
Practical Private DNA String Searching and
Matching through Efficient Oblivious Automata

Evaluation

Keith B. Frikken

Department of Computer Science and Systems Analysis
Miami University, Oxford, OH 45056

frikkekb@muohio.edu

Abstract. In [18] it was shown that the ability to perform oblivious au-
tomata evaluation was useful for performing DNA searching and match-
ing. By oblivious automata evaluation we mean that one participant has
a finite state machine and the other participant has a sequence, and
at the end of the protocol the sequence owner learns whether the ma-
chine accepts the sequence. A protocol was given in [18], but it required
O(n) rounds (where n is the number of characters in the sequence) and
O(mn) modular exponentiations (where m is the number of states in the
automata). Both of these factors limit the applicability of this approach.
In this paper we propose a new protocol that requires only O(1) rounds
and reduces the number of modular exponentiations to O(n) without re-
vealing any additional information. We have implemented both schemes
and have shown experimentally that our scheme is two to three orders
of magnitude faster than the previous scheme.

Keywords: Privacy-Preserving Protocols, DNA matching, and Cryptogra-
phy

1 Introduction

In this paper we consider the problem of evaluating an automata in an oblivious
manner. That is, one participant, Alice, has an automata that she regards as
private, and the other participant, Bob, has a sequence which he regards as
private. We desire a protocol where Bob learns whether Alice’s automata accepts
his sequence, but Bob learns no other information about the automata and Alice
learns no information about Bob’s sequence. This problem was considered in
[18] with the motivation of applying this technology to oblivious DNA searching
and matching. For example, it is possible to build a finite state machine that
accepts only DNA sequences that contain a specific sub-sequence that is close to
a marker sequence. Assuming Alice has found such a marker (perhaps Alice is
a large pharmaceutical company) and would like to sell a service to Bob where
he learns whether he has a predisposition to the disease, then this technology
would make it possible for Bob to learn whether he has a predisposition to the

specific disease without revealing his DNA sequence to Alice or revealing Alice’s
proprietary information to Bob.

In the near future, it is envisioned that it will be possible to sequence one’s
own DNA for a modest price. For example, the US National Institute of Health
has set a goal that by 2014 it should be possible to sequence a human genome
for under 1000 dollars [1]. When such technology exists, genomic information
in electronic form will become ubiquitous. This raises serious privacy concerns,
as it is easy to envision possible abuses of such information. And while recent
legislation in the US will make it illegal to discriminate based on DNA [2], it
is desirable to have technology that would allow this data to be useful without
having to share it with other entities.

In [18], a protocol was proposed for evaluating an automata in an oblivious
manner. However, while their scheme was an excellent first step towards practical
DNA searching and matching, their scheme has two performance drawbacks: i)
it requires rounds linear in the size of Bob’s sequence, and ii) it requires modular
exponentiations proportional to the number of states in the automata times the
number of characters in Bob’s sequence. Since modular exponentiations require
significantly more computation than many other operations, they are an accurate
estimator of performance for protocols. In this paper we introduce a new scheme
that reduces the number of rounds to a small constant and reduces the number of
modular exponentiations to a value that is linear in the length of Bob’s sequence.
Furthermore, we have implemented both our scheme and the scheme in [18] and
we show experimentally that our scheme is 2 to 3 orders of magnitude faster
than the previous scheme.

1.1 Problem Definition/Notation

The server has a automata denoted by (Σ, S, q,M,F) where Σ is the alpha-
bet (we denote the alphabet as Σ1, . . . , Σ|Σ|), S is a set of states denoted by
{s0, . . . , sm−1}, q ∈ S is the initial state, M is a Σ × m matrix representing
the transition function, i.e., M(i, j) represents the state that the automata en-
ters when processing input Σi in state sj , and F ⊆ S is the set of final states.
The server regards this automata as private. The client has a sequence of letters
`1 · · · `n ∈ {Σ}n, that it regards as private. For convenience we denote the state
that the automata is in after processing the string `1 · · · `m by s`1···`m . More
formally, s`1 = M(`1, q) and s`1···`i = M(`i, s`1···`i−1).

