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Abstract. With sensors and mobile devices becoming ubiquitous, situation mon-
itoring applications are becoming a reality. Data Stream Management Systems
(DSMSs) have been proposed to address the data processing needs of such appli-
cations that require collection of high-speed data, computing results on-the-fly,
and taking actions in real-time. Although a lot of work appears in the area of
DSMS, not much has been done in multilevel secure (MLS) DSMS making the
technology unsuitable for highly sensitive applications such as battlefield moni-
toring. An MLS DSMS should ensure the absence of illegal information flowin a
DSMS and more importantly provide the performance needed to handle continu-
ous queries. We investigate the issues important in an MLS DSMS and propose an
architecture that best meets the goals of MLS DSMS. We discuss how continuous
queries can be executed in such a system and sharing across queries accomplished
for maximum performance benefits.
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1 Introduction

With the advancement of smart technologies and ubiquitous availability of sensor and
mobile devices, situation monitoring applications are becoming a reality. Such applica-
tions require collecting high-speed data, processing them, computing results on-the-fly,
and taking actions in real-time. Data Stream Management Systems (DSMSs) [7, 14, 4,
9, 1, 5, 16] have been proposed for such applications that allow processing of stream-
ing data and execution of continuous queries. One potentialuse of this technology is
for military applications where DSMS receives informationfrom various devices and
sensors, not all of which belong to the same security level. In such applications, users
and information are classified into the various security levels and mandatory rules gov-
ern the information flow across security levels. DSMSs need to execute queries based
on live streaming data classified at various levels in response to request from users at
different security levels without causing illegal information flow. Our work attempts to
extend an existing DSMS to support such capabilities.

Researchers have worked on secure data and query processingin the context of
DSMSs. However, almost all of these works focus on providingaccess control [15,
11] to streaming data [21, 13, 22, 12, 3]. However, controlling access is not enough to
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prevent security breaches in the above mentioned applications where illegal information
flow can occur across security levels. For instance, the existence of covert and overt
channels can cause information to be passed from a more sensitive level to a lesser one.
Multilevel security (MLS) not only prevents unauthorized access but also ensures the
absence of such illegal information flow.

Designing an MLS DSMS requires us to address several research issues. We need
to provide a continuous query language for expressing real-world MLS DSMS queries.
The formalization of such a language will allow us to determine query equivalence and
facilitate query optimization. Note that, traditional notions of query equivalence will
not work because the same query issued by users at different security levels will re-
turn different results. Moreover, query processing shouldbe efficient to meet the QoS
requirements of a DSMS. This necessitates sharing query plans of multiple queries to
reduce query execution time without causing illegal information flow. In order to pro-
cess MLS continuous queries in a secure manner, it is therefore necessary to completely
redesign or make major modifications to the components of a DSMS.

In this work, we propose a suitable architecture for processing MLS continuous
queries. We also formalize MLS continuous query processingand discuss how such
queries can be executed in our proposed architecture. We discuss how query plans can
reuse plans from existing queries. We augment the approaches proposed by the Stanford
STREAM [4], Aurora [9], and Borealis [1] projects and allow sharing of query plans
submitted by different users not all of which have been submitted at the same time. This
not only allows good resource utilization but also helps achieve the quality-of-service
(QoS) critical to stream processing applications.

The rest of the paper is organized as follows. In Section 2, wedefine a MLS formal-
ization model for stream data applications where data sources, data streams, queries,
and other components in DSMS are assigned with security levels with proper access-
ing rules. In Section 3, we propose a replicated architecture to address MLS stream
applications. In order to accelerate processing rates, we explore different sharing ap-
proaches between continuous queries in Section 4. We discuss related work in section
5. In Section 6, conclusions and future work are discussed.

