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Abstract. Access control over resources shared by social network users
is today receiving growing attention due to the widespread use of so-
cial networks not only for recreational but also for business purposes.
In a social network, access control is mainly regulated by the relation-
ships established by social network users. An important issue is there-
fore to devise privacy-aware access control mechanisms able to perform
a controlled sharing of resources by, at the same time, satisfying privacy
requirements of social network users wrt their relationships. In this pa-
per, we propose a solution to this problem, which enforces access control
through a collaboration of selected nodes in the network. The use of
cryptographic and digital signature techniques ensures that relationship
privacy is guaranteed during the collaborative process. In the paper,
besides giving the protocols to enforce collaborative access control we
discuss their robustness against the main security threats.

Keywords Privacy-preserving data management, Web-based Social Networks,
Collaborative access control.

1 Introduction

The last few years have witnessed the explosion of Web-based Social Network
(WBSN) users [1]. WBSNs make available an information space where each so-
cial network participant can publish and share information, such as personal
data, annotations, blogs, and, generically, resources, for a variety of purposes.
In some social networks, users can specify how much they trust other users,
by assigning them a trust level. Information sharing is based on the establish-
ment of relationships of different types among participants (e.g., colleague of,
friend of). However, the availability of this huge amount of information within a
WBSN obviously raises privacy and confidentiality issues. For instance, in 2006,
Facebook receives the complaints of some privacy activists against the use of
the News Feed feature [2], introduced to inform users with the latest personal
information related to their online friends. These complaints result in an online
petition, signed by over 700,000 users, demanding the company to stop this ser-
vice. Facebook replayed by allowing users to set some privacy preferences. More



recently, November 2007, Facebook receives other complaints related to the use
of Beacon [3]. Beacon is part of the Facebook advertising system, introduced to
track users activities on more than 40 web sites of Facebook partners. Such infor-
mation is collected even when the users are off from the social-networking site,
and is reported to users friends without the consent of the user itself. Even in
this case, the network community promptly reacts with another online petition
that gained more than 50,000 signatures in less than 10 days. These are only few
examples of privacy concerns related to WBSNs. All these events have animated
several online discussions about security and privacy in social networking, and
government organizations started to seriously consider this issue [4-7].

To partially answer the security and privacy concerns of their users, recently
some social networks, e.g., Facebook (http://www.facebook.com) and Videntity
(http://videntity.org), have started to enforce quite simple protection mecha-
nisms, according to which users can decide whether their data, relationships, and,
generically, resources, should be public or accessible only by themselves and/or
by users with whom they have a direct relationship. However, such mechanisms
are not enough, in that they enforce too restrictive and /or too simple protection
policies. There is, then, the need of enforcing more flexible strategies, making a
user able to define his/her own rules, denoting the set of network participants au-
thorized to access his/her resources and personal information, even though they
are not directly connected through a relationship. Additionally, since WBSN in-
formation sharing is mostly based on the relationships existing among network
participants, there is the need of protecting relationship information when per-
forming access control. For instance, a user would like to keep private the fact
that he/she has a relationship of a given type with a certain user. Therefore, in
[8] we have proposed a framework to enforce client-side access control to WBSN
resources, according to which the requestor must provide the resource owner
with a proof of being authorized to access the requested resource. The proposed
access control is privacy-aware in the sense that privacy requirements referring
to relationships established by WBSN users are preserved when enforcing access
control. Access control requirements are expressed in terms of relationship types,
depths, and trust levels. In [8], relationships are encoded through certificates and
their protection requirements are expressed through a set of distribution rules,
which basically state who can exploit a certificate for access control purposes.
Relationship privacy is enforced by encrypting a certificate with a symmetric
key which is delivered only to users satisfying the corresponding distribution
rule. Encrypted certificates are stored at a central node, which does not receive
the corresponding decryption key, and therefore it is not required to be trusted.
However, the mechanism proposed in [8] has the following shortcomings:

— It relies on a central node to store relationship certificates that may become
a bottleneck and may be vulnerable to DoS attacks;

— The central node must be trusted wrt certificate revocation enforcement
when a relationship does not exist anymore, in that, according to the archi-
tecture proposed in [8], the central node maintains a certificate revocation
list which must be updated to reflect social network topology changes;



— As pointed out in [8], one of the drawback of client-side access control is
that revealing access rules regulating access to the requested resource may
compromise the privacy of resource owner relationships. The reason is that,
when a user requests a resource, the resource owner replies with an access
rule, which contains, among other information, the relationships in which the
requestor must be involved in order to gain the access. If the owner wants
to keep private some types of relationships he/she has with other network
nodes, this mechanism could lead to privacy breaches.