The goal of the protocol is for the client to learn whether the server’s au-
tomata accepts its sequence (i.e., if s`1···`n

∈ F), without revealing information
about the sequence to the server (including the automata’s result) and the client
learns nothing other than what can be deduced from this result.

In this paper we assume that the automata owner is honest-but-curious in
that it will follow the protocol exactly but will try to infer additional information.
We consider this model because: i) if a protocol cannot be made practical in this
restricted model then there is little hope that it could be made secure in a
stronger adversary model and ii) by auditing the server and levying fines for
misbehavior would give disincentives to keep the server from misbehaving.

1.2 Our Contributions

The contributions of this work are as follows:

1. We introduce a new protocol for oblivious automata evaluation that requires
only a constant number of rounds (a reduction from O(n) in the previous
scheme), and reduces the number of modular exponentiations from O(mn +
n|Σ|) to O(n)

2. We have implemented our scheme along with the scheme in [18] and we show
experimentally that our proposed scheme is 2-3 orders of magnitude faster
than the previous approach.

3. We extend our scheme to support transducers (i.e., finite state machines that
produce more than Boolean output).

1.3 Organization of Manuscript

The remainder of this document is organized as follows. In section 2 we describe
related work. In section 3 we describe tools needed for our protocol. In section 4
we describe the scheme in [18] in more detail so that it is possible to compare the
schemes. In section 5 we introduce our new scheme. In section 7 we introduce
experimental results, and we summarize our results in section 8.

2 Prior Work

2.1 Generic SMC

Secure Multiparty Computation (SMC) is the problem of creating a privacy-
preserving protocol for any function f1; that is, creating a protocol that com-
putes f over distributed inputs while revealing only the result and inferences
that can be made from this result. General results state that any function can be
computed in such a secure manner. The first constructions for secure two-party
SMC were given in [19, 20]; these assumed that the adversary of the protocol was
honest-but-curious (HBC) in that the adversary will follow the protocol exactly
but will attempt to make additional inferences. Later a construction was given
for multiple parties [10] in the malicious adversary model (where the adversary
deviates arbitrarily from the protocol) assuming that a majority of the partici-
pants are honest. There have also been many other papers attempting to improve
the efficiency of these protocols to make the general results practical. Another
approach that has been deployed is to introduce a domain-specific protocol that
is more efficient than the general results. We describe specific secure protocols
for genomic problems in the next section.

One crucial difference between the problem considered in this paper and the
above-mentioned general results is that in this paper, the server’s input is a

1 We are assuming that f can be computed in polynomial time when given all of the
inputs.

function (i.e., an automata) and the function being evaluated is private. Some
prior approaches include: i) Selective private function evaluation (SPFE) and
ii) Cryptocomputuing. The goal of SPFE [8] is for one party to compute a pri-
vate function over a subset of another party’s database without revealing the
function. However, this model is different than the one used in our approach.
Cryptocomputing [17] allows two parties to compute a private function on an-
other party’s input. This work was extended in [4, 5] to support more general
functions. In this paper we introduce a more efficient approach for the specific
problem of oblivious automata evaluation.

2.2 Privacy-Preserving Protocols for Genomic Computation

The work most closely related to this paper is [18], which introduced a protocol
for oblivious automata evaluation, with the goal of being able to perform robust
DNA searching. We describe the protocol proposed in this paper in more detail
in section 4. While there are many applications for doing oblivious automata
evaluation, a primary motivation is to be able to perform DNA searching and
matching. There has been other work that has considered the problem of privacy-
preserving DNA matching. For example, the work in [3] introduced a protocol
that computes the edit distance between two sequences and a new protocol was
introduced in [11] that improved the efficiency of this scheme. Thus the work in
this paper is semi-orthogonal to the work in [3, 11] in that: i) for computing the
edit distance between two sequences the approach described in this manuscript
is less general than the other papers, but this allows the scheme to be more
efficient, and ii) however, the scheme proposed in this paper allows for many
other computations not supported in [3, 11] in that it can evaluate an arbitrary
automata.

