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Abstract. With sensors and mobile devices becoming ubiquitous, situation mon-
itoring applications are becoming a reality. Data Stream Management $ystem
(DSMSs) have been proposed to address the data processing hseds appli-
cations that require collection of high-speed data, computing resultsesttyth
and taking actions in real-time. Although a lot of work appears in the area of
DSMS, not much has been done in multilevel secure (MLS) DSMS making th
technology unsuitable for highly sensitive applications such as battlefiehit mo
toring. An MLS DSMS should ensure the absence of illegal information ifhoav
DSMS and more importantly provide the performance needed to hanuti@co

ous queries. We investigate the issues important in an MLS DSMS andggrapo
architecture that best meets the goals of MLS DSMS. We discuss howwousin
queries can be executed in such a system and sharing across guesieplished

for maximum performance benefits.
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1 Introduction

With the advancement of smart technologies and ubiquiteagadility of sensor and
mobile devices, situation monitoring applications aredmeing a reality. Such applica-
tions require collecting high-speed data, processing tltemputing results on-the-fly,
and taking actions in real-time. Data Stream ManagementBws(DSMSs) [7, 14, 4,
9, 1,5, 16] have been proposed for such applications thawalfocessing of stream-
ing data and execution of continuous queries. One potamsialof this technology is
for military applications where DSMS receives informatioom various devices and
sensors, not all of which belong to the same security lemetuich applications, users
and information are classified into the various securitgleand mandatory rules gov-
ern the information flow across security levels. DSMSs neeekecute queries based
on live streaming data classified at various levels in respda request from users at
different security levels without causing illegal infortiwa flow. Our work attempts to
extend an existing DSMS to support such capabilities.

Researchers have worked on secure data and query procassimg context of
DSMSs. However, almost all of these works focus on providiegess control [15,
11] to streaming data [21, 13, 22, 12, 3]. However, contgliaccess is not enough to
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prevent security breaches in the above mentioned applicatvhere illegal information
flow can occur across security levels. For instance, thaends of covert and overt
channels can cause information to be passed from a mordigeisiel to a lesser one.
Multilevel security (MLS) not only prevents unauthorizeccass but also ensures the
absence of such illegal information flow.

Designing an MLS DSMS requires us to address several résesmges. We need
to provide a continuous query language for expressingweald MLS DSMS queries.
The formalization of such a language will allow us to deterenjuery equivalence and
facilitate query optimization. Note that, traditional ioots of query equivalence will
not work because the same query issued by users at diffexeutity levels will re-
turn different results. Moreover, query processing shad@dfficient to meet the QoS
requirements of a DSMS. This necessitates sharing queng giamultiple queries to
reduce query execution time without causing illegal infation flow. In order to pro-
cess MLS continuous queries in a secure manner, it is theraicessary to completely
redesign or make major modifications to the components of &S

In this work, we propose a suitable architecture for praogsMLS continuous
queries. We also formalize MLS continuous query procesaimgj discuss how such
queries can be executed in our proposed architecture. \Wasdisiow query plans can
reuse plans from existing queries. We augment the appregcbposed by the Stanford
STREAM [4], Aurora [9], and Borealis [1] projects and alloWasing of query plans
submitted by different users not all of which have been stiechat the same time. This
not only allows good resource utilization but also helpsi@aghthe quality-of-service
(QoS) critical to stream processing applications.

The rest of the paper is organized as follows. In Section 2jefime a MLS formal-
ization model for stream data applications where data ssymata streams, queries,
and other components in DSMS are assigned with securityslevigh proper access-
ing rules. In Section 3, we propose a replicated architectoraddress MLS stream
applications. In order to accelerate processing rates,xpm@ different sharing ap-
proaches between continuous queries in Section 4. We diseleted work in section
5. In Section 6, conclusions and future work are discussed.