To overcome these shortcomings, in this paper, we propose an alternative
way of enforcing access control wrt the solution presented in [8]. Rather than us-
ing the client-side paradigm, access control is enforced through the collaboration
of selected nodes in the network. The collaboration is started by the resource
owner, on the basis of the access rules regulating the access to the requested
resource. The owner contacts only the nodes that satisfy its distribution rules,
thus avoiding the privacy breaches related to access rules distribution discussed
above. The aim of the collaboration is to provide the owner with a path, proving
that the requestor has the relationships required to gain access to the resource.
Since each node taking part in the collaboration is aware of the relationships
existing among the other nodes taking part in the process, the collaborative
process is driven by the specified distribution rules: a node is invited to collab-
orate only if it satisfies the distribution rules of the other nodes taking part in
the collaboration. Encryption and signature techniques are used to avoid trust
levels disclosure and forgery, as well as to make a node able to verify the correct
enforcement of distribution rules.

WBSN privacy and security is a new research area. Up to now, research has
mainly focused on privacy-preserving techniques to mine social network data.
The main goal of this research is to avoid as much as possible the disclosure
of private information about WBSN members when analyzing WBSN data for
statistical purposes [9-12]. In contrast, in the field of access control (apart from
[8,14]) very little work has been so far reported. The only other proposal we are
aware of is the one discussed in the position paper by Hart, Johnson, and Stent
[13]. The access control model presented in [13] uses existing WBSN relation-
ships to denote authorized members, however only the direct relationships they
participate in are considered, and the notion of trust level is not used in access
authorizations. Resources are not denoted by their identifiers, but based on their
content. Information about resources’ content is derived based on users’ tags and
by content analysis techniques. However, [13] does not provide any information
about access control enforcement, nor they consider relationship privacy protec-
tion when enforcing access control, which is the focus of the current paper.

This paper builds on some previous work we have done in the field of privacy-
aware access control in WBSNs. In particular, [14] presents the access control
model on which the enforcement mechanism described in this paper relies. [8]
adds to the model proposed in [14] the possibility of expressing privacy require-
ments on relationships established by WBSN users. However, in [8] access con-
trol enforcement relies on a central node storing encrypted certificates to be used



Fig. 1. A portion of a WBSN

for gaining access to a resource. In the current paper, we propose an alterna-
tive enforcement mechanism, wrt the one presented in [8], where access control
enforcement is obtained through a collaboration among selected nodes in the
network.

The remainder of this paper is organized as follows. Next section introduces
some preliminary concepts needed in the remainder of the paper. Section 3
presents our collaborative access control protocol, whereas Section 4 analyzes
its security. Finally, Section 5 concludes the paper and outlines directions for
future work.

2 Preliminary concepts

In what follows, we model a WBSN SN as a tuple (Vsyr, Esy, RIsn, Tsar, OEsp )
where Vsy and Egys are, respectively, the nodes and edges of a graph, RT sy is
the set of supported relationship types, Tsas is the set of supported trust levels,
and ¢pg.: Esny — RIsy X Tsp is a function assigning to each edge e € Esys
a relationship type rt € RTsx and a trust level ¢t € Tsa. The number and type
of relationships in RTsa and trust levels in T'sps depend on the specific social
network and its purposes. Similarly, each WBSN supports a different range and
type of trust levels, corresponding either to a set of integers or rational numbers,
or to Boolean values. In case a WBSN does not support trust, this means that
all the nodes are equally trustworthy, and thus we assume that with each edge
is associated the maximum level of trust. Given an in/direct relationship of type
rel between nodes v and v’ , the trust level tml denotes how much v trusts v
wrt relationship rel. We also assume the existence of a central node CN that is
in charge of user registration and management.

