
The Analysis of Windows Vista Disk Encryption
Algorithm

Mohamed Abo El-Fotouh and Klaus Diepold

Institute for Data Processing (LDV)
Technische Universität München (TUM)

80333 Munich Germany
mohamed@tum.de

kldi@tum.de

Abstract. Windows Vista Enterprise and Ultimate editions use Bit-
locker Drive Encryption as its disk encryption algorithm, and at its
heart is the AES-CBC + Elephant diffuser encryption algorithm (ELE-
PHANT). In this paper we present our analysis of ELEPHANT using
statistical tests. Our analysis has explored some weaknesses in its dif-
fusers, thus we propose new diffusers to replace them. The new diffusers
overcome the weaknesses of the original ones, and offer better and faster
diffusion properties. We used the new diffusers to build variants of ELE-
PHANT, that possess better diffusion properties.

Keywords: Disk encryption, Windows Vista disk encryption algorithm.

1 Introduction

Data security on lost or stolen PCs is a growing concern among security experts
and corporate executives. The data stored on the PC asset is often significantly
more valuable to a corporation than the asset itself, and the loss, theft or un-
wanted disclosure of that data can be very damaging. Thus, this data should
be encrypted to minimize that loss. Disk encryption applications are used to
encrypt all the data on the hard disk, where all the hard disk is encrypted with
a single/multiple key(s) and encryption/decryption are done on the fly, without
user interference.

Disk encryption usually encrypts/decrypts a whole sector at a time. There
exist dedicated block ciphers, that encrypts a whole sector at once. Bear, Lion,
Beast and Mercy [1, 1, 2, 3] are examples of these ciphers. Bear, Lion and Beast
are considered to be slow, as they pass the data multiple times and Mercy was
also broken in [4]. The other method is to let a block cipher like the AES [5]
(with 16 bytes block size) to process the data within a mode of operation. The
most used mode of operation is CBC [6], but it is subjected to manipulation
attacks. There exist other modes of operations dedicated to solve this problem
XTS, XCB, CMC and EME [7, 8, 9, 10] are to name a few.

The Enterprize and Ultimate editions of Windows Vista contain a new feature
called Bitlocker Drive Encryption which encrypts all the data on the system



volume [11]. Bitlocker uses existing technologies like the AES in the CBC mode
and TPM [12], together with two new diffusers.

In this paper, we study the current implementation of AES-CBC + Elephant
diffuser (ELEPHANT) and propose new diffusers to replace its diffusers. The
proposed diffusers possess better and faster diffusion properties than the current
ones. We used the proposed diffusers to construct two variants of ELEPHANT.
Our study shows that the proposed diffusers and variants of ELEPHANT, pos-
sess better diffusion properties.

In section 2, we describe ELEPHANT with its current diffusers (CURDIFF).
In section 3, we propose new diffusers (NEWDIFF) and two variants of ELE-
PHANT which we name NEWELF and NEWELFRED. In section 4, we tried
to answer the following questions: Does the cipher/diffuser behave randomly
as expected with different patterns of plaintexts and tweaks? How sensitive is
the cipher/diffuser to a change in the plaintext/tweak? We examined different
data-sets against randomness to answer these questions. In section 5, we tried to
answer the following questions: Can the cipher be reduced to CBC? Is the tested
cipher correlated with CBC? Does the cipher/diffuser suffer from the bit-flipping
attack? We designed statistical test to answer these questions. In section 6, we
tried to answer the following questions: Does the cipher possess the avalanche
effect in the encryption direction? Does the cipher possess poor man’s authenti-
cation property [11]? We designed statistical test to answer these questions. In
section 7, we tried to answer the following questions: Does each bit in ciphertext
depend on all the bits in the plaintext? Does each bit in plaintext depend on all
the bits in the ciphertext? We designed statistical test to answer these questions.
We present a performance analysis of the ciphers/diffusers in section 8, and our
discussion in section 9 and finally we conclude in section 10.