2 Multilevel Security Formalization Model

We begin by presenting ourmodelfor multilevel secure (MLS) DSMS system. An MLS
DSMS is associated with a security structure that is a partial order, (L , <). L is a set of
security levels, and< is the dominance relation between levels. IfL1 < L2, thenL2 is
said to strictly dominateL1 andL1 is said to be strictly dominated byL2. If L1 = L2, then
the two levels are said to be equal.L1 < L2 or L1 = L2 is denoted byL1 ≤ L2. If L1 ≤ L2,
thenL2 is said to dominateL1 andL1 is said to be dominated byL2. Two levelsL1 and
L2 are said to be incomparable if neitherL1 ≤ L2 norL2 ≤ L1. We assume the existence
of a levelU , that corresponds to the level unclassified or public knowledge. The level
U is the greatest lower bound of all the levels inL . Any data object classified at level
U is accessible to all the users of the MLS DSMS. Each MLS DSMS object x ∈ D is
associated with exactly one security level which we denote as L(x) whereL(x) ∈ L .



(The functionL maps entities to security levels.) We assume that the security level of
an object remains fixed for the entire lifetime of the object.

The users of the system are cleared to different security levels. We denote thesecu-
rity clearanceof userUi by L(Ui). Consider a setting consisting of two security levels:
High (H) and Low (L), whereL < H. The user Jane Doe has the security clearance of
High. That is,L(JaneDoe) = H. Each user has one or more associatedprincipals. The
number of principals associated with the user depends on their security clearance; it
equals the number of levels dominated by the user’s securityclearance. In our example
Jane Doe has two principals:JaneDoe.H andJaneDoe.L. During each session, the user
logs in as one of the principals. All processes that the user initiates in that session inherit
security level of the corresponding principal.

Each continuous queryQi is associated with exactly one security level. The level of
the query remains fixed for the entire execution. The security level of the query is the
level of the principal who has submitted the query. For example, if Jane Doe logs in as
JaneDoe.L, all queries initiated by Jane Doe during that session will have the level Low
(L). A continuous queryQi consists of one or more operatorsOPi , where the operators
inherit the level of the query. We require a queryQi to obey the simple security property
and the restricted⋆-property of the Bell-LaPadula model [10].

1. An operatorOPi with L(OPi) = C can read an objectx only if L(x) ≤C.
2. An operatorOPi with L(OPi) = C can write an objectx only if L(x) = C.

In general, multilevel security can be supported at threegranularities: attribute, tu-
ple, or stream. Though stream level enforcement (i.e., single level streams within the
DSMS) may be the easiest way of supporting multilevel security, it does not work for
many MLS applications. We have analyzed stream applications from various domains
(e.g., battlefield monitoring, infrastructure security).In such applications, streams con-
taining tuples having different levels are often input to the DSMS. Thus, providing
stream level security would not be beneficial to such applications. In this research work,
we do security enforcement at tuple level (i.e., we assign level to each tuple). Thus, we
do not consider the security level of the attributes individually, in this paper.

We do not present a separate attack model in this paper. Like all MLS systems,
our goal is to allow information flow only from the dominated levels to the dominating
ones. All other information flow, either overtly or covertly, should be disallowed by our
architecture.

3 Multilevel Stream Processing Architecture

In this section, we begin by discussing a general DSMS architecture and describe how
it can be adapted to process MLS continuous queries.

3.1 General DSMS Architecture

A typical DSMS [7, 14, 16] architecture (based on the STREAM system [4]) is shown
in Figure 1. A Continuous Query (CQ) can be defined using specification languages [5],
or as query plans [14]. The CQs defined using specification languages are processed by



the input processor, which generates a query plan. Eachquery planis a directed graph
of operators (e.g., Select, Project, Join, Aggregate). Each operator is associated with
one or more inputqueues3 and an output queue. One or moresynopses4 [5] are associ-
ated with each operator (e.g., Join) that needs to maintain the current state of the tuples
for future evaluation of the operator. The generated query plans are then instantiated,
and query operators are put in to the ready state so that they can be executed. Based on
a scheduling strategy (e.g., round robin) [16, 6], the scheduler picks a query, an oper-
ator, or a path, and starts the execution. The run-time optimizer monitors the system,
and initiates load shedding [16, 25, 8] as and when required.Both these QoS delivery
mechanisms minimize resource usage (e.g., queue size) and maximize performance and
throughput. Each stream has a stream shepherd operator in the DSMS which handles
all the tuples arriving in that stream. Seq window operator reads the tuples from the
shepherd operator and propagates to leaf nodes of queries. This operator is shared by
all the queries that use that stream. In the directed graph ofoperators, the data tuples are
propagated from the leaf operator to the root operator. Eachoperator produces a stream
(can also be a relation) of tuples. After a processed tuple exits the query plan, the output
manager sends it to the query creators (or users).

