate

level

Fig. 1. Autonomic Resource Brokers Hierarchy in the Autonomic Service Architecture

4 Hierarchical Resource Management Algorithm

For each virtual resource in the network infrastructure, we run the proposed
market-based hierarchical resource management algorithm with Machine Learn-

ing, according to the autonomic loop shown in Fig. 2. This algorithm, which will
be detailed next, is performed by the Autonomic Resource Brokers (ARBs) of
the aforementioned Autonomic Service Architecture (ASA). The notations used
in the rest of this paper are shown in Table 1.

Hierarchical

Resource

Management

Physical

Infrastructure

Machine

Learning
Virtual Resources

Virtual

Resource

Price

Adjustment

Virtual Resource

Monitoring

Autonomic

Loop

Monitoring

Information

Virtual

Resource

Statistics

Virtual

Resource

Allocation

Fig. 2. Autonomic Hierarchical Resource Management Algorithm

The detailed hierarchical model of ARBs at a given SP is shown in Fig. 3.
Initially, the SP reserves a fraction of the available capacity at its GARB for
a given virtual resource. The CARBs will share this fraction of the capacity
proportionally to the needs of the service that each CARB manages, while the
remaining capacity is kept to remedy for any virtual resources shortages. Service
requests arrive from customers at random times for the different services offered
by this SP which use this virtual resource. Thus, a given amount of it is allocated
to each activated service instance. These requests consist of two main tuples of
interest for the management of a given virtual resource: <Amount, Duration>.
The virtual resource amounts are allocated if available, and if not, a new request
is triggered for additional virtual resources to be bought from other SPs.

The interaction between the different ARBs is shown in Fig. 4. At level 0,
the GARB which is the global manager of a given SP, interacts with the GARBs
of other SPs in a peer-to-peer (P2P) fashion. The SPs can therefore exchange
virtual resources when needed. Initially, each SP has a maximum capacity ar-
ray of the virtual resources [MC(V R1), . . . , MC(V RN)]. At level 1, the CARB
which manages a given service is allocated an array of virtual resource amounts
[A(V R1), . . . , A(V RN)]. This allocation is performed by the GARB to its chil-
dren CARBs, i.e. the CARBs corresponding to the services offered by this SP.

Table 1. Notations for the market-based hierarchical resource management algorithm

Rr
req Amount of Virtual Resource r requested by QoS customers

Rr
BE Amount of Virtual Resource r offered to BE customers

Rr
miss(ARBi) Missing amount of Virtual Resource r at ARB i

Rr
thr(ARBi) Threshold amount of Virtual Resource r at ARB i

RC(V Rr, ARBi) Residual Capacity of Virtual Resource r at ARB i

Aupst(V Rr, ARBi) Total upstream amount of Virtual Resource r at ARB i

Adnst(V Rr, ARBi) Total downstream amount of Virtual Resource r at ARB i

AQoS(V Rr, ARBi) Total QoS amount of Virtual Resource r allocated at ARB i

Ur(ARBi) ARB i utility for Virtual Resource r

∆Ur(ARBi) ARB i differential utility for Virtual Resource r

pr
QoSi QoS price for Virtual Resource r at ARB i

pr
BEi BE price for Virtual Resource r at ARB i

TRev(V Rr, ARBi) Total revenue from Virtual Resource r at ARB i

TCost(V Rr, ARBi) Total cost for Virtual Resource r at ARB i

ε1(t) Time varying scaling factor for utility function

The price of a virtual resource is inherited at the CARB from its parent GARB.
We assume that a separate price is set by a SP for each virtual resource, one
for BE requests and one for QoS requests. The price for a service composed
of several virtual resources is a combination of these virtual resources’ prices,
according to service pricing approaches beyond the scope of this paper.