2 Multilevel Security Formalization Model

We begin by presenting oanodelfor multilevel secure (MLS) DSMS system. An MLS
DSMS is associated with a security structure that is a paniker, (, <). L is a set of
security levels, anék is the dominance relation between levelsLif< Ly, thenL; is
said to strictly dominate; andL; is said to be strictly dominated k. If L; = L, then
the two levels are said to be equial.< L, orL; =Ly is denoted by.1 < L. If L1 <L,
thenL is said to dominaté; andL; is said to be dominated Hy,. Two levelsL; and
L, are said to be incomparable if neithar< L, norL, < L;. We assume the existence
of a levelU, that corresponds to the level unclassified or public kndgde The level
U is the greatest lower bound of all the levelslinAny data object classified at level
U is accessible to all the users of the MLS DSMS. Each MLS DSM8atlx € D is
associated with exactly one security level which we denstk(&) whereL(x) € L.



(The functionL maps entities to security levels.) We assume that the sedevel of
an object remains fixed for the entire lifetime of the object.

The users of the system are cleared to different securigtldeWe denote thgecu-
rity clearanceof userU; by L(U;). Consider a setting consisting of two security levels:
High (H) and Low (L), whereL < H. The user Jane Doe has the security clearance of
High. That is,L(JaneDog = H. Each user has one or more associgtedcipals The
number of principals associated with the user depends dndeeurity clearance; it
equals the number of levels dominated by the user’s seatlérance. In our example
Jane Doe has two principaldaneDoeH andJaneDoel. During each session, the user
logs in as one of the principals. All processes that the usiaties in that session inherit
security level of the corresponding principal.

Each continuous quelQ; is associated with exactly one security level. The level of
the query remains fixed for the entire execution. The secleiel of the query is the
level of the principal who has submitted the query. For edapnipJane Doe logs in as
JaneDoed., all queries initiated by Jane Doe during that session \eiihthe level Low
(L). A continuous queryy; consists of one or more operat@;, where the operators
inherit the level of the query. We require a qué€)yto obey the simple security property
and the restricted-property of the Bell-LaPadula model [10].

1. An operatolOP; with L(OP;) = C can read an objeatonly if L(x) < C.
2. An operatoOP; with L(OP;) = C can write an object only if L(x) =C.

In general, multilevel security can be supported at tigremularities attribute, tu-
ple, or stream. Though stream level enforcement (i.e. |sileyel streams within the
DSMS) may be the easiest way of supporting multilevel segltidoes not work for
many MLS applications. We have analyzed stream applicafiamm various domains
(e.g., battlefield monitoring, infrastructure security) such applications, streams con-
taining tuples having different levels are often input te tASMS. Thus, providing
stream level security would not be beneficial to such apgidina. In this research work,
we do security enforcement at tuple level (i.e., we assigal ® each tuple). Thus, we
do not consider the security level of the attributes indheillly, in this paper.

We do not present a separate attack model in this paper. LikdLS systems,
our goal is to allow information flow only from the dominatexVéls to the dominating
ones. All other information flow, either overtly or covertshould be disallowed by our
architecture.

3 Multilevel Stream Processing Architecture

In this section, we begin by discussing a general DSMS archite and describe how
it can be adapted to process MLS continuous queries.

3.1 General DSMS Architecture

A typical DSMS [7, 14, 16] architecture (based on the STREAMtam [4]) is shown
in Figure 1. A Continuous Query (CQ) can be defined using §ipation languages [5],
or as query plans [14]. The CQs defined using specificatioguiages are processed by