Ezxample 1. A simple example of WBSN is depicted in Figure 1. In the figure,
the initial node of an edge is the node which established the corresponding
relationship. Labels associated with edges denote, respectively, the type and
trust level of the corresponding relationship. With reference to Figure 1, A(lex)
is friend-of (fof) both C(arl) and M(ark). However, A trusts C more than M. A
and T(ed) are indirect friends due to the fof relationships existing between A



and M and M and T. C is also a colleague-of (cof) A, and the trust assigned to this
relationship by C is 0.7.

Following the model proposed in [14], we assume that each resource rsc to be
shared in the SN is protected by a set of access rules. Each access rule has the
form (rid, AC), where AC' is a set of access conditions that need to be all satisfied
in order to get access to rid. An access condition is a tuple (v, rt, dmax, tmin),
where v is the node with whom the requestor must have a relationship of type
rt, whereas d,q, and t,,;, are, respectively, the maximum depth, and minimum
trust level that the relationship should have. The depth of a relationship of
type rt between two nodes v and v’ corresponds to the length of the shortest
path between v and v’ consisting only of edges labeled with 7¢. For instance,
with reference to Figure 1, the depth of the fof relationship between A and
R(obert) is 2. In contrast, the trust level associated with a path is computed
by multiply all the trust levels associated with the edges in the path, even if
other formulas to compute the trust level can be used as well. In this paper,
we constrain the access conditions contained into an access rule by assuming
that v can be only equal to the owner of the resource to be protected. As it will
be clarified in what follows, this assumption makes the resource owner able to
start the collaborative process needed to answer an access request. Additionally,
this is not a too strong restriction because it is very common that most of the
access control requirements in a SN are expressed by an owner in terms of the
relationships it holds with other nodes in the network, rather than in terms of
relationships in which it is not involved.

Like in [8], relationship privacy requirements are stated through distribution
rules. A distribution rule on a relationship of type rt established by node A with
node B, denoted in what follows as DR, is a triple of the form (v, 7%, dpmaz),
stating that the only nodes authorized to be aware of the relationship of type
rt established by A with B are those that have a relationship of type rt with v
and maximum depth d,,q,. Similarly to access rules, in this paper we constrain
distribution rules specification by assuming that v can only be A and that rt
is fixed to the type of the relationship to which the distribution rule applies,
that is, rt. For instance, given a relationship of type fof between A and B, the
corresponding distribution rule DR{]? 7 should have the node component equal
to A and the relationship type component equal to fof. Once again this restric-
tion makes a node able to correctly enforce distribution rules when performing
collaborative access control (see Section 3 for the details).

Ezxample 2. Consider the WBSN in Figure 1. Suppose that doc; is a resource
owned by A. Suppose that A wishes to make doc; accessible only to its direct
or indirect friends of maximum depth three, with the constraint that their trust
level must be at least equal to 0.8. These requirements can be expressed by the
following access rule: AR; = (docy,{(4,f0f,3,0.8)}). In contrast, suppose that
A specifies the following distribution rule DR{S I = (A,fof,3), this means that
the relationship of type fof existing between A and M can be disclosed only to
friends of A with maximum depth three, that is, M, T, R, and C. Finally, if M



specifies the following distribution rule: DR{;TO I = (M,fof ,2), it means that the

fof relationship existing between M and T can be seen only by M’s direct friends
and by the direct friends of M’s direct friends, that is, T, R, and C.

We assume that each node n; in a WBSN owns a key pair (SK;, PK;), where
SK; is the private key, whereas PK; is the corresponding public key. We denote
with SK;(z) (resp. PK;(x)) the encryption of x with key SK; (resp. PK;). We
further assume PK; to be known by all the nodes wishing to getting in touch
with n;. Moreover, we assume that each time a node n; wishes to establish
a relationship with another node no, it informs ns about that. Therefore, the
corresponding relationship certificate is signed by both n; and ng. This means
that each node is aware of the relationships established with it by other nodes.
We think that it is very important that a node is aware of the in-coming edges,
since relationships are the basis of access control enforcement. Otherwise, a node
can cheat and claim that it has a relation with others even if this is not true. For
instance, if Bob is a close friend of the boss of a big company, Ann can establish
a relation of type fof with him just to become an indirect friend of the boss.
If Bob is not informed about that, there is no way of preventing this behaviour.
However, the nodes are not aware of the trust levels of in-coming relationships,
because we believe that this is a confidential information that shall be kept
private (that is, a node n; might not want to reveal to another node ny how
much it trusts it).