Fig. 1.Data Stream Management System (DSMS)

3 Queues are used by the operators to propagate tuples.
4 Synopses are temporary storage structures used by the operators (e.g., Join) that need to main-

tain a state. In this paper, we use synopses andwindows, alternatively.



Fig. 2.Replicated MLS DSMS Architecture

3.2 MLS DSMS Architecture

In this section, we discuss how we can adapt the general DSMS architecture to process
MLS continuous queries. We focus our attention to the query processor component of
the architecture presented in Figure 1. The query processorof an MLS DSMS can have
various types of architecture depending on how logical isolation is achieved across the
different security levels. We borrow our ideas in this regard from the various archi-
tectures (trusted, kernelized, and replicated) that have been proposed in MLS DBMS
literature [15, 18, 2]. We choose the replicated architecture as the first step and plan to
propose other alternatives as part of our future work.

Our architecture is based on the replicated model where eachlevelL stores not only
the tuples with classificationL but also those whose classification is dominated byL.
We present one example of a replicated query processor in Figure 2, although many
variations are possible.

The query processors are untrusted and replicated at various security levels. Each
query processor runs at a security level (L) and is responsible for executing queries
submitted by the users who have logged on at the same level. The response to a query
may involve data belonging to one or multiple security levels; however, the level of all
the tuples returned in the response must be dominated by the query level.

The stream shepherd operator must be redefined to ensure thatonly tuples at the
dominated level are passed on to the dominating level. All the other operators are un-
trusted and are replicated at various levels. The input queues carrying data at dominated
levels are replicated at the dominating levels as well. Sequential-Window operators and
synopses used for processing blocking operators such as join and aggregation are cre-
ated as needed for the query processors at that level. In the next section, we discuss
query processing in more details.



4 Shared Query Processing in Replicated DSMS

In this section, first we discuss MLS CQL queries informally,and then discuss shared
query processing.

4.1 MLS CQL Queries

Consider the following data streams (Vitals and Position) and continuous queryQ writ-
ten using the CQL language [5]. QueryQ joins tuples from two streams. The sliding
windows maintain the last 100 tuples for computations.

Vitals (soldier id (sid), blood pressure (bp), pulse rate (pr));
Position (soldier id (sid), latitude (lat), longitude (lon));

Q: SELECT AVG(bp), AVG(pr) FROM Vitals[ROWS 100], Position[ROWS 100]
WHERE Vitals.sid = Position.sid

To support MLS, stream and query definitions have to be modified to include se-
curity levels. Below, we discuss MLS CQL briefly as a completediscussion is outside
the scope of this paper. An MLS CQL query can include the LEVELattribute in the
WHERE clause, SELECT clause, and window specification. Let usconsider the fol-
lowing examples.

SELECT AVG(bp) WHERE LEVEL = "S" FROM Vitals [ROWS 100]
SELECT AVG(bp) FROM Vitals [ROWS 100 LEVEL = "S"]
SELECT AVG(bp) FROM Vitals [ROWS 100] WHERE LEVEL = "S"

In the first query the WHERE clause conditions are applied before a tuple enters a
window. In the second query, the window keeps only tuples based on the condition
specified. In the third query, the window maintains 100 tuples, but the WHERE clause is
applied during AVG calculation. The first and second queriesare equivalent. Note that,
for these queries, we have simple selections and we do not have any join conditions. If
the WHERE clause specifies a join condition, this condition can only be checked in the
join operator which is processed after the window selection. Our algorithms, presented
in this paper, address all three types of queries. However, due to space constraints, our
examples are based on the first type of query which processes the WHERE conditions
except the join condition before window selection.