the input processor, which generates a query plan. gaety planis a directed graph
of operators (e.g., Select, Project, Join, Aggregate)hEgerator is associated with
one or more inputjueued and an output queue. One or maemopses[5] are associ-
ated with each operator (e.g., Join) that needs to mairtiainurrent state of the tuples
for future evaluation of the operator. The generated quagsare then instantiated,
and query operators are put in to the ready state so that dmelgeexecuted. Based on
a scheduling strategy (e.g., round robin) [16, 6], the salexchicks a query, an oper-
ator, or a path, and starts the execution. The run-time dxinmonitors the system,
and initiates load shedding [16, 25, 8] as and when requiBeth these QoS delivery
mechanisms minimize resource usage (e.g., queue size)ardhire performance and
throughput. Each stream has a stream shepherd operata DSNS which handles
all the tuples arriving in that stream. Seq window operagads the tuples from the
shepherd operator and propagates to leaf nodes of quetissoperator is shared by
all the queries that use that stream. In the directed grapperfators, the data tuples are
propagated from the leaf operator to the root operator. Bpehator produces a stream
(can also be a relation) of tuples. After a processed tupte e query plan, the output
manager sends it to the query creators (or users).
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Fig. 1. Data Stream Management System (DSMS)
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3 Queues are used by the operators to propagate tuples.
4 Synopses are temporary storage structures used by the operajorddie) that need to main-
tain a state. In this paper, we use synopsesw@ndows alternatively.
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Fig. 2. Replicated MLS DSMS Architecture

3.2 MLS DSMS Architecture

In this section, we discuss how we can adapt the general DS&Becture to process
MLS continuous queries. We focus our attention to the quesggssor component of
the architecture presented in Figure 1. The query procedsor MLS DSMS can have

various types of architecture depending on how logicahisoh is achieved across the
different security levels. We borrow our ideas in this regfiom the various archi-

tectures (trusted, kernelized, and replicated) that haes Iproposed in MLS DBMS

literature [15, 18, 2]. We choose the replicated architectis the first step and plan to
propose other alternatives as part of our future work.

Our architecture is based on the replicated model whereleaeh. stores not only
the tuples with classificatioh but also those whose classification is dominated_by
We present one example of a replicated query processor urd-@, although many
variations are possible.

The query processors are untrusted and replicated at gas@urity levels. Each
query processor runs at a security leve) &and is responsible for executing queries
submitted by the users who have logged on at the same leveltéBponse to a query
may involve data belonging to one or multiple security Isy&lowever, the level of all
the tuples returned in the response must be dominated bytrg tevel.

The stream shepherd operator must be redefined to ensurentjdtiples at the
dominated level are passed on to the dominating level. &llather operators are un-
trusted and are replicated at various levels. The inputegiearrying data at dominated
levels are replicated at the dominating levels as well. 8etjal-Window operators and
synopses used for processing blocking operators suchraarnoi aggregation are cre-
ated as needed for the query processors at that level. Inetktesaction, we discuss
query processing in more details.



4 Shared Query Processing in Replicated DSMS

In this section, first we discuss MLS CQL queries informadigd then discuss shared
query processing.

4.1 MLS CQL Queries

Consider the following data streams (Vitals and Positiorg eontinuous quer@writ-
ten using the CQL language [5]. Quedjoins tuples from two streams. The sliding
windows maintain the last 100 tuples for computations.

Vitals (soldier id (sid), blood pressure (bp), pulse rate (pr));
Position (soldier id (sid), latitude (lat), longitude (lon));

Q SELECT AVGE bp), AVGE pr) FROM Vital s[ ROAS 100], Position[ ROAS 100]
WHERE Vitals.sid = Position.sid

To support MLS, stream and query definitions have to be mattienclude se-
curity levels. Below, we discuss MLS CQL briefly as a comphliszussion is outside
the scope of this paper. An MLS CQL query can include the LE\&Hkibute in the
WHERE clause, SELECT clause, and window specification. Latamsider the fol-
lowing examples.

SELECT AVG(bp) WHERE LEVEL = "S' FROM Vitals [ ROAS 100]
SELECT AVG(bp) FROM Vitals [ROAS 100 LEVEL = "S']
SELECT AVG(bp) FROM Vitals [ROAS 100] WHERE LEVEL = "S'

In the first query the WHERE clause conditions are applied reefotuple enters a
window. In the second query, the window keeps only tupleetam the condition
specified. In the third query, the window maintains 100 tepibeit the WHERE clause is
applied during AVG calculation. The first and second quesiiesequivalent. Note that,
for these queries, we have simple selections and we do netdrgvjoin conditions. If
the WHERE clause specifies a join condition, this conditiomaaly be checked in the
join operator which is processed after the window selectur algorithms, presented
in this paper, address all three types of queries. Howeuerta space constraints, our
examples are based on the first type of query which procelseadHHERE conditions
except the join condition before window selection.