3 Collaborative access control

In this section, we illustrate our proposal for enforcing access control while pre-
serving WBSN relationship privacy. We start by providing an overview of the
approach, then we present the related protocols and an example of their execu-
tion.

3.1 Overview of the approach

Differently from [8], access control is enforced through a collaboration among
selected nodes in the SA/. The collaboration is needed to prove to the owner
that the node requesting a resource satisfies the requirements (in terms of rela-
tionships it holds and corresponding trust levels and relationship depths) stated
by the owner access rules. If the result of the collaboration is the identification
of a path with the requirements stated by the owner access rules, then the access
is granted. Otherwise, it is denied. The collaborative process is started by the
owner, on the basis of the access rules regulating the access to the requested re-
source. This avoids the possible privacy breaches pointed out in the introduction
due to distribution of access rules. In particular, the owner starts the collabo-
ration by sending a request to its direct neighbours. More precisely, it contacts
all the neighbours with which it has established a relationship of the type re-
quired by the access control rule associated with the requested resource, asking



whether they have a relationship of the required type with the requestor node.
If a resource is protected by more than one access rule, the process is iterated
till the access can be granted or till all the access rules have been considered.
For simplicity, in the following, we assume access rules consisting only of one ac-
cess condition. The protocols can be easily extended by iterating the described
operations for all the access conditions contained in an access rule. Once a node
different from the requestor receives a request for collaboration, it propagates
the request to those of its neighbours with which it has established a relationship
of the required type. This process is iterated until a node having a relationship
of the required type with the requestor is reached, or until the request can no
longer be propagated along the network.

To verify whether an access can be granted or not the owner must be provided
not only with a path of the required type and depth, but it also must know the
trust level of all the edges in the returned path. Therefore, when propagating the
request for collaboration, a node forwards also the trust level of its relationship.
To avoid that intermediate nodes are aware of the trust levels assigned by the
nodes in the path, the trust level is encrypted with the owner’s public key.
Moreover, we also need a mechanism to avoid that a node can repudiate the
trust level it has inserted and, therefore, to minimize as much as possible the
insertion of fake trust levels. To this purpose, each node signs the encryption of
the trust level it has inserted.

Since each node adds its identity to the path it receives before sending it
to the subsequent node, each node in the path from the owner to the requestor
is aware of the relationships existing among the nodes in the path, and this
could not respect the privacy requirements that a node might have on its re-
lationships. For this reason, the collaboration process is driven by the specified
distribution rules. More precisely, a node is required by another node to par-
ticipate in a collaboration only if it satisfies the distribution rules associated
with all the relationships in the path built so far. Thus, before propagating the
request for collaboration to a neighbour node, a node must verify whether the
neighbour satisfies all the distribution rules associated with the relationships in
the path built so far. Introducing distribution rules enforcement in collaborative
access control requires to devise a mechanism avoiding untrusted nodes to re-
quire collaboration of neighbour nodes even if they do not satisfy distribution
rules in the path, or at least making it possible to detect misbehaviours. To
this purpose, we use signature techniques. In particular, a node attaches to the
request for collaboration sent to one of its neighbours, the distribution rule for
the relationship it discloses and its signature over it. Moreover, it digitally signs
all the signed distribution rules contained in the received message, referring to
previously disclosed relationships. As it will be clear in the following section, this
sort of “onion signature” makes a node able to detect if all the previous nodes
in the path have correctly enforced the distribution rules.



3.2 Access control protocol

As stated in the previous section, access control enforcement is obtained through
a collaboration among nodes in the SN. The collaboration has the aim of iden-
tifying a path in the SN satisfying the requirements stated by the access rules
specified for the requested resource. The notion of path is formalized as follows.

Definition 1 (Relationship path). Let SN = (Vsnr, Esn, RTsn, Tsars Prg )
be a WBSN. A relationship path in SN is a pair (rt,node_list), where rt € RTsy
is a relationship type and node_list is an ordered list (nq,...,nk), ni,...,nx €
Vsax of SN nodes such that for each pair n;,n;11 € node_list, 1 =1,...,k—1,
there exists an edge (ni,n;+1) € Esn labeled with relationship type 1t.

In what follows, we use the dot notation to refer to specific components
within a tuple.