2 Current implementation

2.1 ELEPHANT

Figure 1 shows an overview of ELEPHANT [11]. There are four steps to encrypt
a sector:

1. The plaintext is xored with a sector key Ks (1).
2. The result of the previous step run through diffuser A.
3. The result of the previous step run through diffuser B.
4. The result of the previous step is encrypted with AES in CBC mode using

IVs (2), as the initial vector.

Ks = E(Ksec, e(s)) ‖ E(Ksec, e
′(s)) (1)

IVs = E(KAES , e(s)) (2)

Where E() is the AES encryption function, Ksec is a key used to generate Ks,
KAES is the key used to generate the sector IVs and used in the AES-CBC
process, e() is an encoding function that maps each sector number s into a unique



16-byte value. The first 8 bytes of the result are the byte offset of the sector on
the volume. This integer is encoded in least-significant-byte first encoding. The
last 8 bytes of the result are always zero and e’(s) is the same as e(s) except that
the last byte of the result has the value 128.
Note that the plaintext and key are parameterized. In our study we used the
following parameters:

1. Plaintext of size 4096-bits (the current standard sector size).
2. Tweak-Key of size 384-bits (the first 128-bits serves as the IVs ”Sector Initial

Vector” for the AES-CBC and the other 256-bits serve as Ks ”Drive Sector
Key”).

3. We examined the 256-bits key version of the AES (that provides maximum
security), that means both Ksec and KAES are of size 256-bits.

Fig. 1. Overview of AES-CBC with Elephant Diffuser.

2.2 The Diffusers

The current diffusers (CURRDIFF) are very similar. The following notations are
used to define the diffusers:

1. di is the ith 32-bits word in the sector, if i falls outside the range then di

=di mod n, where n is the number of the 32-bits in the sector.



2. AC and BC are the number of cycles of diffuser A and B, they are defined
to be 5 and 3 respectively.

3. RA = [9, 0, 13, 0] and RB = [0, 10, 0, 25] hold the rotation constants of
diffuser A and B respectively.

4. ⊕ is the bitwise xor operation.
5. << is the integer 32-bit left rotation operation, where the rotation value is

written on its right size.
6. - is integer subtraction modulo 232.

Table 1 presents the description of the CURRDIFF (diffuser A and diffuser B).

Table 1. Current diffusers.

Diffuser A: Diffuser B:

for j=1 to AC for j=1 to BC
for i=n-1,...,2,1,0 for i= n-1,...,2,1,0
t=(di−5 << RAi mod 4) t=(di+5 << RBi mod 4)
t=t ⊕ di−2 t=t ⊕ di+2

di= di - t di= di - t

3 Proposed Modification

The novelty of this study is to modify ELEPHANT to possess better and faster
diffusion properties, we have replaced diffuser A and B with diffuser A’ and B’.
We named the current implementation of the diffuser layer (diffuser A followed
by diffuser B, where AC=5 and BC=3) thorough out our study CURDIFF and
our proposed diffuser layer NEWDIFF (diffuser A’ followed by diffuser B’, where
AC=5 and BC=3). We propose a variant of ELEPHANT, we call it NEWELF.
It is the same as ELEPHANT after replacing CURRDIFF with NEWDIFF.
We also propose NEWELFRED, which is a variant of NEWELF, where it uses
reduced number of rounds (AC=1 and BC=2).

3.1 Motivation

From studying the current diffusers, three undesired properties have been found:
1. If their input is of all zeros or of all ones, their output will be identical to

their input. This is true for both the encryption and decryption directions.
This is due to the fact, that the result of the xor operations (in diffuser A
and diffuser B) will always be zero and the diffusers are bypassed (i.e. that
sector will be encrypted with CBC only). This is due to the absence of any
confusion operations.

2. The current diffusers are completely linear functions, that do not offer any
form of non-linearity. Due to the absence of confusion operations.

3. The current diffusers updates only a single word (in the inner loop), thus
the diffusion is slow.



3.2 Proposed diffusers

The main objectives of the proposed diffusers are to overcome the limitations of
the current diffusers. Table 2 presents the description of the NEWDIFF (diffuser
A’ and diffuser B’), where SBOX[X] returns 8-bits from the AES SBOX, using
the least significant 8-bits of X as the index.

