
Secure Method Calls by Instrumenting Bytecode

with Aspects

Xiaofeng Yang and Mohammad Zulkernine

School of Computing, Queen’s University
Kingston, Ontario, Canada, K7L 3N6
{yang, mzulker}@cs.queensu.ca

Abstract. Today most mobile devices embed Java runtime environ-
ment for Java programs. Java applications running on mobile devices
are mainly MIDP (Mobile Information Device Profile) applications. They
can be downloaded from the Internet and installed directly on the device.
Although the virtual machine performs type-safety checking or verifies
bytecode with signed certificates from third-party, the program still has
the possibility of containing risky code. Inappropriate use of sensitive
method calls may cause loss of personal assets on mobile devices. More-
over, source code is not accessible for most installed applications, making
it difficult to analyze the behavior at source-code level. To better protect
the device from malicious code, we propose an approach of bytecode in-
strumentation with aspects at bytecode level. The instrumentation pin-
points the location of statements within methods, rather than at the
interface of method calls. The aspects are woven around the statement
for tracking. The weaving is performed at bytecode level without requir-
ing source code of the program.

Keywords: Bytecode instrumentation, aspects, code security.

1 Introduction

Mobile technology is very popular nowadays. More and more applications are
running on mobile devices such as cellphones and PDAs, etc. Mobile code can
easily migrate from one site to another, and even to a personal cellphone. Java
applications are popularly running on mobile devices that embed Java Runtime
Environments. User’s information may be at risk as they are not usually aware
of the programs they are running on their devices, for example, the unauthorized
SMS (Short Message Service) sending programs [1] can be executed without any
authorization of a user. Such sensitive information may also include personal
data, geo-locations, and passwords [18].

The MIDP (Mobile Information Device Profile) is the core profile for the
development of applications on Java mobile devices. The MIDlet is the applica-
tion developed with MIDP. Many cellphone manufacturers already have MIDP
enabled devices available. The security vulnerabilities shown in [1] indicate that
the incompatibilities between different versions of MIDP caused security issues

by unprotected use of sensitive method calls. It is necessary to track such sensi-
tive method calls to avoid abuse of APIs before the MIDP specification becomes
perfect. Much research have been using static analysis techniques to assess the
quality and the security of downloaded Java mobile applications [10,11,17]. They
present approaches of validating downloaded MIDlets by verifying source code,
method properties and signatures with certifications using Point-to analysis [10]
or dependency analysis [11, 17]. Although these static analysis techniques are
helpful, they cannot fully address the problems occurred during runtime. By
static analysis, it is hard to tell which method call is at risk. For example,
Display.setCurrent() is a common method used to update the screen on mo-
bile devices. However, it was also used by hacker group to run malicious code
on devices. The current screen is obscured with other items asking a user for
permitting SMS. Then the user approves the permission for the request shown
on the obscured screen rather than the real screen. Although this vulnerability is
prevented in Sun RI (Reference Implementation) of MIDP by performing appro-
priate locking and unlocking access to the display, as there could be other sen-
sitive method calls, we believe that it is necessary to control such method calls.
Moreover, by static analysis, the method call RecordStoreFile.deleteFile()
is allowed for use. However, this deletion operation can cause data loss during
runtime with the inappropriate use of the developers as reported in [1]. Both
examples show that such method calls should be controlled even though they
are declared valid in the static analysis phase.

Aspect-oriented technology has been widely used to separate cross-cutting
concerns (like logging mechanisms) from functionality modules. Currently, most
implementations of aspect languages have been using the recompilation of the
original source code and the instrumentation code to perform the instrumenta-
tion. However, in real world, most programs are delivered without source code.
Therefore, we consider the instrumentation at bytecode level. Bytecode is an
intermediate machine language that instructs virtual machines how to execute
operational instructions. When the bytecode is loaded into JVM, the JVM ver-
ifier only validates the correctness of the bytecode’s structure, data type, and
symbolic references. BCEL (ByteCode Engineering Library) is used to manipu-
late and modify bytecode [20] at bytecode level, but it does not support aspect
features for instrumentation and requires good expert knowledge to instrument
bytecode at appropriate location. AspectJ is a popular AOP (Aspect-Oriented
Programming) language [6] that implements aspects in Java. It provides the flex-
ible aspect constructs and expressive pointcut patterns. It requires the source
code of the program for re-compiling. Binder et al. [14–16] propose a series of
approaches of bytecode re-engineering by instrumenting Java’s standard class
libraries. However, it is not realistic to modify the implementation of system
libraries. We cannot rely on the platform’s upgrade since it is difficult to recall
and patch up all platforms. For mobile platforms, the bytecode instrumentation
was not performed using aspects for security concerns at bytecode level.