Since the nodes to be contacted are selected on the basis of the distribution
rules defined for the relationships in the path built so far, each node receiving
a partial path must be aware of the corresponding distribution rules. Moreover,
each node receiving a request to collaborate must be able to verify whether
previous nodes in the path have correctly enforced the distribution rules for
all the relationships in the path. To this purpose, each node that takes part in
the collaborative process inserts in the message to be sent to the subsequent
node the distribution rule associated with the relationship it inserts into the
relationship path, as well as its signature. Additionally, it signs all the signatures
of the distribution rules contained in the message it receives, if it verifies that
they all have been correctly enforced by previous nodes. Distribution rules and
corresponding signatures for the relationships in a path are stored into a data
structure called Onion signature, defined next. In what follows, we denote with
Sign;(x) the signature of node n; over x.

Definition 2 (Onion signature). Let p = (rt, node_list) be a relationship path
for a social network SN, where node_list = (ny,...,n). The Onion signature
data structure for path p, denoted as Onion_signature(p), is an ordered list of
pair (DR}, ., Signature;), i = 1,...,k—1 where DR}, is the distribution
rule specified by node n; for the relationship of type rt connecting n; to n;i1,
whereas Signature; = Signy(Signg_1(...Sign;(DRIt,  ))).

MiMi4+1

Ezxample 3. Consider the WBSN of Figure 1 and the distribution rules of Exam-
ple 2. The following is an example of relationship path: (fof,(A,M,T)) stating
that there is an indirect fof relationship between A and T. According to the dis-
tribution rules introduced in Example 2. The corresponding onion signature is:
<((A7 fOfv 3); SignT(SignM(SignA(A7 fOfv 3))))7 ((Ma fOfv 2)7 SignT(SignM(Ma fOfa 2)))>

Enforcement of collaborative access control is performed by Algorithm 1.
The resource owner, upon receiving an access request, retrieves from its Policy
Base the access rules regulating the access to the requested resource (step 1).
For simplicity, in the algorithm, we assume a single access rule consisting only
of one access condition. The algorithm can be easily extended to more access



Algorithm 1 The collaborative access control protocol

INPUT: An access request (req,res) submitted to node own by req
OUTPUT: res, if req satisfies the access control requirements of own,
an access denied message otherwise.
1. own retrieves from its Policy Base the access rule AR associated with resource res
2. Let AC = (own,rt,d,t) be the access condition in AR
3. Let C_nodes be the set of nodes with which own established a relationship of type AC.rt
4. Foreach n € C_nodes:
(a) p 1= (rt, (own))
(b) msg_res := SendCollReq({req, own, p, (DR, SigNown(DREmn )}, 1)
(c) i:= msg-res
(d) While (i # 0):
i Let msg be the i-th received message containing a path
ii If check_DR(msg.path, msg.onion_sign) = (:
1. Let depth be the depth of msg.path
2. Let trust be the trust computed by using the trust values in msg
3. If trust > AC.t and depth < AC.d: Return res
EndIf
iii 4:= 4 -1
EndWhile
endfor
5. Return access denied

rules, each one consisting of more than one access condition, by simply iterating
the steps we are describing in what follows. Then, the owner identifies the set of
nodes with which it has established a relationship of the type rt required by the
access condition contained in the considered access rule (step 3). It iteratively
considers (step 4) each node in this set and sends it a message to start the
collaboration process. The message, sent by function SendCollReq() in step 4.b,
contains the owner and requestor identifiers, the distribution rule associated with
the relationship of type rt existing between the owner and the receiving node,
the signature of the distribution rule generated by the resource owner, and the
path built so far (which consists only of the owner itself).

Once the message has been sent, the algorithm waits for the node reply,
which consists of a null value, if no path satisfying the stated confidentiality and
privacy requirements can be found, or the number of identified paths, otherwise.
In case SendCollReq() returns a not null value, a message containing each of the
identified paths is sent to the owner (see procedure path_builder() in Figure 2
explained next). The message contains information on the identified paths (e.g.,
the nodes composing it, the corresponding trust levels and the onion signature).
The algorithm first verifies whether all the nodes in the received path have
correctly enforced the signed distribution rules contained in the message (step
4.d.ii). This is done by function check_DR(), presented in Figure 3. If the check
succeeds, the algorithm computes the depth of the received path and its trust



level and, if they both satisfy the constraints stated in the access rule, the access
is granted (step 4.d.ii.3). Otherwise the process is iterated on the next received
message, until there are no more message to be processed. Then, if the access
has not been granted, the collaboration is requested to the next node in the set
identified in step 3, until the access is granted or all the nodes in the set have
been contacted, without finding a suitable path. In this case, the access is denied
(step 5).

