
Managing Performance of Aging Applications via

Synchronized Replica Rejuvenation?

Artur Andrzejak1, Monika Moser1, and Luis Silva2

1 Zuse Institute Berlin (ZIB)
Takustraÿe 7, 14195 Berlin, Germany
Email: {andrzejak, moser}@zib.de

2 Dep. Engenharia Informática
Univ. Coimbra, Portugal
Email: luis@dei.uc.pt

Abstract. We investigate the problem of ensuring and maximizing per-
formance guarantees for applications su�ering software aging. Our focus
is the optimization of the minimum and average performance of such ap-
plications in virtualized and non-virtualized scenario. The key technique
is to use a set of simultaneously active application replica and to opti-
mize their rejuvenation schedules. We derive an analytical method for
maximizing the minimum �any-time� performance for certain cases and
propose a heuristic method for maximization of minimum and average
performance for all others. To evaluate our method we perform extensive
studies on two applications: aging pro�les of Apache Axis 1.3 and the
aging data of the TPC-W benchmark instrumented with a memory leak
injector. The results show that our approach is a practical way to ensure
uninterrupted availability and optimize performance for even strongly
aging applications.

1 Introduction

Problem statement. Software aging or rather software running image aging
is the phenomenon of progressive degradation of running software image which
might lead to performance reduction, hang ups or even crashes [1]. The primary
causes are exhaustion of systems resources, like memory-leaks, unreleased locks,
non-terminated threads, shared-memory pool latching, storage fragmentation, or
data corruption. This undesirable phenomenon has been observed in enterprise
clusters [2], telecommunications systems [1], web servers as well as other software.
It is most likely to manifest itself in long-running or always-on applications
such as web and applications servers, components of web services, and complex
enterprise systems.

The primary method to �ght aging is software rejuvenation, i.e. a restart of
the aging application periodically or adaptively. While a lot of a research has

? This research work is carried out in part under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265) and the
SELFMAN project funded by the European Commission.

been devoted recently to adaptive software rejuvenation [2,3,4,5], the remaining
negative and serious side e�ect of a rejuvenation is the temporarily outage of
service. Initiatives such as Recovery Oriented Computing (ROC) [6] and research
on micro-reboots could reduce the rejuvenation time considerably. However, they
require changes of the original applications and still cannot ensure uninterrupted
service.

Due to their long running times service-oriented applications are especially
prone to aging. We focus on this type of software and assume that invocations are
triggered by external requests (we do not cover software whose invocations are
triggered by timers or internal events). For such SOA-based IT-infrastructures
an approach to eliminate completely the outage due to rejuvenation has been
presented in [7]. The idea is to maintain in a stand-by mode an exact replica of
the running application and perform an instantaneous migration in the situation
when the original application is about to be rejuvenated. During the migration no
requests are dropped - it is completely transparent for the users. This approach
uses virtual machines as containers for the replica in order to avoid the need
for additional hardware. The study [7] used one active replica at a time only
and un-optimized performance thresholds as rejuvenation triggers. This causes
two shortcomings: a large variation of the application performance and wasted
application capacity due to non-optimal rejuvenation schedules.

Paper idea and contributions. The idea proposed in this paper is to hold
multiple active replicas of the aging application, and trigger the rejuvenation
of each one according to an optimized schedule. We implement this schema by
simulating the system of multiple replicas and using a genetic algorithm to �nd
such schedules. The optimization can maximize either the �any time� cumulative
performance (minimum performance), the average cumulative performance (av-
eraged over many rejuvenation phases), or a mix of both. Our approach can be
used equally well in a virtualized environment on a single-server or in a cluster
of native deployed applications.

Compared with the approach used in [7] our work ensures higher levels of
�any time� cumulative performance, better overall utilization levels and higher
resilience to unexpected performance changes or failures of individual replica.
Another bene�t is a smaller variation of the instantaneous performance, as with
k active replicas the cumulative performance during rejuvenation is roughly (k−
1)/k of the maximum. Furthermore, for the case of our data running k replicas
in parallel slows down the aging progress by a factor of k. As for drawbacks, our
approach is more involved as it requires a rejuvenation scheduler and models of
the aging processes [8].