In our approach, we modify the program with aspects at bytecode level with-
out accessing source code and without knowing the context of sensitive method

calls in advance. We manipulate the delivered bytecode without recompiling
the original programs, and we instrument the bytecode instructions during class
loading. We use a bytecode library, Javassist [3], to manipulate bytecode instruc-
tions from class files. We also define the corresponding aspects in modules using
expression editor provided by Javassist. While loading classes into the vir-
tual machine, security concerns are instrumented into the place where insecure
method calls might happen. Our approach does not require access to source code
and does not change the original class. Moreover, rather than weaving aspects
at the interface level, we weave directly around the statement of the method call
for tracking. It does not change the implementation of the method call but it
changes the behavior of invoking the method call. Our approach determines the
context of a sensitive method call dynamically, while the others have to know
the names of methods that are using the sensitive method call in advance.

The rest of the paper is organized as follows. Section 2 presents the Java ME
(Java platform, Micro Edition) technology, security risks on Java ME platform,
bytecode instrumentation, and aspect-oriented technology. Section 3 demon-
strates our approach of bytecode instrumentation with aspects to address sensi-
tive method call concerns. Section 4 presents the implementation of our approach
and experiments. Section 5 compares our work with the existing related work.
Section 6 concludes the paper.

2 Background

2.1 Security Risks on Java ME Platform

Java programming language was initially invented for using in embedded
systems. It is becoming more and more popular for mobile embedded systems
and mobile devices. Java ME (Java Platform, Micro Edition) is a platform for
the development of Java applications on mobile devices. Today, most mobile
phones have a Java runtime environment embedded in the device. The overview
of the layers of Java ME architecture for resource-constrained devices is shown
in Fig. 1.

CLDC HI (Connected Limited Device Configuration Hotspot Implementa-
tion) is Sun’s new high-performance Java virtual machine for embedded devices
compared to KVM (K Virtual Machine), which in the past was widely deployed
on Java ME [5]. CLDC (Connection Limited Device Configuration) defines the
configuration for “constrained” devices with low memory, limited network con-
nectivity, and user-interface capabilities. MIDP (Mobile Information Device Pro-
file), on top of the configuration, provides rich APIs for the development of
mobile applications, such as file handling, networking, and persistent storage.
The MIDlet is the application designed with MIDP profile. The VM (Virtual
Machine) on mobile devices provides a security model that is different from con-
ventional Java. It does not control access through SecurityManager to enforce
security policies as standard Java does. Java class files are properly pre-verified
in a pre-verification process of the MIDP application’s life cycle. Developers or
testers are not allowed to design customized class loader during run-time, and

Fig. 1. Java ME Platform

it is also not allowed to download any new libraries containing native interfaces
that are not supported in MIDP or CLDC.

From application-level considerations, the study of security vulnerabilities [1]
reveals that the platform suffers from many problems caused by poorly written
code, containing unauthorized method calls. As mobile devices hold very im-
portant information, it can be exploited easily as the devices roam. Applications
running on Java ME platform are implemented with the core profile of MIDP. In
MIDP 1.0 specification, the application is restricted into a sandbox model. The
sharing between MIDlet suites is strictly prohibited. In MIDP 2.0, the access to
sensitive resources such as method calls and sharing between MIDlet suites are
allowed under granted permissions by the MIDlet. This can cause security prob-
lems by inappropriate usage of APIs. The program can access shared resources
and facilities that contain sensitive method calls.

In MIDP 2.0, some low-level APIs should be protected from application de-
velopers. The application should not call such APIs via higher-level interfaces.
For example, the class RecordStoreFile provides the direct interface of per-
forming actions on data records in the storage system. In the transitional period
of specification implementation, such APIs exist for the purpose of compatibility
with old versions. However, with malicious designs, the data from other suites
can be easily exploited by the methods provided in RecordStoreFile class [1].
Therefore, it is developers’ responsibility to take care of all data protections or
rely on the enhancement of MIDP security specifications.