Procedure path_builder(n,msg)

1. Let sender be the node from which message msg has been received
2. Let Distr_rules be the set of distribution rules contained in msg
3. If check_-DR(msg.path, msg.onion_sign) = 0:
(a) Let TOT-msg_res be initialized to 0
(b) Let C_nodes be the set of nodes with which n has established
a relationship of type msg.path.rt
(c) If C_nodes= 0:
Send TOT msg_res to sender
Return
endif
(d) Foreach @ € C'_nodes:
i If 7 satisfies all rules in Distr_rules:
1. Let msg be a copy of msg
2. Update path in msg by adding n
3. Add PKown(tnzm), Sign(PKown(tnm)) to msg
4. Replace the onion signature in msg with Onion_signature(msg.path)
5. If n = msg.req:
(a) If msg.own satisfies all rules in Distr_rules U DR™*9P*" 7,
i Send msg to msg.own
it TOT _-msg-res := TOT _msg_res + 1
endif
else
msg-res :=SendCollReq(Tsg, n)
TOT msg_res := TOT _msg_res + msg.res
endif
endfor
(e) Send TOT -msg-res to sender
else:
(f) Send msg_res = 0 to sender
(g) Send(n,msg,check_-DR(msg.path, msg.onion_sign)) to msg.own and CN
endif

Fig. 2. Procedure path_builder()

Each time a node n receives a request for collaboration, it executes proce-
dure path_builder(), presented in Figure 2. The procedure processes the received
message and decides the next action to be performed. In particular, it initial-



izes variable TOT _msg_res to zero (step 3.a). This variable is used to store the
number of identified paths. Then, the procedure identifies the nodes with which
n has established a relation of the type rt of the relationship path contained
into the received message (step 3.b). If this set is empty, it halts by return-
ing TOT _msg_res to the sender, since no other path can be found (step 3.c).
Otherwise, for each node 7 in the computed set, it verifies whether 7 satisfies
all the distribution rules contained into the received message (step 3.d.i). In
this case, n updates the received message, by adding itself to the path, and the
encrypted and signed trust level of the relationship between n and m. It also
updates accordingly the onion signature contained into the received message.
Then, it verifies whether 7 is the requestor node (step 3.d.i.5). If this is the case,
n verifies whether the owner satisfies all the distribution rules in the received
message plus the distribution rule regulating the disclosure of the relationship
existing between n and 7.

If this is the case, it sends the updated message to the owner and up-
dates accordingly variable TOT msg_res. In contrast, if 7 is not the requestor
node, n sends it the collaboration request and updates accordingly variable
TOT _msg-res. When all the possible requests of collaboration have been sent
and the corresponding replies received, n sends TOT-msg-res to the sender (step
3.e).

Before processing the received message, path_builder() verifies whether all the
nodes in the path received as input have correctly enforced the signed distribu-
tion rules contained into the received message (step 3). In case this check fails,
n notifies the owner and the CN that one or more nodes have not correctly
enforced the specified distribution rules contained in the received message (step
3.g). This information can be used to perform subsequent actions against the
malicious nodes (e.g, notification to other nodes of their incorrect behaviours,
temporary banning from the WBSN and so on).

Checking the correct enforcement of distributions rule is done by function
check_DR() illustrated in Figure 3. check-DR() takes as input the path con-
tained in the message and the corresponding onion signature and returns the
set of nodes, if any, which did not correctly enforce the distribution rules. If the
returned set is empty it means that all the nodes in the path have correctly
enforced the corresponding distribution rules.