Table 2. Proposed diffusers.

Diffuser A’: Diffuser B’:

for j=1 to AC for j=1 to BC
for i=n-1,...,2,1,0 for i= n-1,...,2,1,0
di−5= di−5 ⊕ SBOX[di] di+5= di+5 ⊕ SBOX[di]
di−5= di−5 << RAi mod 4 di+5= di+5 << RAi mod 4

di−5= di−5 ⊕ di−2 di+5= di+5 ⊕ di+2

di= di - di−5 di= di - di+5

3.3 Discussion

The proposed diffusers possess the following properties:

1. They can not be easily bypassed, like the current diffusers. Thanks to the
SBOX which offers confusion.

2. The confusion operation is well studied (AES SBOX) and they offer good
confusion properties. Note that, all the non-linearity of the AES is offered
by its SBOX [13].

3. Two 32-bits words are updated in the inner loop of the diffusers, thus pro-
viding faster diffusion properties (see Sect. 8), for example for diffuser A’:
(a) di−5 is first xored with the result of SBOX of di, that means the last

8-bits of di−5 depends on each bit in the last 8-bits of di.
(b) Then the rotation performs diffusion within di−5, which reflect the effect

of the previous step.
(c) Then di−5 is xored with di−2, so each corresponding bit of di−5 depends

of that of di−2.
(d) Finally di−5 is subtracted from di, which means that each corresponding

bit of di depends of that of di−5 (reflecting the effects of all the previous
steps).

In the next sections we are going to present different statistical tests and their
corresponding results . We divide these tests into four different categories, each
category tries to answer specific questions, to help us better understand the
behavior of the tested ciphers/diffusers.



4 Randomness tests

One of the criteria used to evaluate block ciphers is their demonstrated suit-
ability as random number generators. That is, the evaluation of their outputs
utilizing statistical tests should not provide any means by which to computation-
ally distinguish them from truly random sources [14]. In [15], the randomness of
the final five candidates of the AES algorithms were tested. Another study [16],
which we applied here, applies the NIST statistical tool [17] to the disk encryp-
tion modes of operation, where eleven data-sets are subjected to 188 statistical
tests each. These tests try to explore the behavior of the ciphers/diffusers for
different patterns of tweak and plaintext values, these data-sets are:

1. Random plaintext / random tweak.
2. Random plaintext / low density tweak.
3. Random plaintext / high density tweak.
4. Low density plaintext / random tweak.
5. Low density plaintext / low density tweak.
6. Low density plaintext / high density tweak.
7. High density plaintext / random tweak.
8. High density plaintext / low density tweak.
9. High density plaintext / high density tweak.

10. Plaintext avalanche.
11. Tweak avalanche.

For more details about these data-sets please refer to [16]. In table 3 we reported
the number of failed tests (out of 188) for each cipher/diffuser for the eleven data
sets, where a test fails when either the cipher/diffuser failed that test too often
or the output is uniform. These tests try to answer the following questions:
Does the cipher/diffuser behave randomly as expected with different patterns of
plaintexts and tweaks? How sensitive is the cipher/diffuser to a change in the
plaintext/tweak? ELEPHANT, NEWELF and NEWELFRED possess a good
random profile, while CBC possesses an acceptable random profile (it has prob-
lems with plaintext avalanche test, which is expected as it pass the data only
once). The proposed NEWDIFF possesses a good random profile, however CUR-
RDIFF possesses a weak one (CURRDIFF fails completely when the plaintext is
a repeated pattern and it is not so sensitive to a tweak change). Note that as the
tweak (Ks) can not be all zero or all ones, refer to(1), to produce a tweak that
is low/high density. We ran the tests two time, one with the first half low/high
density and the rest random, the second time with the first half random and the
second half with low/high density.

5 Correlation tests

5.1 CBC-Correlation function

As ELEPHANT, NEWELF and NEWELFRED are based on CBC, we measured
their correlation with CBC, using the nine combinations of all zero, all one, and



Table 3. Number of failed statistical tests for the eleven data-sets.