This paper provides following contributions:

� we obtain analytically the optimized rejuvenation schedules for the minimum
cumulative performance for the case of two identical replicas

� we propose and implement a heuristic method for �nding optimized schedules
for equal or di�erent aging pro�les of the replicas based on simulating the
chains of rejuvenations and optimization via genetic algorithms

� we perform an extensive set of experiments to investigate the optimized
rejuvenation schedules for a multitude of scenarios using the following data:

• a TPC-W benchmark coupled with a fault injector to produce memory
leaks (512, 768 or 1024 bytes) at each request

• Apache Axis 1.3/1.4 server which su�ers under severe �natural� aging
problems

� we show that for our datasets the virtualization overhead does not depend
on the number k of replicas and that using k replicas slows down the aging
process by a factor of k.

Paper structure. Section 2 discusses related work. In Section 3 we introduce
de�nitions and derive an analytical method to maximize the minimum perfor-
mance of two replicas. In Section 4 we describe the idea and implementation
of the heuristic optimization method. Section 5 is devoted to the experimental
results, and we conclude with Section 6.

2 Related Work

The major tool to combat the problems related to software aging is software
rejuvenation. There are two major approaches in this domain: periodical rejuve-
nation based on time or work performed, and adaptive or proactive rejuvenation
[2,3,4,5] where the time to resource depletion or performance degradation is es-
timated. Countless studies have shown that the latter approach is more e�cient,
resulting in higher availability and lower cost.

Among the methods to apply proactive software rejuvenation two are domi-
nant: analytic-based approach, and the measurement-based approach. The �rst
method attempts to obtain an analytic model of a system taking into considera-
tion various system parameters such as workload, MTTR and also distributions
of failure. On this basis, an optimized rejuvenation schedule is obtained. The
tools used here include continuous-time Markov chain models [9], semi-Markov
models [10], and others [11].

The measurement-based approach the goal is to collect some data from the
system and then quantify and validate the e�ect of aging in system resources [3].
The work presented in [2] considers several algorithms for prediction of resource
exhaustion, mainly based on curve-�tting algorithms. Our previous work [8] used
spline-based aging models to obtain optimized rejuvenation schedules. While
these results are related to this work, the focus in [8] is on a single server or
application.

The Recovery Oriented Computing (ROC) [6,12] project form Stanford and
Berkeley focuses on minimizing the negative side e�ects of the rejuvenation or
in general recovery phases. While the ROC-based approaches can substantially
increase the up time, they require modi�cations of the application code.

Object and process-level migration are very well-studied techniques for pro-
viding fault-tolerance in distributed systems [13,14]. However, they add substan-
tial cost to the software development and increase the overall system complexity.

Moreover, they do not guarantee resilience against aging, as the faulty pro-
cess/object state might be migrated as well. Checkpointing-based schemes [15]
su�er from similar drawbacks. In contrast, the approach discussed here does not
require code modi�cations and can be used with legacy or black-box software.

Virtualization has proved as a successful tool for management of complex
IT-environments and it is emerging as a technique to increase system reliability
[16,7]. It has been exploited in [16] for proactive migration of MPI tasks from
health-deteriorating to healthy hardware nodes. Work presented in [7] uses vir-
tual machines with application replica to completely eliminate the service outage
during the rejuvenation. Contrary to this work we consider a scenario of multiple
simultaneously active replicas and optimize the rejuvenation schedules.

3 Maximizing Performance of Aging Applications

In the following we use the terms performance and throughput interchangeably,
where latter is the number of served requests per second. We consider the sce-
nario of an application consisting of two or more replicas which provide the same
service. The term cumulative is used when all replicas are involved, otherwise we
speak of an individual replica. The instantaneous performance PX of a replica
X is de�ned as the maximum number of requests per time unit which it can
handle. An analogous performance de�nition is assumed for the cumulative case
and is denoted as Pcum.

If k replicas are running simultaneously we can rejuvenate one of them with-
out interruption of availability. During rejuvenation the instantaneous perfor-
mance (throughput) decreases by about 1/k. The choice of a proper rejuvena-
tion schedule is critical to guarantee the cumulative performance characteristics.
We are especially interested in the minimum (cumulative) performance Pmin

and the average (cumulative) performance P̄ over longer time intervals (many
rejuvenation cycles). The earlier is de�ned as the minimum instantaneous per-
formance accumulated over all k replicas during the whole considered operation
interval. The latter is the number of requests served cumulatively divided by the
total time in which they have been served.

Due to aging e�ects the individual instantaneous performance is not constant
and so it is represented as a function called aging pro�le. Following the study in
[8] we assume that an aging pro�le is as a function of the number w of served
requests since the last rejuvenation, i.e. PX = PX(w).