3.3 An illustrative example

Consider the SN shown in Figure 1 and the access and distribution rules of
Example 2 and suppose that R requires doc; to A. According to the protocols
described in Section 3, A first of all retrieves from his Policy Base the access rules
regulating the access to docy, i.e., ARy = (docy,{(A,fof,3,0.8)}). According
to Algorithm 1, A contacts his fof neighbours. Let us suppose it starts to contact
node M by sending it a message containing the following components:

— path p = (fof, (A));

— req = R, own = A;



Function check_DR(path, onion_sign)

1. Bad_-nodes := ()
2. Let [ be the length of path.node_list
3.Fori=1tol:
(a)flag :==0; k:=0
(b) Let DR be the distribution rule in onion_signl[i]
(c) Let sign be the signature in onion_sign]i|
(d) For j =1 to i
i If validate_sign(node list[j],sign) = 0:
1. Add node_list[j] to Bad_nodes
2. flag :=1
3. Break
endif
iik:=k+1
endfor
(e) If flag # 1:
iIf k > DR.dmaz +1:
1. For y = i + DR.dmae to l: Add node_listy] to Bad_nodes
endfor
4. Return Bad_nodes

Fig. 3. Function check-DR()

~ onion_sign = (((A,fof,3),Signy((A,fof,3)))), where (A,fof,3) = DR].

Once M receives the request for collaboration message, it runs procedure
path_builder (cfr. Figure 2). The procedure first checks the correct enforcement of
the distribution rules in the path, by verifying the onion signature data structure
through function check_DR() (see Figure 3); then, it considers the only node with
which M has a relationship of type fof, that is, T. It verifies whether T satisfies
the distribution rules in the received message, the only one is (A,fof,3) which
is satisfied by T. Therefore, it adds itself to the path and it inserts PKA(tl{:f’ f ) in
the message, that is, the encryption of the trust level M has assigned to T with the
public key of the resource owner. Moreover, it updates the onion signature data
structure  as  follows:  (((A,fof,3),Signu(Signy((A,fof,3)))),((M,fof,2),
Sigmy((M, fof,2)))), where (M,fof,2) = DR}/ Then, since T is not the re-
questor node, M sends the request for collaboration to T. T first of all verifies the
received onion signature. Then, it determines the set of its fof neighbours, that
is, {C,R}. It selects one of the node in this set, suppose R, and verifies whether it
satisfies all the distribution rules contained into the received message. Since the
check succeeds, it updates the path by inserting itself, it updates the received
message by adding PK,(t£3f) and it updates the onion signature data structure
by adding and signing DR{;: I, Moreover, it signs all the distribution rules con-
tained into the received onion signature. Since R is the requestor node, T verifies
whether A satisfies all the distribution rules contained into the received message



plus DRIST. In this case, A does not satisfy DRI = (M,fof,2),! therefore
T tries to build a valid path by contacting its other fof neighbour, that is, C.
However, when C receives the message, it verifies that R does not satisfy one of
the distribution rules in the received message, that is, DR}’,:{’ I , thus it sends a
null message to T.2 Since T does not have any other node to contact, it sends a
null message back to M, which in turn sends a null message back to the owner A.
Therefore, A contacts its other friend, that is, C by sending it a message similar
to the one sent to M and consisting of the following components:

~ path p = (fof, (A));
- req = R, own = A;
~ onion_sign = (((A,fof,4),Signy((A,fof,4)))), where (A,fof,4) = DRI 3

Once C receives the request for collaboration, it first checks the correct en-
forcement of the distribution rules in the path, then it verifies whether R satisfies
DR{CO 7 Since this is the case, it adds itself to the received path and it inserts in
the message PKj(tE3), that is, the encryption of the trust level C has assigned to
R with the public key of the resource owner. Moreover, it updates the onion signa-
ture data structure as follows: (((A,fof,4),Signc(Signs((4, fof, 4)))),((C,fof,3),
Signe(C, fof, 3))), where (C,fof,3) = DRI’ Since R is the requestor node, C
verifies whether A satisfies all the distribution rules in the updated message. Since
the check succeeds, it sends the updated message to A, as well as a message con-
taining the value 1. Upon receiving the 1 message, A processes the other message
received by C. It first verifies the correctness of the contained onion signature
data structure, then it computes the trust level of R on the basis of the trust levels
contained into the received message. According to Figure 1, tf;f F=1%08=0238.
The length of the received path is 2. Thus, ARy = (docy,{(A,fof,3,0.8)})is
satisfied and therefore R can access doc;.

4 Security Analysis

In this section, we discuss the robustness of our system against possible attacks.
As adversary model, we assume that the adversary is a node in the SA which
can collude with other network nodes to attack the system. To keep the dis-
cussion simple, in this paper we have not complemented the proposed protocols
with techniques generally used to protect data during transmission. However, we

! According to the semantics of the distribution rules introduced in [8], A satisfies
DR{ITOf = (M,fof,2) if there exists a fof path of length not greater than 2, having M
as source node and A as terminal node.