Data set # 1 2 3 4 5 6 7 8 9 10 11

CBC 10 13 11 15 22 19 16 16 18 166 30

ELEPHANT 15 10 9 20 7 17 12 12 12 12 15

12 7 17 22 17 15 14 12 14 12 33

CURRDIFF 18 18 18 185 187 187 173 187 187 9 186

18 18 18 185 187 187 174 187 187 9 186

NEWDIFF 8 6 13 16 12 17 10 14 16 6 13

9 7 7 20 12 15 12 11 15 8 34

NEWELF 18 10 9 8 16 12 9 12 19 10 8

9 10 12 15 14 15 9 15 15 12 33

NEWELFRED 8 9 10 8 12 15 18 13 17 8 30

12 7 13 11 11 8 15 16 12 7 13

all random bits between the plaintext and the tweak. This function is called
CBC-Correlation. This function tries to answer the following question: Can
the cipher be reduced to CBC? NEWELF and NEWELFRED succeeded to pass
CBC-Correlation function, while ELEPHANT failed to pass the test for two
inputs:

1. When the tweak is all zeros and the plaintext is all zeros.
2. When the tweak is all zeros and the plaintext is all ones.

In both cases the diffuser layer has no effect on the plaintext. Although with
the current design of the tweak, it is impossible to get a tweak with all zeros
refer to (1), it is still possible to bypass the CURRDIFF in those two cases:

1. when the encrypted sector contains the repetitions of Ks (i.e. the xor opera-
tion will result in all zero plaintext and the diffuser layer will be bypassed).

2. when the encrypted sector contains the repetitions of the negation of Ks (i.e.
the xor operation will result in all ones plaintext and the diffuser layer will
be bypassed).

These failures are due to the absence of non-linear operations in CURRDIFF
and that the result of the xor operations in CURRDIFF will result always with
zero (the identity element of subtraction), when the input is all zeros or all ones.
In these two cases ELEPHANT is reduced to CBC.

5.2 Bit-flipping Attack

We applied the Bit-Flipping-Attack function three times each with a different
parameter x, (0 ≤ x ≤ 2) that determines the pattern of the used plaintext and
tweak, the function is listed in table 5 and its nomenclatures are in table 4.
Bit-Flipping-Attack function tests if changing any bit in the ciphertext will be
associated with changing a specific bit(s) in the plaintext. This function tries



to answer the following question: does the cipher/diffuser suffer from the bit-
flipping attack ? If the maximum returned by the ”Summary” function is equal
to the sample size, that means there is at least one bit that changes whenever a
specific bit in the ciphertext is changed, and that means bit-flipping attack [18] is
applicable on the tested cipher/diffuser. The results of the Bit-Flipping-Attack

Table 4. Nomenclatures for some test functions.

GenRndKey(X) Generates a random key X with length 256-bits.

No of Bits The number of bits in the sector.

Samplesize Number of random samples used for each bit location,
we used 1539 samples.

Init(R) Initialize the array R with zeros.

GenerateSector(P) Generates a sector P of size 4096-bits, for the first 513
calls it returns low density plaintext, for the next 513
calls it returns high density plaintext and for the last
513 calls it returns random plaintext.

GenTweak(K2,x) Generates a 384-bits tweak. If x equals zero then all the
tweak is filled with zero bits, if x equals ones then all the
tweak is filled with one bits, otherwise the tweak is filled
with random bits.

Encrypt(P,C,A,B) Encrypts the plaintext P to the ciphertext C, using A as
the encryption key and B as the tweak.

ChangeBit(C,i,C2) Flips the bit number i in the text C and put the result
in C2.

Decrypt(C,P,A,B) D ecrypts the ciphertext C to the plaintext P, using A as
the encryption key and B as the tweak.

Xor(R,P,T) Xors P with T and puts the results in R.

Add(R,Y) Adds the values in the array Y to that in the array R.

Analyze(R,Matrix[i]) Calculates the minimum, maximum, average and stan-
dard deviation of the R array. The above four values as
stored in Matrix[i]. Note: any one added to the R array
represents that this bit has changed as a result of chang-
ing the bit number i in the ciphertext/plaintext.