GARBj

CARB

SIARB SIARB SIARBSIARB

CARB

GARBi

Within SP: Several commodities (Virtual Resources)

…

…

…

Other SPs

GARB

GARB

Other SPs
Downstream

Downstream

Downstream Downstream

Upstream

Stock of VRs

SP

Inherited

Price

Fig. 3. Detailed Hierarchical Resource Management Model

The negotiation algorithm, shown in Algorithm 1, works as follows: For QoS
customers, the SP needs to guarantee that the virtual resource amounts deliv-
ered to the customers are equal to those requested. For BE customers, the SP

GARB

GARB

GARBP2P Interaction

CARB CARBCARB

CARBService

Composition

GARB

CARB

CARB

Centralized

Allocation of

Virtual Resources

[A(VR1)… A(VRN)]

Level 0

Level 1

Maximum Capacity of

Virtual Resources

[MC(VR1)… MC(VRN)]

Fig. 4. Autonomic Resource Brokers Interaction

does not guarantee delivery of any virtual resource amounts to the customers.
An issue for the algorithm is to determine an appropriate utility function to
maximize in order to determine the amount of virtual resources allocated to BE
customers. The choice of the utility function was based upon the needs of an
efficient management system. The higher the amount allocated, the greater the
revenue for the SP. However, the amount allocated should not be too high, since
it limits the number of additional customers that could be served in the future.
One key requirement of the utility function is to be concave up. Due to these
conflicting needs, we use two terms in the utility function: one relates to the rev-
enue of the SP, and the other to the amount of resources allocated. Therefore,
the chosen utility function for virtual resource r at CARBi is given by:

Ur(CARBi) = ε1(t)× log

(
1− Adnst(CARBi)−Aupst(CARBi)

Adnst(CARBi) + RC(V Rr, CARBi)

)

+pr
BEi(t)×Adnst(CARBi) (1)

The amount ε1(t) is time-dependent and set to pBEi(t) × (Adnst(CARBi) +
RC(V Rr, CARBi)). In the rest of this paper, we are concerned with the additive
utility, that is the utility added to the SP by allocating an amount Rr of virtual
resource r to a customer, which is given by:

∆Ur(CARBi) = ε1(t)× log

(
1− Adnst(CARBi)−Aupst(CARBi) + Rr

Adnst(CARBi) + RC(V Rr, CARBi) + Rr

)

−ε1(t)× log

(
1− Adnst(CARBi)−Aupst(CARBi)

Adnst(CARBi) + RC(V Rr, CARBi)

)
+ pr

BEi(t)×Rr (2)

The aforementioned utility function was chosen for the following reasons:

Hierarchical Resource Management Algorithm
Service Instance activation for Service j by QoS Customer i from Service Provider k
QoS Customers-Service Providers
Service Instance of Service j activated;
Amount Rr

req of virtual resource r requested;
if Rr

req < RC(V Rr, CARBj) then
Accept request for the amount Rr

req of virtual resource r;
Update CARB j and SIARB i accordingly;

else
Find missing amount Rr

miss(CARBj) = Rr
req of virtual resource r at

CARB j;
Trigger internal flow between CARB j and GARB k for missing

amount Rr
miss(CARBj) of virtual resource r;

end
Service Instance activation for Service j by BE Customer i from Service Provider k
BE Customers-Service Providers
Service Instance of Service j activated;
Find amount that maximizes the differential utility for virtual

resource r at CARB j: Rr
BE = argmax(∆Ur(CARBj));

if Rr
BE > Rr

th(CARBj) then
Accept Best-Effort request for amount Rr

BE of virtual resource r;
else

Find missing amount Rr
miss(CARBj) = Rr

BE of virtual resource r at

CARB j;
Trigger internal flow between CARB j and GARB k for missing

amount Rr
miss(CARBj) of virtual resource r;

end
CARB-GARB (Triggered)
Missing amount Rr

miss(CARBj) of virtual resource r requested between

CARB j and its parent GARB k
if Rr

miss(CARBj) < RC(V Rr, GARBk) then
Accept request for the missing amount Rr

miss(CARBj);
Update CARB j and GARB k accordingly;

else
Trigger external flow between GARB k and other GARB l for missing

amount Rr
miss(GARBk) = Rr

miss(CARBj) of virtual resource r;
end
Between GARBs (Triggered)
Missing amount Rr

miss(GARBk) of virtual resource r requested between

GARB k (or downstream GARB) and GARB l (or upstream GARB)

if Rr
miss(GARBk) < RC(V Rr, GARBl) then
Accept request for the missing amount Rr

miss(GARBk);
Update GARB k and GARB l accordingly;

else
Reject triggered request, and original customer request;

end

Algorithm 1: Pseudo Code for Hierarchical Resource Management Algorithm

– The first derivative has a point of inflection where it changes signs.