Although manufacturers are implementing features complying with MIDP
specifications, some conform to the 1.0 version, while some are already designing
with the 2.0 version specification. Therefore, there still exists risks on devices
because of the varieties of specifications. Meanwhile, MIDP specification has
been enhanced with many security features [4]. Currently, the MIDP 2.0 is still
the main profile for the implementations of applications on Java mobile devices.

Considering these issues, we monitor related sensitive method calls in MIDP 2.0
applications.

2.2 Bytecode Instrumentation

Bytecode instrumentation is a technology used to manipulate and modify
bytecode instructions with additional concerns integrated without impacting the
original system behavior. It inserts user-defined classes or methods in the for-
mat of bytecode. Bytecode is a set of instructions that can be interpreted and
executed by virtual machines. Once a Java file is compiled into the class file, the
bytecode instructions in the class file can be transferred across the network to
other platforms for executions. Java programs are compiled into a generic in-
termediate format called Java bytecode. A method in bytecode is a sequence of
instructions. Each instruction consists of a one-byte operational code specifying
the operation to be executed followed by one or more arguments. An instruction
can be expressed in the following format [9]:

1 <index><opcode>[<operand1>[<operand2>...]][<comment>]

The <index> is the index of the opcode (operational code) of the instruction
in the array that contains the bytes of Java virtual machine code for the method.
It can be thought of a bytecode offset from the beginning of the method [9]. The
following example is a simple constructor from a MIDlet application with a
simple method function of String.valueOf().

1 public MainMidlet() {
2 String number = String.valueOf("H");
3 }

The corresponding bytecode is shown as below. It consists of index and in-
struction code in each line. The opcode aload_0 [this] gets the reference of
the class from the stack. The line 5 and line 7 are two instructions of method
calls. The invokespecial invokes the method of an instance of class, this. The
invokestatic invokes the static method of a class. Opcode ldc pushes the value
of the String ‘H’ onto the stack. The astore_1 stores the value returned from
the method call into the variable number.

1 // Method descriptor #10 ()V
2 // Stack: 1, Locals: 2
3 public MainMidlet();
4 0 aload 0 [this]
5 1 invokespecial javax.microedition.midlet.MIDlet() [12]
6 4 ldc <String ”H”> [14]
7 6 invokestatic java.lang.String.valueOf(java.lang.Object) : java.lang.String [16]
8 9 astore 1 [number]
9 10 return

Bytecode instructions are checked by a bytecode verifier in JVM before load-
ing to virtual machines. However, the bytecode verifier mainly checks the type
safety in VM (Virtual Machine). It cannot predict the runtime behaviors of the
instructions. Therefore, it is necessary to check additional properties of bytecode
instructions and prevent them from imposing any harms on systems. Bytecode
instrumentation uses the structural reflection to return the relevant information
from the bytecode instructions. It is a good way to know what the instructions
do at run-time.

Javassist is a tool that makes the manipulation of Java bytecode simple [3].
Javassist is a class library that deals with reading and writing Java bytecode. It
takes great usage of Java reflection features to modify bytecode retrieved from
class files. In Javassist, each Java class is represented by an abstract CtClass

object. The ClassPool is the repository of all loaded classes. The typical process
of the instrumentation by Javassist is as follows.

1 ClassPool pool = ClassPool.getDefault();
2 CtClass cc = pool.get(targetClass) ;
3 //targetClass: String name of the class
4
5 /∗ Modification Process ∗/
6 cc. writeFile () ;

ClassPool represents the repository of all loaded classes. The CtClass rep-
resents the instance of the loaded class. All modifications on the class, such as
inserting fields, changing method bodies, modifying constructors, are performed
against the CtClass object. The method writeFile() commits the changes into
the loaded CtClass object.

As the reflection features are not allowed on the Java ME Platform, the
instrumentation is performed in Java standard virtual machine with MIDP li-
braries and verified before delivering to Java ME Platform.

2.3 Aspects

Aspect technology is used to separate crosscutting concerns from functional-
ity modules. The most common cross-cutting concerns in a system is the logging
mechanism. An aspect is a code snippet that scatters across multiple modules of
the whole system. It aims to address crosscutting concerns by providing advices
for systematic identification (pointcut), separation (join point), representation
(aspect), and composition (weaving). A join point is a location where cross-
cutting concerns are attached to the original functionality. A pointcut is an
expression language that specifies the patterns of locations where the code for
cross-cutting concerns are required.