We consider only tuple-based (e.g., queryQ) and partitioned by windows [5]. In the
query shown below, the partitioned window maintains two different partitions (as it gets
only tuples with level S or TS), and the average is calculatedfor each partition.

SELECT AVG(bp) WHERE LEVEL = "S" OR "TS"
FROM Vitals [PARTITIONED BY LEVEL ROWS 100]
Processing each MLS query involves several steps. First, the selection condition of

the query is written in conjunctive normal form. Second, thequery must be rewritten to
add a where clause that says the level of tuples returned mustbe dominated by the level
of the user. Subsequently, we generate the query plan. In this work, we represent a query
plan in the form of a tree which we refer to as anoperator tree. Note that, many operator



Table 1.Continuous Queries

Query User Login Level Query Specification
Q1/Q′

1 Ann/Bob H SELECT AVG(bp)
FROM Vitals [PARTITIONED BY LEVEL ROWS 20]

Q2 Carl H SELECT AVG(bp) WHERE LEVEL = "L"
FROM Vitals [ROWS 20]

Q3 Dan H SELECT AVG(bp) WHERE bp > 50

FROM Vitals [PARTITIONED BY LEVEL ROWS 5]

Q4 Dan H SELECT AVG(pr)
WHERE V.sid = P.sid AND bp > 120 AND lon = "4E"
FROM Vitals [ROWS 10] V, Position [ROWS 10] P

Q5 Ellen H SELECT V.sid,pr

WHERE V.sid = P.sid AND bp > 120 AND lon ="4E"
FROM Vitals [ROWS 10] V, Position [ROWS 10] P

Q6 Frank H SELECT sid,bp WHERE bp > 120

FROM Vitals

Q7 Gail H SELECT sid,bp,pr WHERE LEVEL = "L" AND bp > 120

FROM Vitals

Q8 John H SELECT sid WHERE pr > 100

FROM Vitals

trees may be associated with a query corresponding to the different plans. However, we
show just one such tree for each query. The formal definition of an operator tree appears
below.

Definition 1. [Operator Tree] Anoperator treefor a query Qx is represented in the
form of OPT(Qx) consists of a set of nodes NQx and a set of edges EQx. Each node Ni
corresponds to some operator in the query Qx. Each edge(i, j) in this tree connecting
node Ni with node Nj signifies that the output of node Ni is the input to node Nj . Each
node Ni is labeled with the name of the operator Ni .op, its parameters Ni .parm, the
synopses Ni .syn (for blocking operators), and input queues Ni .inputQueue which are
used for its computation. The label of node Ni also includes the output produced by the
node, denoted by Ni .out putQueue, that can be used by other nodes or sent as response
to the users.

Operator trees for queriesQ6 andQ7 defined in Table 1 appear in Figures 3(a) and
3(b), respectively. An operator tree has all the information needed for processing the
query. Specifically, the labels on the node indicate how the computation is to be done
for evaluating that operator, where an operator is the basicunit of data processing in
a DSMS. The name component specifies the type of the operator,such as,SELECT,
PROJECT, AVG, etc. The parameter is denoted as a set. For theSELECToperator,
parameter is the set of conjuncts in the selection condition. For thePROJECToperator
it is the set of attributes. The synopsis is needed for the blocking operators, such as, join
and aggregate operations and has type (e.g., tuple-based, partitioned by) and size as its
attributes. The input queues are derived from the streams (or relations) needed by the
operator.



We use the streams (Vitals and Position) and continuous queries shown in Table 1
to discuss query processing. We also assume the tuples sent by soldiers involved in a
highly classified mission to be classified as high (H) and other missions to be classified
as low (L). Medics or users can login in at different levels and submitqueries. Also note
that in Table 1 all queries are issued in high (H) level. The main reason to choose one
level is that all queries issued by a user logged in at that level is processed by a query
processor running at that level. Hence we use examples fromH level to introduce and
discuss various sharing methods. All these queries are executed by one query processor
at level high, shown in Figure 2.