3 Building Blocks

3.1 Oblivious Transfer

In this paper (and in [18]) we require the usage of a chosen 1-out-k Oblivi-
ous Transfer (OT). In this protocol the sender has k values v1, . . . , vk and the
chooser has a specific index i ∈ [1, k]. At the end of the protocol the chooser
obtains vi but does not learn any information about the other values and the
sender does not learn which value was chosen. We specifically, use the protocol
for OT described in [15], which requires O(1) rounds of communication, O(1)
modular exponentiations by both participants2, O(k) modular multiplications
by the server and O(k) communication.

2 Technically, the sender must perform O(k) exponentiations in an initialization phase
but these can be amortized over multiple runs of the protocol

3.2 Yao’s Scrambled Circuit Evaluation

In Yao’s Scrambled Circuit Evaluation [20], one participant will generate an
oblivious circuit that computes the desired outcome and that the other partici-
pant will evaluate this circuit. One crucial idea behind this construction is that
the generator will choose two random encodings3 for each wire of the circuit–one
corresponding to 0 (false) and the other to 1(true). The evaluator learns the en-
coding corresponding to the actual value of the wires, but does not know what
this encoding corresponds to. While the generator would know the meaning of
the encoding, the generator does not know the encoding known to the evaluator.
Thus neither participant knows the true value of the wire, but together they do.
For a more detailed description of this protocol and a proof of security see [13].

3.3 Additively-Homomorphic Encryption

While the scheme we propose in this paper does not utilize a homomorphic en-
cryption scheme, the scheme in [18] did, and thus to make a detailed comparison
between the schemes we provide a brief overview of such encryption schemes. In
an additive homomorphic encryption scheme, the product of two ciphertexts is
a ciphertext of the sum of the two plaintexts. This allows basic operations to be
performed on encrypted values. One specific homomorphic encryption scheme is
described in [16]. More specifically, when we refer to homomorphic encryption,
we are using an encryption scheme with the following properties: public-key,
semantically-secure, additive homomorphism–Given E(x) and E(y), we require
that D(E(x)∗E(y)) = x+y and D(E(x)c) = xc, and re-encryption–Given E(x)
and the public parameters of the homomorphic encryption scheme it is possible
to re-encrypt the value to obtain another ciphertext for x (usually this is done
by multiplying by E(0)). Note that encryption, decryption, and re-encryption
all require O(1) modular exponentiations.

4 Previous Scheme and Analysis

In this section we give a high level overview of the scheme introduced in [18],
and we also provide a detailed analysis of the cost of this approach. A principle
idea of this scheme, is that the sequence owner (hereafter referred to as the
client) will learn the current state of the automata obfuscated by an additive
permutation factor chosen by the automata owner (hereafter referred to as the
server). That is, the current state will be additively split between the two parties
so that neither will know the actual value. Initially, the protocol is bootstrapped
by having the client and server engage in a 1-out-of-|Σ| OT protocol to learn
the state of the automata after the first character of the sequence.

Protocol: To set up this protocol, it is assumed that server has received the
client’s public key for a semantically-secure homomorphic encryption system,
and that client has received the setup information to be a chooser in an OT
protocol (as in [15]).
3 At a high level these can be thought of as cryptographic keys.

1. The server chooses n integer values, h1, . . . , hn where each value is chosen
uniformly from [0,m−1]. The server constructs |Σ| values, v1, . . . , v|Σ| where
vi = M(i, q) + h1 mod m (Recall that q is the initial state of the automata).
The server and the client engage in a 1-out-of-|Σ| OT protocol where the
server inputs v1, . . . , v|Σ| and the client chooses `1. The client stores this
value as s′`1 (The prime is used to denote that this is the current state
additively permuted).

2. In sequence, for each value i from 2 to n they do:
(a) The client creates a list of encrypted values E(a′

0), . . . , E(a′
n−1) where

a′
j = 1 if j = s′`1···`i−1

and is 0 otherwise. The client sends these values
to the server.

(b) The server shifts these values by hi−1 positions to obtain E(a0), . . . , E(an−1)
where E(aj) = E(a′

j−hi−1 mod m). Note that aj is 1 if and only if j =
s`1···`i−1 . The server creates an n × 1 matrix A with these values. The
server then creates a |Σ|×n matrix M ′ where M ′(i, j) = M(i, j)+hi mod
m. Using standard techniques for computing with homomorphically-
encrypted values the server calculates M ′A to obtain the values r1, . . . , r|Σ|.