Crosscutting concerns are encapsulated into separate modules, known as as-

pects, so that security concerns can be developed separately from the existing
programs [7]. Combining aspects and existing programs requires the recompi-

lation process to form the final system. Using bytecode instrumentation, addi-

tional concerns and the original core program can be combined together without
impacting the logical functionality of the original system.

3 Secure Method Call

We use aspect-oriented programming to track sensitive method calls during
class loading. The join points are evaluated for the intercepted sensitive method
calls. Currently, many existing approaches instrument security concerns by in-
tercepting methods that use sensitive method calls in applications. However, a
sensitive method call can be used everywhere by the application. The name or
method signature can be assigned differently. Method context and class context
should be known in advance to locate the secure method call. In our approach,
the method context and class context are determined dynamically during run-
time by the instrumented aspects. We insert tracking code directly around the
method call without knowing which class or method will be using it in advance.

When a sensitive method call is requested, the appropriate checking is per-
formed around the call. On both “caller” and “callee” sides, it should be verified
whether the “caller” and the “callee” are in the granted permission of the request
according to the policy by “callee” side. Secondly, the depth of method calls is
evaluated to locate the origin of the method calls. In this way, we compare the
chain of a method call with the specification to verify if the method call is in a
safe state.

Let us consider a MIDlet suite containing two MIDlet applications, MA and
MB . Assume that MA retrieves the reference to one field of MB , for example, the
reference to the record management system in MB . Then MA can call method
ms, which is the sensitive method call as Fig. 2 shows.

The MIDlet MA is performing actions defined by method ms on MIDlet MB .
The MA is the initiator of the method call. The sensitive method call invocation
is intercepted by Javassist tool. The method call ms is passed as a parameter to
the secure method call aspect module. In the aspect module, the context of the
method call is determined. The security state is evaluated by the constraints.

The security state of the method call is determined by the constraints re-
turned from security state checking aspect. If the method call ms passes the
security checks, the invocation is continued on the target MB . Otherwise, the
security warnings are prompted to user indicating failures of the security check.
We encapsulate the “security state check” module into aspects. The aspects are
instrumented around the sensitive method call. Bytecode instructions are in-
strumented into the context of the method call, rather than at the interface. We
locate the context of the method call instead of changing method bodies, and
we instrument concerns around the statement of the method call at the caller
side.

The aspects are woven around the call and invoked when it is intercepted.
At runtime, when the method call is invoked, the corresponding aspects are
executed to check the security state of the call. The constraints returned from the
aspect module decides whether to continue the method call. The security policies

Fig. 2. Secure Method Call

(permission check, domain check) are included in the aspects. The policies are
returned as the constraints imposed on the execution of the method calls.

3.1 Bytecode Instrumentation Using Aspects

We design the corresponding aspects for concerns of sensitive method calls.
The framework of the instrumentation process is shown in Fig. 3. The ClassPool
is a repository representing all objects of the loaded classes. The ClassLoader

is used to load classes from the pool into virtual machines. It takes the parame-
ter of an instance of ClassPool to retrieve and manage properties of classes.
The Translator is added to ClassLoader instructing how the classes from
ClassPool should be loaded and when the instrumentation should be performed.
It is implemented in the onLoad() method. The onLoad() method is invoked
when the class is being read from ClassPool. The ExprEditor is the module
containing aspect implementations. It implements how to modify the bytecode
instructions when the Translator is going to instrument the class. In our frame-
work, the target Translator performs instrumentation upon is the context (class
and method) of the method call, rather than the body of the method call. As the
custom classloader is not supported on Java ME platform, we use Java Standard
Virtual Machine assisted with MIDP libraries to load the classes, manipulate the
bytecodes, and instrument aspect codes. The modified bytecode are delivered to
the mobile platform for final execution.

We use Javassist to encapsulate cross-cutting concerns. We design a subclass
of ExprEditor class representing an Aspect. However, the description of an
aspect library written with Javassist is not declarative but procedural whereas
an aspect library in AspectJ is declaratively written with Java-like syntax [6].

A pointcut is defined by condition checks. In Javassist, it is specified by a
function implemented in a class inherited from ExprEditor class: edit(Expr
e). The edit() method takes different parameter types as inputs including
FieldAccess, MethodCall, and ObjectConstruction. For example, if we in-
strument on one field of an object, then the method edit(FieldAcess f) is
defined to implement the condition checks on the field variables and specifies
when the aspect is invoked. To design the pointcut with the combination of
multiple types of fields, multiple edit() methods are defined in the class with
different parameter types.