We consider only tuple-based (e.g., quénand partitioned by windows [5]. In the
query shown below, the partitioned window maintains twéedént partitions (as it gets
only tuples with level S or TS), and the average is calculédedach partition.

SELECT AVG bp) WHERE LEVEL = "S" OR "TS"

FROM Vital s [ PARTI TI ONED BY LEVEL ROWS 100]

Processing each MLS query involves several steps. Fiessdlection condition of
the query is written in conjunctive normal form. Second,dhery must be rewritten to
add a where clause that says the level of tuples returnedbaukiminated by the level
of the user. Subsequently, we generate the query plan dmthrk, we represent a query
plan in the form of a tree which we refer to as@yerator tree Note that, many operator



Table 1.Continuous Queries

Query| User |Login Level Query Specification
Q1/Q; |Ann/Boby H SELECT AVG(bp)
FROM Vitals [PARTITIONED BY LEVEL ROWS 20]

Q Carl H SELECT AVG(bp) WHERE LEVEL = "L"

FROM Vitals [ROWS 20]
Qs Dan H SELECT AVG(bp) WHERE bp > 50

FROM Vitals [PARTITIONED BY LEVEL ROWS 5]
Qa Dan H SELECT AVG(pr)

WHERE V.sid = P.sid AND bp > 120 AND lon = "4E"
FROM Vitals [ROWS 10] V, Position [ROWS 10] P
Qs | Ellen H SELECT V.sid,pr

WHERE V.sid = P.sid AND bp > 120 AND lon ="4FE"
FROM Vitals [ROWS 10] V, Position [ROWS 10] P

Qs | Frank H SELECT sid, bp WHERE bp > 120
FROM Vitals

Q; | Gall H SELECT sid, bp, pr WHERE LEVEL = " L" AND bp > 120
FROM Vitals

Qg | John H SELECT sid WHERE pr > 100
FROM Vitals

trees may be associated with a query corresponding to tfezetit plans. However, we
show just one such tree for each query. The formal definitt@mmperator tree appears
below.

Definition 1. [Operator Tree] Anoperator tredor a query Q is represented in the
form of OPT(Qy) consists of a set of nodegNand a set of edgesd;. Each node N
corresponds to some operator in the query. ach edgdi, j) in this tree connecting
node N with node N signifies that the output of node N the input to node N Each
node N is labeled with the name of the operator.®p, its parameters Nparm, the
synopses Nsyn (for blocking operators), and input queugsiMputQueue which are
used for its computation. The label of nodedl$o includes the output produced by the
node, denoted by;Nut putQueue, that can be used by other nodes or sent as igspon
to the users.

Operator trees for queri€ds andQ; defined in Table 1 appear in Figures 3(a) and
3(b), respectively. An operator tree has all the infornmati@eded for processing the
query. Specifically, the labels on the node indicate how tmaputation is to be done
for evaluating that operator, where an operator is the hasicof data processing in
a DSMS. The name component specifies the type of the opesaitir,asSELECT,
PROJECT AV G, etc. The parameter is denoted as a set. FOISEBRECT operator,
parameter is the set of conjuncts in the selection condiionthePROJECToperator
it is the set of attributes. The synopsis is needed for thekivhg operators, such as, join
and aggregate operations and has type (e.g., tuple-bastitipped by) and size as its
attributes. The input queues are derived from the stream®lations) needed by the
operator.



We use the streams (Vitals and Position) and continuoudegusihown in Table 1
to discuss query processing. We also assume the tuplesysentdiers involved in a
highly classified mission to be classified as higt) &nd other missions to be classified
as low (). Medics or users can login in at different levels and sulgyuéries. Also note
that in Table 1 all queries are issued in high) (evel. The main reason to choose one
level is that all queries issued by a user logged in at tha lievprocessed by a query
processor running at that level. Hence we use examplesitdavel to introduce and
discuss various sharing methods. All these queries areissaby one query processor
at level high, shown in Figure 2.