(c) The server and the client engage in a 1-out-of-|Σ| OT protocol where
the server inputs r1, . . . , r|Σ| and the client chooses `i. The client stores
this value as s′`1···`i

.
3. The server creates m messages z1, . . . , zm where zi is 1 if si−hn mod m is a final

state and is 0 otherwise. The server and the client engage in a 1-out-of-m OT
protocol where the server inputs z1, . . . , zm and the client chooses s`1···`m

′ .
If the client receives 1 then its sequence was accepted by the automata and
if the client learns 0 then its sequence was not accepted by the automata.

Analysis: The above protocol requires O(n) rounds as step 2 must be run
sequentially. The server’s computation for each letter in the sequence is O(|Σ|m)
as this is the number of modular multiplications to perform the matrix multiply
and requires O(|Σ|) modular exponentiations, thus in total the server performs
O(|Σ|mn) operations and O(|Σ|n) modular exponentiations. The client must
perform O(m) operations and modular exponentiations per character in the
sequence, and thus it has to perform O(nm) such operations in total. Finally,
the protocol requires O(ρ1mn + ρ2n|Σ|) bits of communication, where ρ1 is
the size of an semantically-secure homomorphic encryption (e.g., 2048 bits for
security comparable to 1024-bit RSA keys for the Paillier scheme [16]) and ρ2

is the size of a hash function (e.g., 160 bits for SHA-1). Table 1 summarizes the
performance of this scheme. Two performance bottlenecks with this scheme are:
i) the number of rounds grows linearly with the length of the sequence being
checked, and ii) the number of modular exponentiations is prohibitively large.

5 Proposed Scheme, Analysis, and Comparison

In this section we introduce our new scheme for oblivious automata evaluation;
this scheme borrows ideas from Yao’s Scrambled Circuit Evaluation [20]. That

is, a single step of automata processing is similar to processing a single gate in
a circuit. Like the previous scheme the client will learn the current state of the
automata obfuscated by an additive hiding factor. Also, for each character of
the sequence the server will create an encoding4 for each possible state and the
client will learn the specific encoding corresponding to the current state. Also,
for each sequence character, the server will choose an encoding for each letter of
the alphabet and the client learns the encoding corresponding to his sequence’s
current letter. Using this permuted state and the state and alphabet encodings,
we describe an oblivious transition function that allows the client to compute the
next state encoding and permuted state from the previous values. More details
are described below:

1. The server chooses (n − 1)|Σ| random encodings ki,j for i ∈ [2, n] and j ∈
[1, |Σ|]. In the following, these will be referred to in the following as the
alphabet encodings. In this protocol the client will learn, ki,`i

for each i ∈
[2, n] and will not learn any of the other alphabet encodings. These encodings
will be revealed via n− 1 oblivious transfer protocols, which can all be done
in parallel.

2. The server chooses mn random encodings ei,j for i ∈ [1, n] and j ∈ [1,m].
In the following, these will be referred as the state encodings. The client
will learn e1,s`1

, e2,s`1`2
, . . . , en,s`1···`n

and no other state encodings. That is,
the client will learn one state encoding for each letter of his sequence, and
this state encoding will be the one corresponding to the actual state of the
automata after processing that portion of the client’s sequence.

3. The server will choose n state permutation values h1, . . . , hn and the client
will learn s`1 + h1 mod m, s`1`2 + h2 mod m, · · · , s`1···`n

+ hn mod m. That
is, the client will learn the obfuscated state of the automata after processing
each letter.

We will now describe an oblivious transition function that maps (kg,j , eg−1,s, s+
hg−1 mod M) to (eg,M(j,s),M(j, s)+hg mod M). That is if after g−1 characters
the client is in state s, and its gth letter was Σj , then this oblivious function
allows the client to learn the encoding for M(j, s) (i.e., the next state of the
automata) along with the value of this state permuted by the hiding factor. We
will denote this gth transition function as a |Σ| ×m matrix as Gg, where

Gg[j, i] = (eg,M(j,s)||M(j, s) + hg mod m)⊕ f(eg−1,s, kg,j)

where s = i− hg mod m and f is a pseudorandom function5. Note that in order
to obtain the value (eg,M(j,s)||M(j, s) + hg mod m) the client must have both
eg−1,s and kg,j , and since the client has at most one state encoding for g−1 and

4 Hereafter when referring to the term encoding, we are referring to a value chosen
from {0, 1}ρ for some security parameter ρ

5 Note this idea is very similar to the ideas used in [20, 14] in that these scheme built
an oblivious gate evaluation using similar encodings/ permuted values. Furthermore,
such schemes were proven secure in [13]

one alphabet encoding for g it will be able to only obtain one state encoding for
g.