Fig. 3. Instrumentation Process

The join point is a process of determining where to instrument bytecode.
Javassist uses Java reflection features to manage Java bytecode instructions.
Unlike expressive patterns in AspectJ, the joinpoint determination has to be
performed using procedural programming with reflection interfaces. After we
intercept the method call, we determine the method and the class from which
the method call is invoked. We further locate the position of the call statement
within the method context and class context. Javassist instruments the statement
when it is reached during loading.

The advice is the action performed at join points. We use Javassist to retrieve
bytecode information and modify bytecode during loading them to the class
loader. The advice is wrapped as a string of Java statements to replace the orig-
inal statement. The original statement is the statement of executing the method
call. The aspects are defined as separate method functions in ExprEditor class
for modularity. All aspect codes are appended into a StringBuffer object, in-
cluding the execution of the original method call.

3.2 Secure Method Call Aspect

We use the example shown in Fig. 2 to demonstrate the process of instru-
mentation in aspects at bytecode level. The method call is initiated from class
MA. If it invokes the deleteRecord() method call to access the object entity
specified by rs, which is a RecordStore object in class MB , the identity of the
calling class MA needs to be verified upon the call. In this case, the method call
deleteRecord() needs to be intercepted. Class MA is the class context contain-
ing the use of the method call. If the method call is used within a method in MA,
for example, call() method defined in class MA, then call() is the method
context of deleteRecord(). The context of the method call deleteRecord() is
determined dynamically by aspects without knowing the name of context (class
and method) in advance. This is different from other traditional approaches [7],
in which the intrumentation actually happens in the body of the method call
of deleteRecord(). Determing the context of a method call is to locate the
position of statements of invoking the method call, that may be in the middle

of the method context. The statement of the method call is then replaced with
the instrumented code.

Pointcut. Sensitive method calls are intercepted statically by the Javassist tool
during reading classes from ClassPool. The Pointcut specifies the interceptor
patterns, indicating where sensitive method calls are happening. In our approach,
we define the corresponding edit(MethodCall m) method to capture predefined
sensitive method calls. When the method call RecordStore.deleteRecord is en-
countered, an aspect is instrumented into the context of the call. The pointcut
is implemented by the method edit() in the class inherited from ExprEditor.
The method function edit() contains the determination of point cut. It invokes
the corresponding instrumentation containing join points and advice defined
in ExprEditor. It takes different parameter types including FieldAccess and
MethodCall to process different types of objects. If it targets on the type of
method call, it then takes the MethodCall as the parameter to intercept method
calls filtered by condition checks.

The interception of the method call of RecordStore.deleteRecord is shown
as below. The field member variable mName specifies the name of the method call.
The method matchMethod() is a function to verify the signature of the method
call. The variable m_CName refers to the class name defining the method call.
In our example, it is RecordStore. The variable m_MName refers to the method
name, which is deleteRecord(). The method rmsInstrument() is the aspect
containing join points and advice to weave. It is defined in ExprEditor.

1 public void edit(MethodCall m) throws CannotCompileException{
2 if (matchMethod(m)){
3 try{ rmsInstrument(m);
4 }catch(Exception e){ e.printStackTrace();}
5 }
6 }
7

8 public boolean matchMethod(MethodCall m){
9 return (m.getClassName().equals(m CName) && m.getMethodName().equals(

m MName));
10 }

JoinPoint. The JoinPoint specifies the place where aspects are woven into.
The process is to determine the context containing the statement of the inter-
cepted method call. When the context is located, we instrument tracking aspects
into it around the statement of the call. The method call is passed as a parame-
ter to assess its context. If the intercepted method call is invoked from another
method, then this calling method is the method context of the call, and the class
that the calling method belongs to is the class context of the call. All the context
information such as calling method, calling class, and calling MIDlet determine
whether the caller is authorized for the call.

We first retrieve the method and the class containing this method call. Be-
low is the function to retrieve the information of class context and the method
context. The CtClass represents a class object, and the CtBehavior represents
a block object that containts the use of Expr object.