Queries; andq@,, issued by Ann and Bob respectively, compute the averagelblo
pressure of the last 20 tuples at each level in Vitals stré@uery Q, computes the
average blood pressure of the last 20 tuples having lev&uery Qs computes the
average blood pressure for the last 5 tuples at each levekwhe pressure is greater
than 50. In querie®4 andQs, the last 10 tuples that satisfy the selection conditiors ar
maintained in the synopses and are joined. Average andgtimjeare computed over
the results from the join. In queri€ds to Qg, there are only selection conditions and
projection (duplicate preserving) operations. Queryselects level tuples that have
bp> 120 and projects three attributes.

4.2 Query Sharing

Typically, in a DSMS there can be several queries that amgbetecuted concurrently.
Query sharing will increase the efficiency of these queasery sharing obviates the
need for evaluating the same operator(s) multiple timesfiéreént queries need it. In
such a case, the operator trees of different queries can kgedchd-igure 3(c) shows
the merging of operator trees of queri@s and Q; shown in Figures 3(a) and 3(b),
respectively. In the Figure 4, we show how the operator tefe®, and Qs can be
merged. Later we will formalize how such sharing can be done.

In our replicated MLS DSMS query processing architecture facus on sharing
queries to save resources such as CPU cycles and memory Usage architecture,
we share queries that are submitted by users with the samapai security level as
all these queries run in the same query processor. Sincéegugrared have the same
security level, our replicated MLS DSMS query processorids/@ecurity violations
like covert channel during sharing.

We next formalize basic operations that are used for comgahe nodes belong-
ing to different operator trees. Such operations are netdedaluate whether sharing
is possible or not between queries. We begin with the ecgrivad operator. If nodes
belonging to different operator trees are equivalent, thely one node needs to be
computing for evaluating the queries corresponding togluif§erent operator trees.

Definition 2. [Equivalence of Nodes] Node;j ¥ Ng, is said to beequivalentto node
N;j € Ng,, denoted by N= Nj, where N, Nj are in the operator trees ORQx), OPT(Qy)
respectively, if the following condition holds;.blp = Nj.opA N;.parm= N;j.parmA
Ni.syn= Nj.synA N,.inputQueue= N;j.inputQueue

In some cases, for evaluating nadebelonging to operator tre@PT(Qy), we may
be able to reuse the results of evaluating ngéelonging to operator tre@PT(Qy).
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This is possible if the nodes are related by the subsumesoredhip defined below.
Such relationship is possible when the operators match sndan-blocking and the
operator parameters are related by a subset relation.

Definition 3. [Subsume Relation of Nodes] Noded\NNg, is said to besubsumedy
node N € Ngy. denoted by NC N;, where N, N; are in the operator trees OR(Dy),
OPT(Qy) and are referred to asubsumed nodesubsuming nodeespectively, if the
following conditions hold:

1. Condition 1:
— Case 1 [N.op=PROJECT]:
Ni.op= N;j.opAN,.parmC Nj.parmA N;.inputQueue= N;.inputQueue.

— Case 2 [N.op=SELECT]:
Ni.op= Nj.opANj.parmC N;.parmA Nj.inputQueue= N;.inputQueue.

2. Condition 2: N.op is a non-blocking operator.

Consider the SELECT nodes of the operator trees of qu€deand Q; shown in
Figure 3, where the SELECT node @F is subsumed by the SELECT node @§.
We have different forms of sharing that are possible in oohisgcture which we now
discuss.

Complete Sharing

The best form of sharing is complete sharing where no adtditiavork is needed for
processing a new query. However, in order to have completarg)) the two queries
must have equivalent operator trees. The notion of equicalef operator trees is given
below.

Definition 4. [Equivalence of Operator Trees] Two operator trees GB%) and OPT(Qy)
are said to be equivalent, denoted by Q) = OPT(Qy) if the following conditions
hold.