dUr(CARBi)
dRr

= −ε1(t)× 1
Rr + Adnst(CARBi) + RC(V Rr, CARBi)

(3)

+pr
BEi(t) = 0

This point of inflection corresponds to the rate Rr
BE offered to the customer.

Rr
BE =

ε1(t)
pr

BEi

− (Adnst(CARBi) + RC(V Rr, CARBi)) (4)

– The second derivative is always positive, so the proposed utility function is
concave up, as required.

d2Ur(CARBi)
dRr2 =

ε1(t)
(Rr + Adnst(CARBi) + RC(V Rr, CARBi))2

(5)

– In addition, the chosen utility function achieves our goal. An increase in the
upstream amount is not desirable as this triggers external exchanges with
other SPs, which is costly. When the residual capacity and the upstream
amount both reach zero, the first utility term is equal to zero (its highest
possible value), which means all the residual capacity is being used, but there
is no need for additional resource amounts to be bought from other SPs.

5 Strategy Improvement using Learning

Reinforcement Learning (RL) represents a class of Machine Learning problems
where an agent explores its environment, observes its current state s, and takes
a subsequent action a, according to a decision policy π : s → a. The RL model
consists of a set of states S and a set of actions A. RL aims to find a control
policy that will maximize the observed rewards over the lifetime of the agents,
in our case the Global Autonomic Resource Brokers (GARBs) corresponding
to the different service providers (SPs) in the network. To do so, a GARB will
incrementally adjust its virtual resources’ prices based on the feedback (or rein-
forcement) received from the environment. An optimal decision policy is to incur
the highest accumulated reinforcement values.

Prior to defining the RL model, we need to clarify the goal that the network
infrastructure aims to achieve. Ideally, no SP should monopolize the network, as
customers should be tempted to buy from all SPs. However, SPs need to make
as much profit as possible. By increasing their prices without boundary, SPs will
be at a disadvantage if customers are looking for the cheapest service to buy and
activate. In addition, customer demands should also be satisfied to the best of a
SP’s ability as long as no detrimental performance effects are observed.

In our approach, we used two different prices based on whether we are deal-
ing with QoS or BE customers. The approach taken for each price adjustment
method using RL could be different for the QoS and BE cases, but we assume

a similar approach for both. Hence, in what follows, we will only show the QoS
price adjustment approach. The BE price adjustment approach is similar, where
BE prices are varied using BE virtual resource amounts instead of QoS virtual
resource amounts to calculate the reinforcement value. Table 2 lists the variables
used in the proposed RL method to improve hierarchical resource management.

Table 2. Variables used in Reinforcement Learning method

Qr(sr, a) Q-value function for state sr and action a

P (a/sr) Probability of taking action a when in state sr

rlr Reinforcement value received by GARB

ψr Positive constant to control exploration vs. exploitation

γr Discounting factor

ζr Learning rate

ε2(t) Time varying scaling factor for reinforcement

RL operates on a virtual resource basis at a given GARB. In the discrete-time
domain, RL models the interaction between a GARB and the environment as a
Markov Decision Process. Suppose the GARB is in state sr at time step (t), then
the GARB performs action a and shifts to state sr′ at the next time step (t+1).
In our case, the states are chosen as the ratio of the GARB’s residual capacity
for the given virtual resource, and the sum of the GARB’s residual capacity
and the delivered downstream QoS virtual resource amounts. The actions taken
are variations of the QoS price pr

QoSi(t) charged by the upstream ARB to its
downstream ARBs for QoS amounts of Virtual Resource r at time step (t), to
steer the performance towards the desired goals.