2 Note that, C may not be aware of the fof relationship between T and R, and therefore,
by considering only the information in the received message, it deduces that DR,{TO f
is not satisfied by R.

3 In this example, we assume that the distribution rule specified by A for the fof
relationship with C is DR’ = (A,fof,4), whereas the distribution rule specified
by C for the fof relationship with R is DRI = (C,fof,3).



are aware that the current version of the proposed protocols can be subject to
eavesdropping and replay attacks. These kinds of attacks can be easily avoided
adopting well-know mechanisms [15]. Therefore, the main attacks that a node
can perform during collaborative access control are the following:

— Learn the trust level of previous nodes in the path.
— Alter the received trust level or insert a fake one.
— Incorrectly enforce distribution rules.

Let us consider all the above three attacks in details. Trust levels forwarded
among nodes are encrypted with the public key of the resource owner. As such,
provided that the computational power of a node does not make it able to break
the cryptosystem, each intermediate node in the path is not able to gain access
to the trust levels. The fact that each node in the path signs the trust level
it sends to the next node provides non-repudiation of the inserted trust levels.
Additionally, if a node alters the trust level inserted by another node it can
be detected by either the owner or any node in the path, since this alteration
invalidates the node’s signature.

Finally, the onion signature data structure makes a node able to verify
whether the previous nodes in the path have correctly enforced the distribu-
tion rules. This is performed by function check_DR() by performing two dif-
ferent checks for each distribution rule DR (see Figure 3 for the details). First,
the function verifies whether all the nodes have properly signed DR (step 3.d.i).
This makes sure the owner that all nodes are aware of distribution rule DR. If
the signature of a node n fails to be validated, check_DR() informs the owner
and CA\ that n did not have correctly performed the protocol. The second check
performed by function check_DR() over DR verifies the constraint on the maxi-
mum depth specified in the distribution rule (step 3.e.i). This check makes the
owner sure that the distribution rule DR, and as a consequence the corresponding
relationship, have been disclosed only to nodes whose distance from the node n
stating DR is less than or equal to the maximum depth stated in DR. All the nodes
disclosing DR and having distance from n greater than the maximum depth in
the rule are reported to the owner and CA as bad nodes.

It is relevant to note that if two or more nodes collude, they can validate the
onion signature of previous nodes even if the corresponding distribution rules
are not correctly enforced. However, since each node in the path verifies the
distribution rules, the set of nodes that have to collude to perform the attack
could be very large. Moreover, a final check on the correct distribution rule
enforcement is made by the resource owner (Algorithm 1, step 4.d.ii).

5 Conclusions

In this paper we have presented a protocol on support of privacy-aware access
control in WBSNs, based on a collaboration of selected nodes in the network. The
protocol is based on the use of cryptographic and digital signature techniques,



and ensures that relationship privacy is guaranteed during the collaborative pro-
cess.

We plan to extend the work reported in this paper along several directions.
First, an implementation of the collaborative access control protocol is currently
under way. In the actual version of the prototype the WBSN nodes are im-
plemented as Web services, whereas the system interface available to users is
provided as an extension to the Mozilla Firefox browser. However, we plan to
investigate as future work how the API defined by Google OpenSocial initiative
[16] can be integrated into the current prototype. The prototype will make us
able to test the feasibility of the proposed methods for different social network
topologies and application domains. In particular, our techniques are not meant
for general-purpose WBSNs (like for instance Facebook or MySpace). Rather,
our target scenarios are social networks used at the intranet level or by virtual
organizations, that is, geographically distributed organizations whose members
are bound by a long-term common interest or goal, and who communicate and
coordinate their work through information technology. This is in line with the
emerging trend known as Enterprise 2.0 [17], that is, the use of Web 2.0 tech-
nologies, like blogs, wikis, and social networking facilities, within the Intranet, to
allow for more spontaneous, knowledge-based collaboration. Therefore, we plan
to test our prototype implementation in these reference scenarios.

We also plan to investigate how our collaborative access control enforcement
can be deployed when access control paradigms different from the one considered
in this paper are used (e.g., audit-based access control [18]).
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