An essential parameter is the number of requests dropped during the rejuve-
nation by an individual replica. We denote this number by D. Its value depends
on the actual (and unknown) service rate distribution. However, it can be bound
from above as the product of the rejuvenation time and the maximum instanta-
neous performance of a replica.

3.1 Optimizing the Minimum Performance

We consider in the following the problem of maximizing Pmin for the case of two
replicas running simultaneously. When replica A is rejuvenating, B is completely

responsible for the cumulative performance, and so the rejuvenation phase of A
should be chosen during the highest performance of B. This implies that the start
of A′s rejuvenation should be dependent on the current state of performance of
B. Since the latter is determined by P = P (w) and w, we introduce dA as the
number of requests served by B (since B′s rejuvenation) which we count until
A should be rejuvenated. We call dA the delay of A, and de�ne dB analogously
for B. Since both replicas are identical, we might assume that the best solution
is symmetric, and so dA = dB .

Our experience shows that the aging

Fig. 1. Computing optimal rejuve-
nation schedule for the case of two
identical replicas

pro�les usually consists of a build-up phase
when the performance goes from 0 to a
peak, and the decay phase when a per-
formance drops monotonically from the
peak until a complete crash, see Figure
1. This type of behavior is typical for ag-
ing processed caused by successive deple-
tion of resources and widely encountered
in software systems, see discussion at the
end of Section 5.1. Sometimes secondary
aging e�ects or inherent system charac-
teristics can cause the pro�le to be more
�random�, e.g. exhibit multiple performance
�jumps� before crash. Our approach does not work if this randomness is too large.
To eliminate these cases, we use the aging modeling schema developed in [8]
which provides a test whether the aging behavior is su�ciently �deterministic�
and so our assumptions are applicable.

Based on these aging properties, the idea is to schedule the rejuvenation of A
such that B is performing at the �top� of its aging pro�le while A is not available.
It is not hard to see that for reasonably small values of D there always exist two
unique points s = (ws, Ps), f = (wf , Pf) on the aging pro�le with the following
conditions, see Figure 1:

� s is in the build-up phase, and f is in the decay phase,
� their horizontal distance wf − ws is exactly D,
� their respective performance level is the same, i.e. Ps = Pf .

Obviously the solution of �nding Pmin is to set the rejuvenation start of A (i.e.
shut down A) such that it coincides exactly with s, i.e. dA = ws, and put A into
function exactly after B served D requests. With a reasonable value of D this
is always possible. Since B′s performance does not drop below Ps = Pf during
the rejuvenation, Pmin has at least this value. Moreover, there is no segment of
the aging curve of �horizontal length� D s.t. the performance inside the segment
is strictly higher than Pf , and so this is also the optimum.

After this rejuvenation the roles of the replica are switched, i.e. B is rejuve-
nated after A has served dB = dA requests since its restart. The points s and f
can be found via a binary search on the performance (y) axis of the aging curve

with the curve peak as the upper bound. The reader might note that the value of
dA determines the length of the rejuvenation phase, and so the average number
of requests. Therefore, optimization of Pmin might con�ict with the optimization
of the average performance.

Figures 2 show that that the build-up phase might not exist. This is a special
case of the above discussion, and here the solution is obviously to rejuvenate B
right at the start of the other replica. Other types of aging pro�les (especially
with several local maxima) require further re�nement of this approach. Intu-
itively, such a pair of points can be found via a �sweep� with a horizontal line
from above until the intersections of the aging curve with the line form at least
one segment whose endpoints ful�ll the conditions analogous to those shown in
Figure 1.

For k > 2 replicas (even identical) �nding the solution is even more involved.
One approach would be to perform the above �sweep� for any delay combination
of the k − 1 replicas remaining active. Since this is not feasible, we propose a
heuristic optimization described in Section 4.

4 Heuristic Optimization of Rejuvenation Schedules

In this section we describe the design of the heuristic rejuvenation scheduler and
explain the policies used in our simulations. The basic idea is to use a simulation
which evaluates the scheduling policy in combination with a genetic algorithm
which searches for optimal policy parameters. Genetic algorithm optimization is
a well-known technique which essentially performs a parallel hill climbing [17].

The major case speci�c part of the this optimization is the evaluation of
a candidate scheduling policy by means of a simulation. It emulates the per-
formance behavior of the full set of application replicas over a large number of
rejuvenations. The simulation progresses over the number of cumulatively served
requests and not over time, i.e. each step corresponds to a change caused by serv-
ing a �xed number of requests. In each step the requests are �rst distributed in
the round-robin fashion according to the instantaneous performance of each sim-
ulated replica. Then the counters of the number of served requests are updated,
and �nally the new instantaneous performance levels are computed from the
spline-based aging models.