Now suppose the client has Gg and that s = s`1···`g−1 . Further suppose that
the client has i = s + hg−1 mod m , eg−1,s, kg,`g , and `g the client can compute
Gg[`g, i]⊕ f(eg−1,s, kg,`g

) to obtain eg,M(`g,s) and M(`g, s) + hg mod m
To help clarify the above process, we now give an example which demon-

strates the above protocol. Suppose the server has an automata with two states
that processes an alphabet of size two where the automata transition function
is as follows: M [0, 0] = 0,M [0, 1] = 1,M [1, 0] = 0,M [1, 1] = 1. Further suppose
that hg−1 is 1 and hg is 0, then the values of Gg are as follows:

– Gg[0, 0] = eg,0||0⊕ f(eg−1,1, kg,0)
– Gg[0, 1] = eg,1||1⊕ f(eg−1,0, kg,0)
– Gg[1, 0] = eg,0||0⊕ f(eg−1,1, kg,1)
– Gg[1, 1] = eg,1||1⊕ f(eg−1,0, kg,1)

Further suppose that the client is in state 0 after g − 1 characters and that
his next character is 1. Now the client has the following values: eg−1,0 (the
encoding corresponding to its state), i = 1 which is its current state permutes
with hg−1, and kg,1 (its alphabet encoding for `g). The client computes Gg[`g, i]⊕
f(eg−1,0, kg,1) = Gg[1, 1] ⊕ f(eg−1,0, kg,1) = eg,1||1 and thus it learns its new
permuted state. Note that the permuted state is 1, and since the new hiding
factor is 0, this corresponds to the automata being in state 1.

In what follows we describe the protocol in detail:

1. The client and the server engage in (n − 1) 1-out-of-|Σ| OTs (in parallel)
where in the ith protocol the server acts as the sender and uses ki,Σ1 , . . . , ki,Σ|Σ|

and the client inputs `i for i ∈ [2, n]. After this step the client will have ki,`i

for all i ∈ [2, n].
2. The client and server engage in 1-out-of-|Σ| OT where the server inputs

a1, . . . , a|Σ| where ai = e1,M(Σi,q)||M(Σi, q)+h1 mod m and the client inputs
`1. After this step the client will have the permuted state and the encoding
for the automata after processing the client’s first character.

3. The server calculates G2, . . . , Gn and sends them to the client. The client
then evaluates the functions in sequence as described above and after eval-
uating Gn we will denote the permuted state by f = s`1···`n

+ hn mod m.
4. The server creates m messages z1, . . . , zm where zi is Enc(1, en,i−hn mod m)

if si−hn mod m ∈ F (i.e., it is a final state) and is Enc(0, en,i−hn mod m)
otherwise 6. Note that by encrypting the result with the final encoding this
prevents the client from choosing an arbitrary state to learn information
about the automata. The server and the client engage in a 1-out-of-m OT
protocol where the server inputs z1, . . . , zm and the client chooses f . The
client decrypts the value with the encoding of the final state and if the client
receives 1 then its input was accepted by the automata and if the client
learns 0 then it was not accepted by the automata.

6 We are denoting the encryption of a message m with a key k was Enc(M, k).

Analysis: Note that the above protocol can be done in O(1) rounds. Also,
the server needs to perform O(mn|Σ|) work to calculate all of the oblivious tran-
sition functions, but only needs to perform O(n) modular exponentiations (to
perform OTs). Similarly the same amount of computation and modular expo-
nentiations need to be performed by the client. Finally, the size of the oblivious
transition function information is O(ρ2mn|Σ|) (where ρ2 is the size of a se-
cure pseudorandom function) and to perform the n OTs the communication
requirements are O(ρ1nΣ) (where ρ1 is the size of a modulus where the discrete
logarithm problem is hard).