Summarize(Matrix) Calculates the normalized minimum of minimums
(Min), maximum of the maximums (Max), average of
the averages (AVG) and average of the standard devia-
tions (SD) in Matrix.

in table 6, show that ELEPHANT, NEWELF, NEWELFRED, CURRDIFF,
NEWDIFF pass these tests, while CBC fails these tests as it is subjected to the
bit-flipping attack.



Table 5. Bit-Flipping-Attack function.

Function Bit-Flipping-Attack(x)

double Martrix[No of Bits][Samplesize];
GenRndKey(K1);
GenTweak(K2,x);
For (i=0;i<No of Bits;i++)
{ Init(R);

For(j=0;j<Samplesize;j++)
{GenSector(P);
Encrypt(P,C,K1,K2);
ChangeBit(C,I,C2);
Decrypt(C2,T,K1,K2);
Xor(Y,P,T);
Add(R,Y) ;}

Analyze(R,Matrix[i]);
}
Summarize(Matrix);

Table 6. Bit-Flipping-Attack results.

ELEPHANT CBC

x Min Max AVG SD Min Max AVG SD

0 0.23 0.76 0.5 0.05 0 1 0.02 0.09

1 0.24 0.76 0.5 0.05 0 1 0.02 0.09

2 0.24 0.78 0.5 0.05 0 1 0.02 0.09

CURRDIFF NEWDIFF

x Min Max AVG SD Min Max AVG SD

0 0.24 0.78 0.5 0.05 0.25 0.77 0.5 0.05

1 0.22 0.76 0.5 0.05 0.24 0.78 0.5 0.05

2 0.24 0.75 0.5 0.05 0.24 0.79 0.5 0.05

NEWELF NEWELFRED

x Min Max AVG SD Min Max AVG SD

0 0.24 0.78 0.5 0.05 0.24 0.79 0.5 0.05

1 0.22 0.77 0.5 0.05 0.25 0.75 0.5 0.05

2 0.25 0.76 0.5 0.05 0.25 0.77 0.5 0.05



6 Avalanche tests

This category consists of six tests, where two functions are applied three times
with a different parameter x, (0 ≤ x ≤ 2 ), that determines the pattern of the
used plaintext and tweak, these two functions are :

– Avalanche-Encryption(x): measures avalanche effect [19] in the encryp-
tion direction (the effect of changing one bit of plaintext on the ciphertext),
a good cipher will have roughly half the bits of the ciphertext changed due
to a single bit change in plaintext. It tries to answer the following question:
does the cipher possess the avalanche effect in the encryption direction?

– Avalanche-Decryption(x): measures avalanche effect in the decryption
direction (the effect of changing one bit of ciphertext on the plaintext), this
is to possess poor man’s authentication, that is changing one bit in the
ciphertext will lead that the plaintext will be scrambled. It tries to answer
the following question: does the cipher possess poor man’s authentication
property?

The results in tables 7 and 8 show that ELEPHANT, NEWELF, NEWELFRED,
CURRDIFF, NEWDIFF all have good avalanche effect in both encryption and
decryption directions, on the other hand CBC failed to pass these tests.

Table 7. Avalanche-Encryption results.

ELEPHANT CBC

x Min Max AVG SD Min Max AVG SD

0 0.46 0.54 0.5 0.01 0.01 0.99 0.5 0.28

1 0.46 0.54 0.5 0.01 0.01 0.99 0.5 0.28

2 0.47 0.54 0.5 0.01 0.01 0.99 0.5 0.28

CURRDIFF NEWDIFF

x Min Max AVG SD Min Max AVG SD

0 0.46 0.53 0.5 0.01 0.46 0.53 0.5 0.01

1 0.47 0.54 0.5 0.01 0.46 0.54 0.5 0.01

2 0.46 0.54 0.5 0.01 0.46 0.53 0.5 0.01

NEWELF NEWELFRED

x Min Max AVG SD Min Max AVG SD

0 0.46 0.54 0.5 0.01 0.46 0.54 0.5 0.01

1 0.46 0.54 0.5 0.01 0.46 0.54 0.5 0.01

2 0.46 0.53 0.5 0.01 0.46 0.54 0.5 0.01

7 Bit dependency tests

This category consists of two tests :



Table 8. Avalanche-Decryption results.