After each step, the new state of the system is essentially determined by
the number of requests served by each replica since each rejuvenation. Usage
of the spline-represented aging pro�les allows for determining the instantaneous
performance levels for individual replicas and for the cumulative view. During
the simulation the minimum cumulative performance and the average cumulative
performance are recorded and later returned as the results.

The implementation has been done in Matlab 2006b. In the genetic optimiza-
tion the maximum number of generations was 100 and the population size was
set to 40. The running time of a single optimization was always below 1 minute
on single core of an Intel Core Duo T2600 processor. These parameters were
chosen to keep the running time low without a�ecting the quality of results.

4.1 Rejuvenation Policies

In this process each rejuvenation is initiated according to the current policy and
its parameters. We tested two classes of policies:

� delay based : the least performing replica X (usually �oldest�) is rejuvenated
when the most recently restarted (�youngest�) replica has served at least dX

requests,
� performance based : the least performing replica X is rejuvenated when the
cumulative performance drops below a certain level QX .

Each policy is thus determined by its type and the vector of parameter values
which are subject to optimization. We have also experimented with the variation
that the parameters dX and QX depend both on the replica X to be rejuvenated
and the �youngest� replica Y, i.e. we have then dX,Y and QX,Y . However, the
used pro�les and the request distribution scheduling implied that the order of
rejuvenation of the replicas remain the same, and so the pairs X, Y are uniquely
determined by X or Y .

At the start of the simulation the replicas are added (or �started�) subse-
quently. In the delay based case the second replica is added after the �rst has
served d1 requests, the third is started after the second has served d2 requests etc.
For the performance based policy the next replica is started after the previously
started replica has served 10.000 requests (in the subsequent rejuvenations these
shifts adjust according to the cumulative performance level). In the simulation
we do not consider the initial phase and start recording performance levels when
all replicas are up.

5 Experimental Studies

5.1 Experimental Setup

For our study we used data from two web service applications. Table 1 sum-
marizes these datasets and their characteristics. For each case or a combination
of settings we performed a run until complete crash to model aging by sending
service requests with a constant rate exceeding the capacity of the server. The
un-served requests have been dropped by the server and were not counted. We
recorded the throughput (of served requests) as a function of time and as the
number of served requests.

The �rst application is Apache Axis 1.3. We have conducted two sets of
studies for this case. The �rst is used for observing the virtualization overhead
(datasets V1, . . . , V4), see Section 5.2. Here we run several replica (k = 1, . . . , 4
in Vk) of the Axis server simultaneously, each in a separate virtual machine.
Details on the parameters of the servers, virtual machines and the replicas can
be found in Section 4.2.5 of [7]. The second set of experiments (A1 and A2)
with Apache Axis 1.3 has been performed to record the consistency of the aging
behavior and the aging pro�le of this server. These experiments used a non-
virtualized scenario. Depending on the maximum number of total connections

the collected data gives rise to datasets A1 and A2, where the maximum number
of connections for A1 was 20 and 25, whereas for A2 it was 50 and 100. The time
needed for rejuvenation of a replica was about 10 seconds for this application.
For more details see [8].

Table 1. Used datasets and their characteristics
(VM = operated in a virtual machine)

Name Application VM Aging # Runs
V1-V4 Axis 1.3 yes natural 5
A1,A2 Axis 1.3 no natural 6

T1,T2,T3 TPC-W yes memory leak 5

The second type of
application was a Java
implementation [18] of
the TPC-W benchmark
which created datasets
T1, T2 and T3. This
benchmark has been run
with XEN virtual ma-
chines on top of Linux
2.6.16.21-0.25-smp. Since
the original TPC-W im-
plementation did not show
any visible aging problem, we implemented a small fault-injector that works as
a resource parasite: it consumes system resources in competition with the appli-
cation [19]. The only di�erence between each setting was the size of the memory
leak injected at every request, namely 1024 bytes (T1), 768 bytes (T2) and 512
bytes (T3). The rejuvenation time for the TPC-W software ranged between 12
and 15 seconds, with 13.6 seconds on average. Further information on the con-
�guration values can be found in Section 4.1.3 of [7].