The careful reader may be wondering why the above scheme does not simply
just use Yao’s garbled circuit evaluation to compute the state of the automata.
That is, what is the efficiency of building a circuit that evaluates the automata?
The efficiency of this approach is a function depends on two factors: i) the
number of inputs into the circuit, and ii) the number of gates in the circuit.
Clearly, the number of inputs would be O(n log |Σ|) as each of the n letters has
O(log Σ) bits. The evaluation of each state is essentially a table lookup in a
table with O(m|Σ|) entries. Thus in the straightforward circuit, each letter will
require O(m|Σ|) equality checks each involving O(log m + log |Σ|) bits. And so,
each state would require O(m|Σ|(log m + log |Σ))) computation, and thus the
total computation would be O(mn|Σ|(log m + log |Σ|))).

Table 1 summarizes the performance of all three approaches. We now com-
pare the scheme in this paper and the scheme in [18]: Clearly, the number of
rounds required by our scheme is substantially improved in our scheme. Further-
more, we have essentially replaced the modular exponentiations of the previous
protocol with the evaluation of a pseudorandom function. And since pseudoran-
dom functions are two to three orders of magnitude faster than homomorphic
encryptions, we would expect to see a large performance difference between these
schemes. Finally, it might appear that the communication required by our pro-
tocol is higher than that of the previous scheme, for the specific problem of DNA
matching (i.e., when |Σ| = 4), then ρ2|Σ| ≤ ρ1, so the communication between
these schemes is comparable. Also, the performance of the proposed scheme is
asymptotically superior to the generic construction based on Yao’s protocol.

Metric Original [18] Proposed Yao-based
Rounds O(n) O(1) O(1)

Server Computation O(mn|Σ|) O(mn|Σ|) O(mn|Σ|(log m + log |Σ|)))
Server Mod Exps O(n|Σ|) O(n) O(n log |Σ|)

Client Computation O(mn) O(mn) O(mn|Σ|(log m + log |Σ)))
Client Mod Exps O(mn) O(n) O(n log |Σ|)
Communication O(ρ1mn + ρ2n|Σ|) O(ρ1n|Σ| + ρ2mn|Σ|) O(ρ2mn|Σ|(log m + log |Σ|))

+ρ1n log |Σ|)
Table 1. Performance Comparison Summary

Security Analysis In the full version of the paper we will provide a detailed se-
curity proof, but we give only a brief overview here. The basic argument rests

on the composition theorem from [7], that is when we replace the OT protocols
and oblivious gate evaluation function with ideal versions (that utilize a Trusted
Third Party) of the protocol it is straightforward to show that the resulting pro-
tocol is secure. Thus when we replace these functions with secure protocols, the
resulting protocol is also secure. More specifically, we will first utilize ideal imple-
mentations of Oblivious Transfer (OT) and of Oblivious State Evaluation (OSE),
specifically, OT will allow the client to input a value to a TTP ` ∈ [1, |Σ|] and the
server to input Σ values k1, . . . , kΣ to the TTP. After receiving all of these values
the OT TTP sends to the client the values k` and the server receives ⊥. In the
ideal OSE protocols, the client sends (kg,j , eg−1,s, s+hg−1 mod M) and the server
sends (kg,1, . . . , kg,|Σ|, eg−1,1, . . . , eg−1,n, eg,1, . . . , eg,n,M, hg, hg+1) and after re-
ceiving all of the inputs the TTP sends the client (eg,M(j,s),M(j, s)+hg mod m)
and sends the server ⊥. Note that the ideal OT functionality can be achieved
with the protocol in [15] and the ideal OSE functionality follows from [13].

6 Extensions

6.1 Efficiency Improvements

In this section we propose three techniques to further improve the efficiency of
our approach.