1. for each node N= Ng,, there exists a nodejNe Ng,, such that N= N;.
2. for each node pe Ng,, there exists a node/Ne Ng,, such that i = N;.

The formal definition of complete sharing appears below.

Definition 5. [Complete Sharing] Query an becompletely sharedith an ongoing
query Q submitted by a user at the same security level only if GBY= OPT(Q;).

Complete sharing is possible only when the queries are algmitz For example,
queriesQ; andQ] have identical operator trees and can be completely shiaredch
cases, we do not need to do anything else for processing theunery. However, this
may not happen often in practice.

Partial Sharing
We next define partial sharing which allows multiple quet@share the processing of
one or more nodes, if they are related by the equivalencebsusoe relation.



Definition 6. [Partial Sharing] Query Q can bepartially sharedwith an ongoing
query Q submitted at the same security level only if the followingditions hold

1. OPT(Qx) # OPT(Qy)
2. there exists N No, and N € Na,, such that one of the following holds; & Nj,
Ni € Njor Nj €N,

We have two forms of partial sharing which we describe beldve main motivation
is the sharing of blocking operators have to be handledréifiity from non-blocking
operators. The sharing of blocking operators is more @steiin which the conditions
for join operator, for example, must exactly match the otiugery’s join operator. On
the other hand, with non-blocking operators they can bewsubd. The formal defini-
tion of these two forms of sharing appears below.

Definition 7. [Strict Partial Sharing] Query Q can bestrict partially sharedvith an
ongoing query Q@ submitted at the same security level only if the followingditions
hold

1. OPT(Qx) # OPT(Qy)
2. there exists N= Ng, and N € Noy, such that N= N;

3. there does not exist ¥ No, and N € Na,, such that NC Nj or Nj € N.

Definition 8. [Loose Partial Sharing] Query Qcan beloose partially sharedith an
ongoing query Q submitted at the same security level only if the followingditions
hold

1. OPT(Qx) # OPT(Qy)
2. there exists Nc N, and N € Ngy, such that NC N;.

In the loose partial sharing, we will have a node on the orgqirery that subsumes
a node of an incoming query. When nodes are related by sublat®n, then it is
possible to decompose the subsumed nodes. The decompdsi® to make use of
operator evaluation of the subsuming node in order to etatha subsumed node. The
decomposition is formalized below.

Definition 9. [Decomposition of Subsumed Nodes] LettNN; where N € OPT(Qx)
and N € OPT(Qy). Node N can be decomposed into two nodesadd N’ in the
following manner.

Node N
1. N.op=N;.op
2. N.inputQueue= N;.inputQueue
3. N.parm= N;j.parm
Node N
1. N.op=N.op
2. N'.inputQueue= N/.outputQueue
3. N’.parm= N;.parm— N/.parm(if Nj.op= SELECT)
N/.parm= N/.parm— N;.parm(if N;.op= PROJECT)



Consider the SELECT nodes of the operator trees of g@grand Q; shown in
Figure 3. In this case, the SELECT nodd&fis subsumed by the SELECT nodeQ@y.
Select node of); which is the subsumed by the select nod€gfcan be decomposed
into two select nodes. One of these new nodes miggoand the other is also a select
node that checks for the additional select condition. Blestiaring is possible because
of the overlap of operator trees.

Definition 10. [Overlap of Operator Trees] Two operator trees OfJy) and OPT(Qy)
are said tooverlapif OPT(Qy) # OPT(Qy) and there exists a pair of nodes &hd N
where N € N, and N € Ng, such that N= N;.

Algorithm 1: Merge Operator Trees
INPUT: OPT(Qx) andOPT(Qy)
OUTPUT: OPT(Qyy) representing the merged operator tree
Initialize Ng,, = {}
Initialize Eq,, = {}
foreach node N € Ng, do
‘ NQxy = NQxy UN;
end
foreachedge(i, j) € Eq, do
Eq,, = Eq, Uedge(i, |)

end
foreachnode N € Ng, do
if ANj € N?{l such that N= N; then
‘ NQxy =Ng,, UN,;
end
end
foreachedge(i, j) € Eq, do
if edge(i, j) ¢ Eq,, then
Eq, = Eq, Uedge(i, j)

end

end

When operator trees corresponding to two queries overlapcamegenerate the
merged operator tree using Algorithm 1. The merged opetedersignifies the pro-
cessing of the partially shared queries.