Fig. 2. Average cumulative throughput for dif-
ferent number of replicas as a function of time
(x-axis: time in hours, y-axis: throughput in
requests / second)

To obtain spline-based mod-
els of aging we followed the ap-
proach presented in [8], and ob-
tained models accurate within
at most 8% tolerance. The ac-
curacy of these models con�rm
that the studied aging process
depend essentially on the num-
ber of served requests, and are
independent on the request rate
distribution or its burstiness
[8]. While not all aging pro-
cesses has this property, those
caused by unreleased resources
(such as memory leaks) are very
likely to exhibit this behavior.
This is a large class of aging
processes (all processes encoun-
tered by the authors are of this
type) which supports the ex-
perimental validity of the ap-
proach.

5.2 Virtualization Overhead and Delaying the Aging Process

According to the results in [7] running the Axis server on top of XEN virtual
machine introduced a 12% overhead compared to its performance directly on
Linux. We evaluate here the overhead of running di�erent numbers of replicas in
a virtualized environment by considering the throughput of k virtualized replicas
of datasets V1, ..., V4 (k = 1, ..., 4). Table 2 implies that the overhead is not
dependent on k. Simultaneously Figure 2 shows that using more replicas delays
the aging process: if an application without replicas crashes after x requests, the
replicated case crashes after k x requests. This is the case as the aging behavior
for the Axis application depends on the number of served requests. When using
k replicas in parallel, each of them has to serve around 1/k requests per time
and therefore it lives k−times longer.

Table 2. Performance measures for di�erent number k of replicas

served req. (in 100s) in interval [min, min] peak throughput time to crash
[5, 10] [5, 15] [5, 30] [5, 60] [5, 120] all [req./sec] [min]

k = 1 280 510 790 790 790 790 126 30
k = 2 279 525 1173 1852 2026 2026 141 84
k = 3 275 540 1244 2299 3258 3264 119 124
k = 4 260 521 1261 2480 4059 4075 126 171

5.3 Schedules with Optimized Minimum and Average Performance

Table 3. Optimization results by the simulation approach using 1-parameter policies
(objective: ave = average performance, min = minimum performance)

Cases A1 + A1 T1 + T1 T3 + T3 A1 + A1 + A1 T1 + T1 + T1 A1 + A1
Policy delay perf.

Objective ave min ave min ave min ave min ave min ave min

Pmin 422 433 55 56 56 57 833 839 111 112 302 297
Pave 760 746 110 109 110 57 1138 1122 165 164 682 710

d or Q 29771 20260 35688 14139 17813 0 18946 12726 25682 9810 600 610

In this section we present the results of the optimization. We distinguish be-
tween policies with one parameter and policies with di�erent parameters. Policies
with one parameter represent the most common case, as normally all application
replicas should have the same aging pro�le.

We have �rst performed the optimization of the minimal performance by
the analytical approach from Section 3. The values of d are as follows: A1 + A1:
21600, A2+A2: 197500, T1+T1: 13000, T2+T2 and T3+T3: both 0. They agree

within a reasonable error with the results obtained from the heuristic approach
for policies with one parameter (Table 3 - case T2 + T2 is not included there).
This veri�es that the simulation is correct. The latter table does not include
cases with the performance based scheduling policy as this approach turned out
to be more sensitive to parameter variations (see discussion below).

Fig. 3. Average and minimum performance plots for dataset A1 with two replicas. Left:
delay based policy, right: performance based policy

Table 4 contains the results from the heuristic approach for policies with
di�erent parameters. It shows that an optimization for the average or minimum
performance results in di�erent delays.

The heuristic optimization and simulation are illustrated by two di�erent
kind of plots: simulation plots and range plots. Simulation plots show the perfor-
mance history of the individual replica and the cumulative performance history
depending on the number of processed requests. Contrary to this, range plots
show the minimum and average performance depending on the parameter value
of the rejuvenation policy.

Figure 3 shows a range plot with the performance of two identical replicas
depending on either a delay based or a performance based scheduling policy. The
peaks of the curves show that the optimized policy parameters are di�erent for

Table 4. Optimization results by the simulation approach using 2 or 3-parameter
policies

Cases A1 + A2 T1 + T3 T2 + T3 T1 + T2 + T3
Objective ave min ave min ave min ave min

Pmin 420 431 54 56 54 56 108 110
Pave 761 752 78 106 109 59 164 137
d1 38552 22819 45111 0 51438 0 44357 0
d2 21434 22334 7337 12733 14243 1 28157 1
d3 - - - - - - 823 1

the optimized minimum performance and the optimized average performance.
An optimization for both performance measures at the same time is not possible
in this case. The results of the range plot with a performance based scheduling
policy show that choosing the right value for rejuvenation is more important
than with the delay based policy. If the chosen value is too high the performance
of the replicas drops fast. Also this policy is less resilient to variations in the
system than a delay based policy.