Communication Reduction By utilizing Private Information Retrieval (PIR),
it is possible to reduce the communication to something sub-linear in mn, how-
ever this performance increase comes at a cost of increasing the rounds to O(n).
Recall that in PIR a sender has a database of values and a chooser learns at least
one of the items of his choosing from the database without the sender learning
which value was chosen. Single server solutions for PIR exist that require sub-
linear communication [9, 12, 6]. To integrate this with our scheme, notice that
when processing Gg in Step 3, the client only needs the one specific value from
this function (the one corresponding to the permuted state and current letter).
Thus the client and server could engage in a PIR protocol where the client learns
the value that it needs to move to the next state of the automata.

Modular Exponentiation Reduction Using the techniques described in [15]
it is possible to reduce the number of modular exponentiations. The princi-
ple idea behind this is that it is possible to replace the n 1-out-of-|Σ| OTs
with n/k 1-out-of-|Σ|k OTs (i.e., we merge k OTs together). This reduces
the number of modular exponentiations to n/k, but it increases the compu-
tation/communication due to OTs to n|Σ|k

k . However for small |Σ| and k this
approach may improve the performance of the scheme, because the additional
expense is outweighed by performance gain from removing the modular expo-
nentiations.

Precomputation Another advantage of the scheme proposed in this paper
over the scheme in [18] is that in this scheme the server can precompute a large
portion of its work. More specifically, in our scheme the server can precompute
all of the oblivious transition functions as they do not depend on the client’s
input. However, in the scheme outlined in [18], the server must wait until it
receives the client’s homomorphic encryption key (which is different for every
client) before it can do any of the operations for that client.

6.2 Extending protocol to support transducers

In this section we describe modifications to our protocol that allow us to evaluate
a transducer instead of an automata, note that the protocols in [18] also had such
a generalization. In what follows we describe schemes for both Moore machines
and Mealy machines.

Moore machines At a high level a Moore machine is a automata that produces
an output vector with one character of output for each sequence character and
furthermore the output is determined by the current state of the machine (i.e.,
each state produces a specific output character). More formally, a Mealy machine
is a 6-tuple (Σ,Π, S, q, M, λ) where Σ, S, q,M have the same meaning as in a
automata, Π is the output alphabet, and λ : S → Π maps each state to an
ouptut symbol. In such a protocol, if the machine is in states t1, . . . , tn when
processing the sequence, the client will learn λ(t1) · · ·λ(tn) 7

To modify our protocol to support such machines, the server will include the
output character in the oblivious transition function. More specifically, it will
change Gg[j, i] =

(eg,M(j,s)||M(j, s) + hg||λ(M(j, s)))⊕ f(eg−1,s, kg,j)

where s = i−hg mod m. Of course the pseudorandom function would have to be
expanded to include enough bits to encrypt the output symbol. Another change
to the protocol is that the final step which decodes the final state can be omitted.

Mealy machines The principle difference between a Mealy machine and a
Moore machine is that a Mealy machines output depends on the state and the
current character of the sequence. More formally, a Moore machine is a 6-tuple
(Σ, Π, S, s,M, λ) where Σ, S, s, M have the same meaning as in a automata, Π
is the output alphabet, and λ : S × Σ → Π maps each state and character
combination to an output symbol. The only change that needs to be done is to
change Gg[j, i] =

(eg,M(j,s)||M(j, s) + hg||λ(M(j, s), j))⊕ f(eg−1,s, kg,j)

(i.e., we change λ(M(j, s)) to λ(M(j, s), j).
7 It is straightforward to modify this protocol so that this output sequence is additively

split between the client and the server.

7 Experimental Evaluation

We implemented both the protocol in [18] and the one described in this paper.
The implementation was in Java, and the experiments were run on two Dell
machines with 2.0 GHz Intel Core Duo processors and 512MB of RAM machines
connected in a LAN setting. For all experiments we set the size of the alphabet to
be 4. In the first experiment we ran we set the size of the client’s sequence to 10
and we varied the states in the server’s automata from 10 to 200. We ran each test
10 times. In figure 1 we show the performance difference between the previous
schemes and our scheme. By this we mean this is the value of (previous scheme’s
running time)/(our scheme’s running time). Notice that as the number of states
increases the performance difference also appears to increase. Also notice that
for 200 states our scheme is about 400 times faster than the previous approach.