1 public String getContextMethod(Expr expr){
2 CtBehavior source = expr.where();
3 return source.getName();
4 }
5

6 public String getContextClass(Expr expr){
7 CtClass cc = expr.getEnclosingClass();
8 return cc.getName();
9 }

After we get the class context and method context, we further locate the
position of the statement of the method call. The advice is invoked as a method
defined for the determined context, which is CtMethod shown in the example
below:

1 final String className = getContextClass(m);
2 final String methodName = getContextMethod(m);
3 ClassPool cp = ClassPool.getDefault();
4 CtClass cc = cp.get(className);
5 CtMethod cm = cc.getDeclaredMethod(methodName);
6 cm.instrument(editor);

The editor is the “aspect” module instrumenting bytecode into the context of
the method call cm. When reaching the method context cm, the editor further
locates the position of the statement of method calls. The aspects defined in
editor are instrumented when the statement is reached.

Advice. The Advice is the action performed as a response to the events of the
sensitive method call. It is defined in instrumented code. In our example, it is
encapsulated in the sub class of ExprEditor. After the class context and method
context are determined, the next step is to construct the bytecode to weave into
appropriate locations.

We design aspects around the statement of sensitive method calls appearing
in their class and method context. We replace the method call statement by
new bytecode containing logging concerns and the original statement. The new
statements are encapsulated into StringBuffer object, including the executions
of original statements represented by $proceed().

1 StringBuffer codes = new StringBuffer();
2 codes.append("Log("before invoking the method call");");
3 codes.append("$_ = $proceed();}");
4 codes.append("Log("after invoking the method call");");
5 m.replace(codes.toString()) ;

Aspect Rule. To better refine the control flow of sensitive method calls, we
adopt an aspect rule to control how the method call is granted access. The access
rule is defined to confine the use of sensitive method calls that are risky to exe-
cute. The aspect rule is used to filter the class or the method to be instrumented.

1 <aop>

2 <pointcut name=‘‘rms’’ expr=‘‘execution(public ∗ ∗.RecordStore−>

deleteRecord(int))”/>

3

4 <bind pointcut=‘‘rms”>

5 <interceptor class=‘‘RmsEditor”/>

6 </bind>

7 </aop>

Each aspect is specified by an aop element. The aop element contains an
element of pointcut and an element of bind. The pointcut specifies the pat-
tern of the pointcut. It contains an attribute of expr that defines the expres-
sion of intercepted method call. In this example, it indicates an expression to
intercept the method call of RecordStore->deleteRecord(int). The method
call can be initiated from any classes. The advice is defined in bind element.
The bind element binds the pointcut and interceptor. The interceptor spec-
ifies the instrumentation class of ExprEditor. In this example, RmsEditor is a
subclass of ExprEditor containing aspects implemented by its method edit().
When the method call specified by pointcut is captured, the advice specified
by interceptor element, RmsEditor is invoked to instrument the method call.

4 Implementation

The instrumentation framework is written in Java. The UML diagram of the
implementation is shown in Fig. 4. We use one MIDlet application (RmsApp) of
RMS (Record Management Store) as a target application. The target application
contains the usage of the sensitive method call of deleteRecord(). We instru-
ment the designed aspects into the application around the sensitive method call
for tracking purpose. The modified bytecode instructions run on an emulator
device. Whenever a sensitive method call is invoked, the event is logged with the
source of initiator. This approach provides a way to track and locate the source
of malicious code on the device.

The RmsTranslator is constructed to control how class files are interpreted.
The translator class is attached with the RmsEditor which contains the instru-
mentations in aspects. The RmsSecureController is the entrance point of the
instrumentation process.

Class RmsSecureController contains three members. ClassLoader is a user-
defined class loader which is used to load classes. ClassPool represents the
repository of all objects read from class files. ClassLoader reads the classes from
ClassPool, as we have shown the process in Fig. 3. RmsTranslator provides
instructions to ClassLoader about how to interpret and load classes at runtime.

Fig. 4. UML of Instrumentation Class

Class RmsTranslator defines the onLoad() method. The method imple-
ments the function of loading the required method calls. It has two parame-
ters, ClassPool object, and the string indicating patterns to match the required
method call. The constructor of RmsTranslator has two member attributes: the
class name variable indicating the target name to intercept and the ExprEditor

specifying expressions of patterns for identifying join points.

Class RmsEditor encapsulates aspects into method implementations. The
edit() method is designed to intercept method calls specified by its parame-
ters. When the desired method call is intercepted, the aspects are invoked by
rmsInstrument around the positions of statements. The positions of statements
are calculated by getContextMethod() and getContextClass() to retrieve the
context information including the class and method contexts.