QueriesQ1 andQ′
1, issued by Ann and Bob respectively, compute the average blood

pressure of the last 20 tuples at each level in Vitals stream.QueryQ2 computes the
average blood pressure of the last 20 tuples having levelL. QueryQ3 computes the
average blood pressure for the last 5 tuples at each level where the pressure is greater
than 50. In queriesQ4 andQ5, the last 10 tuples that satisfy the selection conditions are
maintained in the synopses and are joined. Average and projection are computed over
the results from the join. In queriesQ6 to Q8, there are only selection conditions and
projection (duplicate preserving) operations. QueryQ7 selects levelL tuples that have
bp> 120 and projects three attributes.

4.2 Query Sharing

Typically, in a DSMS there can be several queries that are being executed concurrently.
Query sharing will increase the efficiency of these queries.Query sharing obviates the
need for evaluating the same operator(s) multiple times if different queries need it. In
such a case, the operator trees of different queries can be merged. Figure 3(c) shows
the merging of operator trees of queriesQ6 andQ7 shown in Figures 3(a) and 3(b),
respectively. In the Figure 4, we show how the operator treesof Q4 and Q5 can be
merged. Later we will formalize how such sharing can be done.

In our replicated MLS DSMS query processing architecture, we focus on sharing
queries to save resources such as CPU cycles and memory usage. In our architecture,
we share queries that are submitted by users with the same principal security level as
all these queries run in the same query processor. Since queries shared have the same
security level, our replicated MLS DSMS query processor avoids security violations
like covert channel during sharing.

We next formalize basic operations that are used for comparing the nodes belong-
ing to different operator trees. Such operations are neededto evaluate whether sharing
is possible or not between queries. We begin with the equivalence operator. If nodes
belonging to different operator trees are equivalent, thenonly one node needs to be
computing for evaluating the queries corresponding to these different operator trees.

Definition 2. [Equivalence of Nodes] Node Ni ∈ NQx is said to beequivalentto node
Nj ∈NQy, denoted by Ni ≡Nj , where Ni , Nj are in the operator trees OPT(Qx), OPT(Qy)
respectively, if the following condition holds: Ni .op = Nj .op∧Ni .parm= Nj .parm∧
Ni .syn= Nj .syn∧Ni .inputQueue= Nj .inputQueue

In some cases, for evaluating nodeNi belonging to operator treeOPT(Qx), we may
be able to reuse the results of evaluating nodeNj belonging to operator treeOPT(Qy).



Fig. 3.Operator Tree forQ6, Q7, and Loose Partial Sharing ofQ6 andQ7

Fig. 4.Strict Partial Sharing Operator Tree forQ4 andQ5



This is possible if the nodes are related by the subsumes relationship defined below.
Such relationship is possible when the operators match and are non-blocking and the
operator parameters are related by a subset relation.

Definition 3. [Subsume Relation of Nodes] Node Ni ∈ NQx is said to besubsumedby
node Nj ∈ NQy, denoted by Ni ⊆ Nj , where Ni , Nj are in the operator trees OPT(Qx),
OPT(Qy) and are referred to assubsumed node, subsuming noderespectively, if the
following conditions hold:

1. Condition 1:
– Case 1 [Ni .op= PROJECT]:

Ni .op= Nj .op∧Ni .parm⊆ Nj .parm∧Ni .inputQueue= Nj .inputQueue.

– Case 2 [Ni .op= SELECT]:
Ni .op= Nj .op∧Nj .parm⊆ Ni .parm∧Ni .inputQueue= Nj .inputQueue.

2. Condition 2: Ni .op is a non-blocking operator.

Consider the SELECT nodes of the operator trees of queriesQ6 andQ7 shown in
Figure 3, where the SELECT node ofQ7 is subsumed by the SELECT node ofQ6.
We have different forms of sharing that are possible in our architecture which we now
discuss.

Complete Sharing
The best form of sharing is complete sharing where no additional work is needed for
processing a new query. However, in order to have complete sharing, the two queries
must have equivalent operator trees. The notion of equivalence of operator trees is given
below.