Figure 4 illustrates the strict sharing 6PT(Q4) and OPT(Qs). As shown, we
share select and join operators. The result of the join isgesed by duplicate pre-
serving project and aggregation operators. On the othet, lsy-window operator is
common to all queries using a stream. Figures 3 (a) and (hy $heOPT(Qs) and
OPT(Qy), respectively. Figure 3 (c) illustrates ti@PT(Qs7) which shares both the
query operations using the loose partial sharing apprdadhis case, the quer@; is
subsumed by according to subsume relation definition. Based on Defimiiqde-
composition of subsumed nodes), we sfilitselect condition into twol(p > 120 and
level = “L") nodes and then share thg > 120 node withQg.



5 Related Work

Though there has been a lot of research on multilevel sgctoithe best of our knowl-
edge, ours is the first work in multilevel secure data streeongssing systems. In this
section, we will discuss works from closely related aredSM3, DSMS security, and
MLS in real-time systems.

Data Stream Management Systems (DSMSsMost of the works carried out in
DSMSs address various problems ranging from theoreticallteeto implementing
comprehensive prototypes on how to handle data streamgaddqge near real-time re-
sponse without affecting the quality of service. There Haaen lots of works on devel-
oping QoS delivery mechanisms such as scheduling stratgiie6] and load shedding
techniques [16, 25, 8]. Some of the research prototypesideclStanford STREAM
Data Manager [7, 4], Aurora [9], Borealis [1, 17], and Maeatm [20].

DSMS Sharing: In general DSMSs like STREAM [7, 4], Aurora [9], and Borealis
[1,17], queries issued by the same user at the same time eaa #te Seq-window
operators and synopses. In the STREAM system, Seq-windevatgs are reused by
queries. Instead of sharing plans, Aurora research focpsaiiding better scheduling
of large number queries, by batching operators as atomauéiea unit. In the Borealis
project, information on input data criteria from executiggeries can be shared and
modified by new incoming queries. Here the execution of dpesawill be the same
but the input data criteria can be revised. Even though mppgoaches target on better
QoS in terms of scheduling and revising, sharing executimh @mputation among
queries submitted at different times by the same user oreagdime time between dif-
ferent users are not supported in general DSMS. Besidemgh@ammon source Seg-
window operators, sharing intermediate computations rgslult in big performance
gains.

DSMS Security: There has been several recent works on securing DSMSs [21, 13
22,12, 3] by providing role-based access control. Thougbkdlsystems support secure
processing they do not prevent illegal information flowsatidition, in MLS systems
we need to classify each component of the DSMS as opposeddssacontrol support.
Punctuation-based enforcement of RBAC over data streampoosed in [22]. Ac-
cess control policies are transmitted every time using omeare security punctuations
before the actual data tuple is transmitted. Query punicthumtdefine the privileges
for a CQ. Both punctuations are processed by a special fitterator (stream shield)
that is part of the query plan. Secure shared continuous/quecessing is proposed
in [3]. The authors present a three-stage framework to eafaccess control without
introducing special operators, rewriting query plans,ftecing QoS delivery mecha-
nisms. Supporting role-based access control via quenyitiegvtechniques is proposed
in[13, 12]. To enforce access control policies, query pkmesrewritten and policies are
mapped to a set of map and filter operations. When a query isatadi the privileges
of the query submitter are used to produce the resultantyqulan. The architecture
proposed in [21] uses a post-query filter to enforce streaei Bccess control policies.
The filter applies security policies after query processingbefore a user receives the
results from the DSMS.