We verify whether the instrumentation is successful in two phases. In the first
phase, we check the bytecode instructions statically. In instrumentation process,
modified bytecode are written into temporary files. Using javap program and
the Eclipse IDE to disassemble the class files, the bytecode of Log() methods
are instrumented successfully around the deleteRecord() method call. In the
second phase, we conduct the run time checking. The modified bytecode is deliv-
ered to the emulator toolkit at run time. When a user invokes the deleteRecord
operation, the logs are recorded specifying where the operation is initiated from
and where it is reached. The bytecode is instrumented for tracking the source of
the call.

Our instrumentation is conducted in Java Standard Environment and tested
using Sun’s Java Wireless Toolkit 2.5.2 for CLDC on Debian GNU/Linux op-
erating system. During the instrumentation, we set the bootclasspath to Java
ME library version to make it deliverable to mobile devices. As the instrumenta-
tion is performed in Java Standard Environment assisted with MIDP libraries,
we use the preverify command tool provided by Java Wireless Toolkit to stat-
ically verify the validity of modified classes. Since the instrumented aspect code

are only limited to APIs allowed only on Java ME platform, the classes pass
through a pre-verification process.

5 Related Work

Static analysis technique is commonly used to assess the quality and the
security of downloaded programs. The MATOS (Midlet Analysis TOol Suite) [10]
automatically validates MIDlets with Point-to analysis. It analyzes properties of
JAD (Java Application Descriptor) conformity, signature certificates, allowed
usage of classes and methods, and acceptable ranges of argument values. Bian et

al. [11] also perform bytecode analysis and combine the technique of dependency
analysis with the information flow analysis to predict secure information flow
from bytecode’s composition. Avvenuti et al. [17] propose a security mechanism
with the static analysis to indicate the state of secure information flow. All of
these static analysis techniques are helpful in static checking phase, but they
cannot address all the issues that may be found at runtime. In [19], a formal
specification of dynamic semantics of Java bytecode is presented in the format
of operational semantics for the Java Virtual Machine, giving each instruction a
rule describing its effect based on the machine state. These approaches provide
a static view of assessment of bytecode security. Our approach protects the
use of sensitive method calls and tracks their behavior during runtime. It is
more practical because most mobile applications are deployed in the format of
bytecode.

Bytecode instrumentation has been used in the area of debugging and profil-
ing. Binder et al. [14–16] propose a series of approaches of bytecode re-engineering
by instrumenting Java’s standard class libraries. The bytecode instrumentation
has also been used to adapt the legacy software to distributed execution on mul-
tiple JVM [13] migrated from the version running on single JVM. However, it is
not realistic to modify the implementation of system libraries, although source
code is available for some systems. We cannot rely on platform’s upgrade since
it is difficult to recall and patch up all platforms currently in use. Our approach
neither modifies the platform of applications, nor changes the original programs.
We instrument the bytecode instructions while loading applications into virtual
machine. The bytecode is modified during loading. After the execution is com-
pleted, the program remains as it was when downloaded.

Many tools assist in flexible bytecode instrumentation. BCEL [20] (Byte-
Code Engineering Library) provides libraries to manipulate low-level bytecode.
It directly operates on the instructional operands. It requires proficient skills
on bytecode. Win et al. [7] illustrate the effectiveness of instrumenting sepa-
rate application security concerns using AspectJ. However, they either require
the source code for instrumentation, or instrument bytecode instructions in a
procedural way. Our approach uses Javassist to modularize concerns in aspects.
Javassist operates on Java bytecode with flexible expressions. It combines the
benefits from both BCEL [20] and AspectJ [7]. Hence, we can integrate more

concerns flexibly. It does not require too much knowledge of low-level bytecode
instructions or the access to source code.

The applet filter was proposed [12] by substituting the references of potential
classes and methods. The authors provide a solution to change the references
of restricted classes and methods stored in the CONSTANT_POOL, where the ref-
erences of all loaded method calls are stored. However, if there are more unsafe
classes or methods, more subclass and method references should be designed.
They also change the standard class libraries provided by JVM environment.
It is not realistic to modify the platform. In our approach, we do not modify
the platform and only focus on the application-level. We do not modify the im-
plementation of a program, but weave the additional security concerns without
changing the functionality of the original program.

6 Conclusion

Without the source code of applications, it is difficult to manipulate byte-
code in a flexible way. We present an approach of bytecode instrumentation using
aspects. The process does not require access to source code. We design corre-
sponding aspects to track secure method calls by weaving it into executable
applications without having too much knowledge about bytecode. The bytecode
instrumentation is performed during class loading. Therefore, we do not need to
change the original classes. The bytecode instructions are inserted before and
after the intercepted method call successfully to track the call event. Determin-
ing the contexts of the sensitive method calls dynamically is another benefit of
our approach, while existing approaches require the names of methods that use
the sensitive method calls in advance.