Definition 4. [Equivalence of Operator Trees] Two operator trees OPT(Qx) and OPT(Qy)
are said to be equivalent, denoted by OPT(Qx) ≡ OPT(Qy) if the following conditions
hold.

1. for each node Ni ∈ NQx, there exists a node Nj ∈ NQy, such that Ni ≡ Nj .
2. for each node Np ∈ NQy, there exists a node Nr ∈ NQx, such that Np ≡ Nr .

The formal definition of complete sharing appears below.

Definition 5. [Complete Sharing] Query Qx can becompletely sharedwith an ongoing
query Qy submitted by a user at the same security level only if OPT(Qi) ≡ OPT(Q j).

Complete sharing is possible only when the queries are equivalent. For example,
queriesQ1 andQ′

1 have identical operator trees and can be completely shared.In such
cases, we do not need to do anything else for processing the new query. However, this
may not happen often in practice.

Partial Sharing
We next define partial sharing which allows multiple queriesto share the processing of
one or more nodes, if they are related by the equivalence or subsume relation.



Definition 6. [Partial Sharing] Query Qx can bepartially sharedwith an ongoing
query Qy submitted at the same security level only if the following conditions hold

1. OPT(Qx) 6≡ OPT(Qy)
2. there exists Ni ∈ NQx and Nj ∈ NQy, such that one of the following holds: Ni ≡ Nj ,

Ni ⊆ Nj or Nj ⊆ Ni .

We have two forms of partial sharing which we describe below.The main motivation
is the sharing of blocking operators have to be handled differently from non-blocking
operators. The sharing of blocking operators is more restrictive in which the conditions
for join operator, for example, must exactly match the otherquery’s join operator. On
the other hand, with non-blocking operators they can be subsumed. The formal defini-
tion of these two forms of sharing appears below.

Definition 7. [Strict Partial Sharing] Query Qx can bestrict partially sharedwith an
ongoing query Qy submitted at the same security level only if the following conditions
hold

1. OPT(Qx) 6≡ OPT(Qy)
2. there exists Ni ∈ NQx and Nj ∈ NQy, such that Ni ≡ Nj

3. there does not exist Ni ∈ NQx and Nj ∈ NQy, such that Ni ⊆ Nj or Nj ⊆ Ni .

Definition 8. [Loose Partial Sharing] Query Qx can beloose partially sharedwith an
ongoing query Qy submitted at the same security level only if the following conditions
hold

1. OPT(Qx) 6≡ OPT(Qy)
2. there exists Ni ∈ NQx and Nj ∈ NQy, such that Ni ⊆ Nj .

In the loose partial sharing, we will have a node on the ongoing query that subsumes
a node of an incoming query. When nodes are related by subsume relation, then it is
possible to decompose the subsumed nodes. The decomposition tries to make use of
operator evaluation of the subsuming node in order to evaluate the subsumed node. The
decomposition is formalized below.

Definition 9. [Decomposition of Subsumed Nodes] Let Ni ⊆ Nj where Ni ∈ OPT(Qx)
and Nj ∈ OPT(Qy). Node Ni can be decomposed into two nodes N′

i and N′′
i in the

following manner.

Node N′i
1. N′

i .op= Nj .op
2. N′

i .inputQueue= Nj .inputQueue
3. N′

i .parm= Nj .parm
Node N′′i

1. N′′
i .op= Ni .op

2. N′′
i .inputQueue= N′

i .out putQueue
3. N′′

i .parm= Ni .parm−N′
i .parm(i f Ni .op= SELECT)

N′′
i .parm= N′

i .parm−Ni .parm(i f Ni .op= PROJECT)



Consider the SELECT nodes of the operator trees of queryQ6 andQ7 shown in
Figure 3. In this case, the SELECT node ofQ7 is subsumed by the SELECT node ofQ6.
Select node ofQ7 which is the subsumed by the select node ofQ6 can be decomposed
into two select nodes. One of these new nodes mirrorQ6 and the other is also a select
node that checks for the additional select condition. Partial sharing is possible because
of the overlap of operator trees.