In this paper, we will adopt the Q-learning algorithm to iteratively approx-
imate the state-action value function, Qr(sr, a), which represents the expected
return when taking action a in state sr and then following the current policy to
the end. The action a in state sr is taken with a probability P (a/sr), and the
GARB receives a reinforcement value rlr. The actions are picked according to
their Q-values, following a Boltzmann distribution, as follows:

P (a/sr) =
ψeQr(sr,a)

∑
a′ ψeQr(sr,a′) (6)

The standard updating rules for Q-learning are given as follows:

Qr(sr(t + 1), a) = (1− ζr)Qr (sr(t), a) + ζr (rlr + γrmaxa′Q
r (sr(t), a′)) (7)

At each GARB, the QoS price is dynamically adjusted over time to maximize
its economic revenue and minimize its empirical loss due to the decrease of
its residual capacity because of demands by downstream ARBs. Therefore, we
choose the following reinforcement value for node i at time step (t + 1):

rlr = ε2(t)× (TRev (V Rr, GARBi)− TCost (V Rr, GARBi))

+log

(
1− AQoS (V Rr, GARBi)

AQoS (V Rr, GARBi) + RC (V Rr, GARBi)

)
(8)

The value ε2(t) is chosen to be time-dependent in order to constantly adjust
the reinforcement value as time elapses. In order to obtain similar orders of mag-
nitude of the two terms of the reinforcement value, we set ε2(t) to 500×pr

QoSi(t).
The reinforcement value is supposed to steer the SP towards the aforementioned
goals, increasing its revenue, but also taking the residual capacity and the de-
livered rate into account. In order to ensure that the shortcomings which are
usually encountered in RL models are avoided, and to guarantee convergence to
global optima, the following conditions, satisfied in our RL model, are required:

1. Each state-action pair is visited an infinite (i.e. large) number of times
2. Learning rate is decreased with time
3. Rewards are incremented as the goal is approached

6 Simulation Results

The proposed approach is tested using extensive simulations. To emulate the
desired environment of service providers (SPs), of physical and virtual resources,
of services offered, of customers and the service instances they activate, we built
a custom simulator using the Java programming language. We create customer
entities connecting to the network infrastructure through physical resources to
activate the service instances. Services are composed using other component
services and several virtual resources. The candidate component services for the
composition process are equally considered to avoid bias towards a given service.

The parameters used in the simulation were the same for all experiments. We
generated several component services, as well as physical and virtual resources,
which were owned by 10 SPs. For each virtual resource, random amounts were
available in the infrastructure and distributed in the available physical resources.
We allowed several customers to buy services from different SPs and to activate
instances of such services. The service instances were activated according to a
different Poisson process for each service bought, and were kept active for expo-
nentially distributed service times which were different for each service instance.

Fig. 5 shows how the utility function chosen to service Best Effort (BE)
customers works for a given SP. As can be seen in the figure, the rate offered
varies depending on the virtual resource’s residual capacity at this SP. When
this residual capacity increases, the rate offered increases, and vice versa. This
shows that the utility function is performing as desired, adapting the rate offered
by this SP to BE customers according to its available capacity.

We now show the instantaneous variation of the QoS prices for 5 randomly
chosen SPs for 2 cases where the Reinforcement Learning (RL) method is applied.
In the Random Choice case (Fig. 6), the prices vary around their starting point.

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time

U
ti

lit
y

P
ar

am
et

er
s

Utility Parameters vs. Time for a Service Provider

Rate Offered
Residual Capacity

Fig. 5. Utility: Variation of Rate Offered with Residual Capacity

The interesting observation is that one SP’s price tends to deviate from the
others. This is due to the fact that in this experiment, the upstream SP when
external flows are triggered is randomly chosen. There is therefore no reward for
a SP offering a lower price for a given virtual resource, and it is not harmful in
this case to deviate from the general consensus of keeping prices under control.
The RL method is not totally suitable in this case. In the Least Cost case (Fig. 7),
the prices vary around their starting point. The interesting observation is that no
SP’s price tends to deviate from the others. If it does, it is re-adjusted by the RL
method. This is due to the fact that in this experiment, the upstream SP when
external flows are triggered is chosen according to the least cost offered by other
SPs for that virtual resource. There is therefore a reward for a SP offering a lower
price for a given virtual resource, and it is harmful in this case to deviate from
the general consensus of keeping prices under control. This is much more likely to
be the case in real-world environments. In such environments, the proposed RL
method for market-based hierarchical resource management performs as desired.