ELEPHANT CBC

x Min Max AVG SD Min Max AVG SD

0 0.46 0.54 0.5 0.01 0.01 0.99 0.49 0.48

1 0.47 0.54 0.5 0.01 0.01 0.99 0.5 0.48

2 0.46 0.54 0.5 0.01 0.01 0.99 0.5 0.48

CURRDIFF NEWDIFF

x Min Max AVG SD Min Max AVG SD

0 0.46 0.53 0.5 0.01 0.46 0.53 0.5 0.01

1 0.46 0.53 0.5 0.01 0.47 0.54 0.5 0.01

2 0.46 0.53 0.5 0.01 0.46 0.54 0.5 0.01

NEWELF NEWELFRED

x Min Max AVG SD Min Max AVG SD

0 0.46 0.54 0.5 0.01 0.46 0.54 0.5 0.01

1 0.46 0.54 0.5 0.01 0.46 0.54 0.5 0.01

2 0.46 0.54 0.5 0.01 0.47 0.54 0.5 0.01

– BD-Encryption(): is passed, when each bit in the ciphertext depends on
every bit in the plaintext. It tries to answer: does each bit in ciphertext
depend on all the bits in the plaintext?

– BD-Decryption(): is passed, when each bin in the plaintext depends on
every bit in the ciphertext. It tries to answer: does each bit in plaintext
depend on all the bits in the ciphertext?

The Bit-dependency functions are measured as following:

1. A dependency matrix M is constructed of size B × B (where B is the number
of bits in the plaintext/ciphertext, here B = 4096).

2. The diagonal is initialized by 1 and all other bits are set to zero, as initially
each bit depends only on itself.

3. Depending on the applied operations the matrix M is updated, BD-Encryption
applies the operation in the encryption direction and BD-Decryption applies
them in the decryption direction.

4. If an output bit is dependent on an input bit(s), the column of the output
bit is ORed with that (those) of the input bit(s). For example:
(a) Xor operation: each output bit is dependent on the corresponding input

bit.
(b) Addition and subtraction modulo 232 operations are approximated to an

xor operation for simplicity and generality.
(c) AES operation: each bit in the input 128-bits is dependent on the other

127 bits.
(d) 32-bit rotation: the columns change there order depending on the rota-

tion amount and direction.
(e) SBOX look up: each bit of the output depends on every bit of the input.



5. All the operation of the tested function/cipher are applied and the matrix
M is updated.

6. At the end the sum of all ones in the matrix is calculated and is divided by
B2.

7. If the returned value in the previous step is 1, this means that each bit of the
output bits depends on all the bits of the input and the function succeeds,
it fails otherwise.

The results of applying BD-Encryption and BD-Decryption functions are
found in table 9, where we reported the minimum values of AC and BC each
algorithm needs to pass these tests (under columns AC’ and BC’), together
with the current used values. The results show that all the ciphers but CBC
succeeded these tests. CURDIFF needs at least three rounds of diffuser B and
two rounds of diffuser A, on the other hand ELEPHANT which uses it needs only
at least AC=2 and BC=1 to pass it, this is because the CBC layer does the rest
of the diffusion. NEWDIFF needs at least AC=1 and BC=2, while NEWELF
and NEWELFRED needs only BC=1 and the CBC layer does the rest of the
diffusion.

Table 9. BD-Encryption and BD-Decryption results.