Definition 10. [Overlap of Operator Trees] Two operator trees OPT(Qx) and OPT(Qy)
are said tooverlapif OPT(Qx) 6≡ OPT(Qy) and there exists a pair of nodes Ni and Nj

where Ni ∈ NQx and Nj ∈ NQy such that Ni ≡ Nj .

Algorithm 1 : Merge Operator Trees
INPUT : OPT(Qx) andOPT(Qy)
OUTPUT: OPT(Qxy) representing the merged operator tree
Initialize NQxy = {}
Initialize EQxy = {}

foreachnode Ni ∈ NQx do
NQxy = NQxy ∪Ni

end
foreachedge(i, j) ∈ EQx do

EQxy = EQxy ∪edge(i, j)
end
foreachnode Ni ∈ NQy do

if 6 ∃Nj ∈ NQx such that Ni ≡ Nj then
NQxy = NQxy ∪Ni

end
end
foreachedge(i, j) ∈ EQy do

if edge(i, j) 6∈ EQxy then
EQxy = EQxy ∪edge(i, j)

end
end

When operator trees corresponding to two queries overlap, wecan generate the
merged operator tree using Algorithm 1. The merged operatortree signifies the pro-
cessing of the partially shared queries.

Figure 4 illustrates the strict sharing ofOPT(Q4) and OPT(Q5). As shown, we
share select and join operators. The result of the join is processed by duplicate pre-
serving project and aggregation operators. On the other hand, seq-window operator is
common to all queries using a stream. Figures 3 (a) and (b) show the OPT(Q6) and
OPT(Q7), respectively. Figure 3 (c) illustrates theOPT(Q67) which shares both the
query operations using the loose partial sharing approach.In this case, the queryQ7 is
subsumed byQ6 according to subsume relation definition. Based on Definition 9 (de-
composition of subsumed nodes), we splitQ7 select condition into two (bp> 120 and
level = “L”) nodes and then share thebp> 120 node withQ6.



5 Related Work

Though there has been a lot of research on multilevel security, to the best of our knowl-
edge, ours is the first work in multilevel secure data stream processing systems. In this
section, we will discuss works from closely related areas: DSMS, DSMS security, and
MLS in real-time systems.

Data Stream Management Systems (DSMSs):Most of the works carried out in
DSMSs address various problems ranging from theoretical results to implementing
comprehensive prototypes on how to handle data streams and produce near real-time re-
sponse without affecting the quality of service. There havebeen lots of works on devel-
oping QoS delivery mechanisms such as scheduling strategies [16, 6] and load shedding
techniques [16, 25, 8]. Some of the research prototypes include: Stanford STREAM
Data Manager [7, 4], Aurora [9], Borealis [1, 17], and MavStream [20].

DSMS Sharing: In general DSMSs like STREAM [7, 4], Aurora [9], and Borealis
[1, 17], queries issued by the same user at the same time can share the Seq-window
operators and synopses. In the STREAM system, Seq-window operators are reused by
queries. Instead of sharing plans, Aurora research focus onproviding better scheduling
of large number queries, by batching operators as atomic execution unit. In the Borealis
project, information on input data criteria from executingqueries can be shared and
modified by new incoming queries. Here the execution of operators will be the same
but the input data criteria can be revised. Even though many approaches target on better
QoS in terms of scheduling and revising, sharing execution and computation among
queries submitted at different times by the same user or at the same time between dif-
ferent users are not supported in general DSMS. Besides sharing common source Seq-
window operators, sharing intermediate computations willresult in big performance
gains.