MLS in Real Time Systems:In MLS real-time database system, research focuses
on designing a DBMS where transactions having timing caigtdeadlines executes



in serialization order without data conflicts and securiilations. Issues like secu-
rity breach and task scheduling are similar to our MLS DSM8veZt channel issues
must be addressed due to sharing data among transactiomdifferent levels in real-
time DBMS. Many concurrent control protocols, like 2PL higtiority, OPT-Sacrifice,
and OPT-WAIT [19], deal with the high level transactions lnggending or restarting
them if they conflict with low level transactions. Howevéretstarvation on high level
transactions becomes serious if there are too many coriflicke system. S2PL [24]
provides a better way on balancing the security and perfocenamong conflicting
transactions: high level transactions should wait for tmmit of conflicting low level
transactions only once then executed. Real-time DBMSsradsd proper scheduling
strategy in order to satisfy the various transaction deadli There are many priority
selection algorithms like arrival timestamp, early-dézeHfirst, least-slack-time-first,
etc [23], which impact the scheduling strategies in DSM&aesh. Although a large
number of theories have been proposed on real-time systsignd&e cannot use them
directly into MLS DSMS because of the differences betweailttine and data stream
systems. For the execution unit in the system, real-time [3BMes transient trans-
actions while DSMS handles continuous queries. In ordeiatse a security breach,
transactions might set up inference or covert channel iassing the same data item
while continuous queries try to manipulate the response.ti&theduling strategy in
MLS real-time transaction processing must address sgcseitialization and transac-
tion deadlines, whereas scheduling in CQ must addressiseand query response
time and throughput.

6 Conclusions and Future work

Data Stream Management Systems (DSMSs) have been devétoaddress the data
processing needs of situation monitoring applicationsvéler, many situation moni-
toring applications, such as battlefield monitoring, ereany threat and resource man-
agement, involve data that are classified at various sgdefitls. Existing DSMSs
must be redesigned to ensure that illegal information flommatoboccur in such appli-
cations. Towards this end, we developed an architecturmi® DSMS and showed
how MLS continuous queries can be executed in such system$idie also shown
how query plans can be shared across queries submitted biplyadifferent users to
maximize resource utilization and improve performancer. gaproach does not have
security violations and can be used to process MLS datanstrea

We plan to implement a prototype and study the overhead $Hzging caused due
to MLS processing. We plan to investigate MLS DSMS query pssing for kernelized
and trusted architectures as well and develop prototypethel trusted architecture, it
may be possible to share query plans across security lendisha performance im-
proved. We plan to do a comparative study of the differenhigectures to find out
which approach is the most suitable for processing MLS DSM&igs.

Currently, we have used simple extensions to CQL to exprelsS ®bntinuous
queries. In future, we plan to extend CQL completely so thatoan express more
complex MLS continuous queries. In our work, when a user stgemuery, we check
whether the plans for the existing queries can be reusedpmira the performance.



Note that, such verification must be carried out dynamicatyvards this end, we plan
to see how existing constraint solvers can be used to checjufry equivalences. We
also plan to evaluate the performance impact of dynamic géareration and equiva-
lence evaluation. We also plan to investigate more on mgldither components such
as scheduling and load shedding for MLS DSMS.
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Query Sharing

Table 2 shows the ways in which queries Q1 to Q8 defined in Tabén be shared. For
example, when Q5 is executing and Q4 is the newly issued dberythey both can be
strict shared.

Table 2. Query Sharing

Incoming
1 Q11Q2]Q3 Q4 Q5| Q6 Q7 Q8
Executing
Q1 Complete
Loose
2 - Complete - - - - Select -
(LEVEL)
Q3 - - Complete - - - - -
Q Strict
_ _ _ Select(bp), Loose Loose _
4 Complete | Seiection), | Select(bp) | Select(dp)
Join
Q Strict
Select(bp), Loose Loose
S - - - Select(lon), | COMPlete | oiccibp) | Select(op) -
Join
Loose Loose Loose
Q6 - - - Select(bp) | Select(bp) Complete Select(bp) -
Q7 - - - - - - Complete -
Q8 - - - - - - - Complete