As an example we show a simulation plot for a combination of di�erent repli-
cas (Figure 4). This is a simulation run with a delay based policy. The delays are
those which were gained from the optimization described in Section 4. In settings
with identical replicas, the delays have the same values. The plots con�rm the
results from the range plots. Optimization for the minimum performance lead
to di�erent delays than an optimization for the average performance.

Fig. 4. Simulated performance of individual replicas (lower part) and cumulative per-
formance (upper part). Left: delays optimized for minimum performance, right: delays
optimized for average performance (each with two di�erent replica A1 + A2)

6 Conclusions

Our results show that optimization of the rejuvenation schedules of simultane-
ously active application replicas is a practical and e�ective approach to combat
software aging without sacri�cing availability and performance. Since this ap-
proach does not require software changes, it o�ers a simple and non-intrusive way
to reducing management costs of aging application in SOA-based environments.

Future work will include experiments with an implementation under real-
world conditions to verify the practical e�cacy of the approach. Furthermore,
we plan to extend the approach to non-deterministic aging pro�les and transient
failures.

References

1. Avritzer, A., Weyuker, E.: Monitoring smothly degrading systems for increased
dependability. Empirical Software Engineering 2(1) (1997) 59�77

2. Castelli, V., Harper, R., Heidelberg, P., Hunter, S., Trivedi, K., Vaidyanathan, K.,
Zeggert, W.: Proactive management of software aging. IBM Journal Research &
Development 45 (2001)

3. Garg, S., van Moorsel, A., Vaidyanathan, K., Trivedi, K.: A methodology for
detection and estimation of software aging. In: 9th International Symposium on
Software Reliability Engineering. (1998) 282�292

4. Vaidyanathan, K., Trivedi, K.S.: A measurement-based model for estimation of
resource exhaustion in operational software systems. In: 10th IEEE International
Symposium on Software Reliability Engineering. (1999) 84�93

5. Vaidyanathan, K., Trivedi, K.S.: A comprehensive model for software rejuvenation.
IEEE Trans. Dependanble and Secure Computing 2 (2005) 1�14

6. Brown, A.B., Patterson, D.A.: Embracing failure: A case for recovery-oriented
computing. In: High Performance Transaction Processing Symposium. (2001)

7. Silva, L.M., Alonso, J., Silva, P., Torres, J., Andrzejak, A.: Using virtualization
to improve software rejuvenation. In: IEEE International Symposium on Network
Computing and Applications. (2007)

8. Andrzejak, A., Silva, L.: Deterministic models of software aging and optimal reju-
venation schedules. In: 10th IFIP/IEEE Symposium on Integrated Management.
(2007)

9. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.: Software rejuvenation: Analysis,
module and applications. In: FTCS-25. (1995)

10. Dohi, T., Goseva-Popstojanova, K., Trivedi, K.S.: Statistical non-parametric al-
gorithms to estimate the optimal software rejuvenation schedule. In: Paci�c Rim
International Symp. Dependable Computing. (2000) 77�84

11. Garg, S., Pulia�to, A., Telek, M., Trivedi, K.S.: Analysis of preventive mainte-
nance in transactions based software systems. IEEE Transactions on Computers
47 (1998) 96�107

12. Candea, G., Kiciman, E., Zhang, S., Fox., A.: Jagr: An autonomous self-recovering
application server. In: 5th Int Workshop on Active Middleware Services. (2003)

13. Chakravorty, S., Mendes, C.L., Kalé, L.V.: Proactive fault tolerance in MPI ap-
plications via task migration. In: 13th HiPC. (2006)

14. Douglis, F., Ousterhout, J.K.: Transparent process migration: Design alternatives
and the sprite implementation. Software�Practice and Experience 21 (1991) 757�
785

15. Stellner, G.: Cocheck: Checkpointing and process migration for MPI. In: 10th
IPPS'96. (1996) 526�531

16. Nagarajan, A., Mueller, F., Engelmann, C., Scott, S.: Proactive fault tolerance for
HPC with xen virtualization. In: ICS07. (2007)

17. Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs.
Springer (1999)

18. Manjhi, A.: TPC-W in Java on Tomcat and MySQL. Carnegie Mellon University.
(2005)

19. Gross, K., Bhardwai, V., Bickford, R.: Proactive detection of software aging mech-
anisms in performance critical computers. In: 27th Anual IEEE/NASA Software
Engineering Symposium. (2002)