Performance

Pass AC’ BC’ AC BC SF DP Speed

CBC false NA NA NA NA NA NA 16530

ELEPHANT true 2 1 5 3 2.7 NA 22147

CURDIFF true 2 3 5 3 1.6 1.6 6847

NEWDIFF true 1 2 5 3 2.7 7.3 11580

NEWELF true 0 1 5 3 8 NA 26820

NEWELFRED true 0 1 1 2 4 NA 20860

8 Performance

We studied the performance of the optimized C versions of the ciphers/diffusers.
For the diffusers we used the loop unrolling mechanism [20] and for the AES we
used optimized Gladmann’s implementation [21]. The results are listed in table 9
under column speed, note that the reported measurements are done on a PIV 3
GHz processor running on Windows Vista, where the programming environment
was Microsoft VC++ 6. Here we reported the number of clock cycles needed by
each algorithm, which is the minimum of 100 iterations to remove any initial
overheads or cache misses. These results show that NEWDIFF is about 70%
slower than CURRDIFF, NEWELF is about 20% slower than ELEPHANT and
NEWELFRED is about 6% faster than ELEPHANT.



We define the Safety Factor (SF) with (3), which is the ratio between the
total number of used diffusers’ cycles over the minimum required. SF represents
how safe is the current number of diffusers’ cycles, under any circumstances this
ratio should not be less than one. In (4), we defined the Diffusion Power (DP)
, of a diffuser layer , to be the ratio between the number of bits updated per
cycle (NC) over the total number of bits (TN) times SF. DP shows how fast
the diffusion layer diffuse the plaintext/ciphertext. The values of SF and DP are
reported in table 9. These values show that CURRDIFF possesses less SF and
DP as NEWDIFF, and ELEPHANT possesses less SF that both NEWELF and
NEWELFRED.

SF = (AC + BC)÷ (AC ′ + BC ′) (3)

DP = (NC)÷ (TN)× SF (4)

From [11], suppose an attacker is attacking two identical hard drives, one en-
crypted with ELEPHANT and the other one encrypted with CBC. We are going
to give the attacker the tweak key (Ksec), this means the attacker can now per-
form the diffusion layer for any plaintext. In other words, the diffuser layer
becomes transparent to the attacker. All what is left now for the attacker is to
attack the CBC layer, which is the same problem that he has when attacking the
other hard drive (encrypted only using CBC). Although we helped the attacker
significantly by providing him with the tweak key, he still has to attack the CBC
layer. This shows that attacking ELEPHANT is not easier than attacking just
CBC, and ELEPHANT is at least as secure as CBC. Note that the previous se-
curity proof is valid for any diffuser, that means NEWELF and NEWELFRED
are also at least secure as CBC.

9 Discussion

CBC failed a lot of tests, as it is a narrow-block mode of operation [22], it
possesses no avalanche effect at all and it is subjected to bit-flipping attack.

CURRDIFF is sensitive to repeated patterns, where its output can be dis-
tinguished from a random text and it is not so sensitive to the tweak change.
We discovered also two cases where it will not change the input at all. It dif-
fuses the plaintext/ciphertext slowly as at least five diffuser cycles, to pass BD-
Encryption and BD-Decryption functions. It possesses also low SF and DP.

Due to the shortcomes of CURRDIFF, we designed NEWDIFF to replace it,
the design of CURRDIFF was changed to update more bits each cycle and we
added SBOX lookup operation to add non-linearity to the diffusers. NEWDIFF
overcomes the shortcomes of CURRDIFF with good random profile, high SF
and DP, but it is about 70% slower than CURRDIFF.

ELEPHANT is a wide-block mode of operation [22] that uses CURRDIFF
together with CBC. Our analysis shows that it is superior than CBC, but the
drawbacks of CURRDIFF can affect it, for example when CURRDIFF does
not change the plaintext, ELEPHANT is reduced to CBC (although this may



happen with a very low probability, it is still a problem, as we can not restrict
the plaintext). ELEPHANT possesses low SF.

NEWELF is a proposed variant of ELEPHANT, where we replaced CUR-
RDIFF with NEWDIFF, it possesses good random profile and high SF, but it
is about 20% slower than ELEPHANT.

NEWELFRED is a variant of NEWELF, where we reduced the number of
diffuser cycles. Although it uses less number of cycles as NEWELF, it possesses
a good random profile, with a higher SF than ELEPHANT and is about 6%
faster than ELEPHANT.