DSMS Security: There has been several recent works on securing DSMSs [21, 13,
22, 12, 3] by providing role-based access control. Though these systems support secure
processing they do not prevent illegal information flows. Inaddition, in MLS systems
we need to classify each component of the DSMS as opposed to access control support.
Punctuation-based enforcement of RBAC over data streams isproposed in [22]. Ac-
cess control policies are transmitted every time using one or more security punctuations
before the actual data tuple is transmitted. Query punctuations define the privileges
for a CQ. Both punctuations are processed by a special filter operator (stream shield)
that is part of the query plan. Secure shared continuous query processing is proposed
in [3]. The authors present a three-stage framework to enforce access control without
introducing special operators, rewriting query plans, or affecting QoS delivery mecha-
nisms. Supporting role-based access control via query rewriting techniques is proposed
in [13, 12]. To enforce access control policies, query plansare rewritten and policies are
mapped to a set of map and filter operations. When a query is activated, the privileges
of the query submitter are used to produce the resultant query plan. The architecture
proposed in [21] uses a post-query filter to enforce stream level access control policies.
The filter applies security policies after query processingbut before a user receives the
results from the DSMS.

MLS in Real Time Systems:In MLS real-time database system, research focuses
on designing a DBMS where transactions having timing constraint deadlines executes



in serialization order without data conflicts and security violations. Issues like secu-
rity breach and task scheduling are similar to our MLS DSMS. Covert channel issues
must be addressed due to sharing data among transactions from different levels in real-
time DBMS. Many concurrent control protocols, like 2PL highpriority, OPT-Sacrifice,
and OPT-WAIT [19], deal with the high level transactions by suspending or restarting
them if they conflict with low level transactions. However, the starvation on high level
transactions becomes serious if there are too many conflictsin the system. S2PL [24]
provides a better way on balancing the security and performance among conflicting
transactions: high level transactions should wait for the commit of conflicting low level
transactions only once then executed. Real-time DBMSs alsoneed proper scheduling
strategy in order to satisfy the various transaction deadlines. There are many priority
selection algorithms like arrival timestamp, early-deadline-first, least-slack-time-first,
etc [23], which impact the scheduling strategies in DSMS research. Although a large
number of theories have been proposed on real-time system design, we cannot use them
directly into MLS DSMS because of the differences between real-time and data stream
systems. For the execution unit in the system, real-time DBMS uses transient trans-
actions while DSMS handles continuous queries. In order to cause a security breach,
transactions might set up inference or covert channel via accessing the same data item
while continuous queries try to manipulate the response time. Scheduling strategy in
MLS real-time transaction processing must address security, serialization and transac-
tion deadlines, whereas scheduling in CQ must address security and query response
time and throughput.

6 Conclusions and Future work

Data Stream Management Systems (DSMSs) have been developedto address the data
processing needs of situation monitoring applications. However, many situation moni-
toring applications, such as battlefield monitoring, emergency threat and resource man-
agement, involve data that are classified at various security levels. Existing DSMSs
must be redesigned to ensure that illegal information flow donot occur in such appli-
cations. Towards this end, we developed an architecture forMLS DSMS and showed
how MLS continuous queries can be executed in such systems. We have also shown
how query plans can be shared across queries submitted by possibly different users to
maximize resource utilization and improve performance. Our approach does not have
security violations and can be used to process MLS data streams.

We plan to implement a prototype and study the overhead that is being caused due
to MLS processing. We plan to investigate MLS DSMS query processing for kernelized
and trusted architectures as well and develop prototypes. In the trusted architecture, it
may be possible to share query plans across security levels and the performance im-
proved. We plan to do a comparative study of the different architectures to find out
which approach is the most suitable for processing MLS DSMS queries.

Currently, we have used simple extensions to CQL to express MLS continuous
queries. In future, we plan to extend CQL completely so that we can express more
complex MLS continuous queries. In our work, when a user submits a query, we check
whether the plans for the existing queries can be reused to improve the performance.



Note that, such verification must be carried out dynamically. Towards this end, we plan
to see how existing constraint solvers can be used to check for query equivalences. We
also plan to evaluate the performance impact of dynamic plangeneration and equiva-
lence evaluation. We also plan to investigate more on building other components such
as scheduling and load shedding for MLS DSMS.
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A Query Sharing

Table 2 shows the ways in which queries Q1 to Q8 defined in Table1 can be shared. For
example, when Q5 is executing and Q4 is the newly issued querythen they both can be
strict shared.

Table 2.Query Sharing