Fig. 1. Performance Difference by States

In the second experiment we set the number of states to be 10 and varied
the number of letters from 10 to 200. We also ran these tests 10 times. Like the
previous test we considered the performance difference between the two schemes.
Figure 2 shows the results. Notice that as the number of letters gets large our
scheme is about 100 times better, but that this also appears to level off at this
value. This would be expected because the number of modular exponentiations
in our scheme is O(n), and thus n has a significant impact on performance for
our scheme.

In our final experiment (see Figure 3) we consider the running time in mil-
liseconds for our scheme on 10 characters but we vary the number of states from
500 to 10000. Notice that to process 10 characters in a 10000 state automata
our scheme seems to require about 8 seconds. When we extrapolate our data
for the previous scheme we estimate that the previous scheme would take about
4 hours to handle this size of automata (however due to the length of such an
experiment we did not run this test to verify if this was true). To put this in
perspective, according to [18] an automata with 2000 states can be built that

Fig. 2. Performance Difference by Letters

accepts all sequences which contain a subsequence with edit distance 2 (or less)
from another sequence of length 50.

Fig. 3. Performance of Our Scheme for 10 characters by States

8 Summary

In this paper we introduced a scheme for oblivious automata evaluation. Previ-
ous work in this area has highlighted the importance of this problem when doing
DNA searching and matching. The advantages of our approach is that we reduce
the rounds to O(1) and we significantly reduce the number of modular exponen-
tiations. This turns out to be significant in practice as we show experimentally
that our scheme is 2 to 3 orders of magnitude faster than the scheme in [18].

References

1. The 100 dollars Genome,Technology Review, published by MIT, April 17, 2008.
http : //www.technologyreview.com/Biotech20640/page1/.

2. Genetic Information Nondiscrimination Act,
http : //en.wikipedia.org/wiki/Genetic Information Nondiscrimination Act.

3. M. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence comparisons.
In WPES ’03: Proceedings of the 2003 ACM workshop on Privacy in the electronic
society, pages 39–44, New York, NY, USA, 2003. ACM.

4. D. Beaver. Minimal-latency secure function evaluation. In EUROCRYPT 2000,
Lecture Notes in Computer Science, volume 1807, pages 335–350, 2000.

5. C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation
and secure autonomous mobile agents. In Lecture Notes in Computer Science
(ICALP), volume Volume 1853, 2000.

6. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private
information retrieval with polylogarithmic communication. Lecture Notes in Com-
puter Science, 1592:402–414, 1999.

7. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

8. R. Canetti, Y. Ishai, R. Kumar, M. Reiter, R. Rubinfeld, and R. Wright. Selective
private function evaluation with applications to private statistics. In Proceedings
of the twentieth annual ACM symposium on Principles of distributed computing,
pages 293–304. ACM Press, 2001.

9. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private infor-
mation retrieval. J. ACM, 45(6):965–981, 1998.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM conference on Theory of computing,
pages 218–229. ACM Press, 1987.

11. S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages
216–230, May 2008.

12. E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In FOCS ’97: Proceedings of the
38th Annual Symposium on Foundations of Computer Science (FOCS ’97), pages
364–373. IEEE Computer Society, 1997.

13. Y. Lindell and B. Pinkas. A proof of yao’s protocol for secure two-
party computation. Cryptology ePrint Archive, Report 2004/175, 2004.
http://eprint.iacr.org/.

14. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party com-
putation system. In Proceedings of Usenix Security, 2004.

15. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA ’01:
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 448–457, Philadelphia, PA, USA, 2001. Society for Industrial and Applied
Mathematics.

16. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology: EUROCRYPT ’99, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.

17. Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing
for NC1. In 40th Annual Symposium on Foundations of Computer Science, pages
554–566, 1999.

18. J. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error
resilient dna searching through oblivious automata. In CCS ’07: Proceedings of the
14th ACM conference on Computer and communications security, pages 519–528,
New York, NY, USA, 2007. ACM.

19. A. Yao. Protocols for secure computations. In Proceedings of the 23th IEEE
Symposium on Foundations of Computer Science, pages 160–164. IEEE Computer
Society Press, 1982.

20. A. Yao. How to generate and exchange secrets. In Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, pages 162–167. IEEE Computer
Society Press, 1986.