To further measure the performance of the proposed reinforcement learning
approach, we propose a new metric which we refer to as the Virtual Resource
Goodput (VRG). The VRG is calculated as the ratio of the total downstream
rate of the SP over the revenue of that SP. Therefore, the goal of a SP is to bring
the VRG down, so that less virtual resources are needed for more revenues. The
value of his unit of virtual resource increases when the VRG decreases. Table 3
shows the average VRG for the three approaches: Fixed Price, Varying Price
Random Choice, and Varying Price Least-Cost. We also compute the VRG for
the QoS downstream rate only. As seen in the table, the average VRG is highest
(worst performance) for the Fixed Price approach, followed by the Varying Price
Random Choice approach, and the best performance is achieved by the Varying
Price Least Cost approach. Also, note that the VRG of the QoS traffic is better

than the VRG of the entire (QoS and BE) traffic, as the QoS traffic gives the
SP more value per unit virtual resource.

0 50 100 150 200 250 300 350 400 450 500
450

500

550

600

650

700

750

800

Time Step (in seconds)

Q
o

S
 P

ri
ce

QoS Price vs. Time Step

RL−1
RL−2
RL−3
RL−4
RL−5

Fig. 6. QoS Price Variation for Random Choice Scenario

Table 3. Average Virtual Resource Goodput for the three pricing approaches

Traffic Fixed Varying Random Choice Varying Least-Cost Choice

All Traffic 0.3083 0.2867 0.0657

QoS Traffic 0.2842 0.2441 0.0555

7 Conclusion

In this paper, we presented a market-based hierarchical resource management
algorithm using machine learning to autonomically learn prices and adjust them
as time evolves in order to improve the service providers’ performance, keep the
customers satisfied, and avoid monopolies by preventing service providers’ price
deviation. The paper proposed a negotiation algorithm using a carefully chosen
utility function to serve BE customers, and providing QoS customers with the
the rate requested. It also proposed a learning method to adjust virtual resource
prices according to the environment. Results have shown that the utility func-
tion operates as expected, that the learning mechanism avoids price deviation
and keeps prices under control, and that the virtual resource amount needed by

0 50 100 150 200 250 300 350 400 450 500
470

480

490

500

510

520

530

Time Step (in seconds)

Q
o

S
 P

ri
ce

QoS Price vs. Time Step

RL−1
RL−2
RL−3
RL−4
RL−5

Fig. 7. QoS Price Variation for Least Cost Scenario

a given service provider for a unit of revenue decreases when learning is used.
Future work will consider other similar hierarchical resource management algo-
rithms, as well as variations to the utility functions and reinforcement learning
methods. The paper has shown the potential of reinforcement learning when
competing service providers wish to steer their operation towards a desired goal.

References

[1] Kephart, J. et. al. : The vision of autonomic computing. IEEE Computer Magazine.
(2003) 41–50

[2] Farha, R. et. al. : Towards an Autonomic Service Architecture. Lecture Notes on
Computer Science. (2005) 58–67

[3] Osborne, M. : An introduction to Game Theory. Oxford University Press. (2002)
[4] Alpaydin, E. : Introduction to Machine Learning. MIT Press. (2004)
[5] Kaelbling, L. et. al. : Reinforcement Learning A Survey. Journal of Artificial Intel-

ligence Research. (1996) 237–285
[6] Wang, W. and Li, B. : Market-based self-optimization for autonomic service overlay

networks, IEEE Journal on Selected Areas in Communications. (2005) 2320-2332
[7] Leon-Garcia, A. et. al. : Virtual Network Resource Management for Next-

Generation Networks. IEEE Communications Magazine. (2003) 102–109
[8] Garfinkel, S. : Commodity Grid Computing with Amazon’s S3 and EC2. Usenix.

(2007)
[9] Minoli, D. : A networking approach to Grid Computing. Wiley. (2004)