10 Conclusion

We present a couple of statistical tests, that can be used to evaluate the behavior
of ciphers that uses a diffuser followed by a mode of operation. We used these
tests to study Windows Vista’s disk encryption algorithm ELEPHANT. The
algorithm provides better statistical and random behavior than CBC. Our study
discovered some weaknesses in its diffusers, so we proposed new diffusers to
replace them. Our proposed diffusers overcome the drawbacks of the current
ones. We used the proposed diffusers to build a new variant of ELEPHANT
called NEWELF, that possesses better properties than ELEPHANT with only
20% increase in its total running time. If performance is an issue, we proposed
NEWELFRED that uses NEWDIFF with reduced number of cycles, it is faster
than ELEPHANT and it possesses better properties than ELEPHANT.

References

[1] R. Anderson and E. Biham. Two practical and provable secure block ciphers:
BEAR and LION. In Dieter Gollmann, editor, Fast Software Encryption: Third
International Workshop (FSE’96), 1996.

[2] S. Lucks. BEAST: A fast block cipher for arbitrary blocksizes. In Patrick
Horster, editor, Communications and Multimedia Security II, Proceedings of the
IFIP TC6/TC11 International Conference on Communications and Multimedia
Security, 1996.

[3] P. Crowley. Mercy: a fast large block cipher for disk sector encryption. In
Bruce Schneier, editor, Fast Software Encryption: 7th International Workshop,
FSE 2000, 2001.

[4] S. Fluhrer. Cryptanalysis of the Mercy block cipher. In Mitsuru Matsui, editor,
Fast Software Encryption, 8th International Workshop, FSE 2001, 2002.

[5] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and
E. Roback. Report on the Development of the Advanced Encryption Standard
(AES). Technical report, 2000.

[6] A. Menezes, P. Van Oorschot., and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, 1996.

[7] P. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. http://citeseer.ist.psu.edu/rogaway03efficient.html.

[8] D. McGrew and S. Fluhrer. The Extended Codebook (XCB) Mode of Operation.
Cryptology ePrint Archive, Report 2004/278, 2004.



[9] S. Halevi and P. Rogaway. A tweakable enciphering mode. http://eprint.iacr.
org/2003/148.

[10] S. Halevi and P. Rogaway. A parallelizable enciphering mode. http://eprint.

iacr.org/2003/147.
[11] N. Ferguson. AES-CBC + Elephant diffuser : A Disk Encryption Algorithm for

Windows Vista. http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-
4a6d-b3d6-0a0be4bbb36e/BitLockerCipher200608.pdf, 2006.

[12] Trusted Computing Group. TCG TPM Specification Version 1.2. www. trusted-
computinggroup.org.

[13] J. Daemen and V. Rijmen. AES Proposal: Rijndael. http://citeseer.ist.psu.
edu/daemen98aes.html.

[14] J. Soto. Randomness Testing of the Advanced Encryption Standard Candidate
Algorithms. http://citeseer.ist.psu.edu/article/soto99randomness.html, 1999.

[15] J. Soto and L. Bassham. Randomness Testing of the Advanced Encryption Stan-
dard Finalist Candidates. Computer Security Division,National Institute of Stan-
dards and Technology, 2000.

[16] M. El-Fotouh and K. Diepold. Statistical Testing for Disk Encryption Modes of
Operations. Cryptology ePrint Archive, Report 2007/362, 2007.

[17] NIST statistical Suite. available at http://csrc.nist.gov/rng/rng2.html.
[18] C. Fruhwirth. New Methods in Hard Disk Encryption. http://clemens.

endorphin.org/nmihde/nmihde-A4-ds.pdf, 2005.
[19] F. Webster and S. E. Tavares. On the design of s-boxes. In Advances in Cryptology

- Crypto 85. Lecture Notes in Computer Science. no. 218. H. C. Williams (editor),
1986.

[20] J. Davidson and S. Jinturkar. An aggressive approach to loop unrolling. Technical
report, Department of Computer Science. University of Virginia. Charlottesville,
1995.

[21] B. Gladman. AES optimized C code. http://fp.gladman.plus.com/AES /in-
dex.htm, June 2006.

[22] IEEE P1619 homepage on Wikipedia. http://en.wikipedia.org/wiki/IEEE

P1619.