In future, we will try to make aspects more flexible to instrument. Javassist
is a procedure-based facility for bytecode instrumentation. The modularized as-
pects are still not quite flexible and obscure to understand. Therefore, the AOP
features provided by Javassist is kind of limited. However, the principle of AOP
for bytecode instrumentation is the same. Currently, we address only the secu-
rity issues related to sensitive method calls. We plan to use more security rules
to integrate more flexible security concerns.

Acknowledgments

This work is partially supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

References

1. M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua. Vulnerability Analysis of J2ME
CLDC Security. In US DoD Information Assurance Newsletter, Vol. 9, No. 2, pages
18-23, September 2006.

2. M. Debbabi, M. Saleh and S. Zhioua. Java for Mobile Devices: A Security Study. In
Proceedings of the Annual Computer Security Applications Conference, ACSAC’05,
Tucson, Arizona, USA, December 2005, IEEE Press.

3. Javassist, Available online: http://www.csg.is.titech.ac.jp/˜chiba/javassist/
4. JSR 271: Mobile Information Device Profile 3, Available online:

http://jcp.org/en/jsr/detail?id=271
5. Sun Java ME CLDC HotSpot Implementation White Paper. Available online:

http://java.sun.com/products/cldc/wp/CLDC HI WhitePaper.pdf
6. AspectJ Programming Guide, available on line:

http://www.eclipse.org/aspectj/doc/released/proggui-de/index.html
7. G. Georg, I. Ray, and R. France. Using Aspects to Design a Secure System. In 8th

Int’l Conf. on Engineering of Complex Computer Systems, pages 117-128, 2002.
8. Using Javassist for bytecode search and replace transformations, Available online:

http://www.ibm.com/developerworks/java/library/j-dyn0302.html
9. T. Lindholm and F. Yellin. The Java Virtual Machine Specification (Second Edi-

tion). Addison Wesley, April 1999.
10. P. Crégut, C. Alvarado. Improving the security of downloadable Java applications

with static analysis. In BYTECODE. ENTCS, Vol. 141, Elsevier, Amsterdam,
2005.

11. G. Bian, K. Nakayama, Y. Kobayashi, and M. Maekawa. Java Mobile Code Secu-
rity by Bytecode Analysis. In ECTI Transactions on Computer and Information
Technology, Vol. 1, No. 1, pages 30-39, 2005.

12. Ajay Chander, John C.Mitchell, and Insik Shin. Mobile code security by Java
bytecode instrumentation. In DARPA Information Survivability Conference & Ex-
position (DISCEX II), June 2001.

13. M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A bytecode translator for dis-
tributed execution of legacy java software. In European Conference on Object-
Oriented Programming 2002, LNCS 2072, pages 236-255, Springer, 2001.

14. W. Binder, V. Roth. Security Risks in Java-based Mobile Code System. Scalable
Computing: Practice and Experience, Vol. 7, No. 4, pages 1-11, 2006 SWPS.

15. W. Binder, J. Hulaas, and P. Moret. Advanced Java Bytecode Instrumentation. In
5th International Conference on Principles and Practices of Programming in Java,
pages 135-144, Lisbon, Portugal, 2007.

16. W. Binder, J. Hulaas, and P. Moret. Reengineering Standard Java Runtime Sys-
tems through Dynamic Bytecode Instrumentation. In Seventh IEEE International
Working Conference on Sept. 30 2007, pages 91 - 100.

17. Marco Avvenuti, Cinzia Bernardeschi, Nicoletta De Francesco. Java bytecode ver-
ification for secure information flow, In ACM SIGPLAN Notices, Vol. 38, No. 12,
December 2003.

18. Resource and Information Flow Security Requirements for MO-
BIUS(Mobility, Ubiquity and Security), 2006. Available on line:
http://mobius.inria.fr/twiki/pub/DeliverablesList/We-bHome/Deliv1-1.pdf.

19. Peter Bertelsen. Dynamic semantics of Java bytecode, In Workshop on Principles
on Abstract Machines, September 1998.

20. The Byte Code Engineering Library (BCEL) manual, available online:
http://jakarta.apache.org/bcel/manual.html.

