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Abstract. The growing number of distributed information systems such
as the internet has created a need for security in data sharing. When
several autonomous parties attempt to share data, there is not necessarily
any guarantee that the participants will share data truthfully. In fact,
there is often a large incentive to engage in behavior that can sabotage
the effectiveness of such a system. We analyze these situations in light
of game theory, a mathematical model which permits us to consider
behavior and choices for any autonomous party. This paper uses this
theory to create a behavior enforcement method that does not need a
central management system. We use a simple punishment method that
is inherently available in most scenarios. Our approach is applicable to a
variety of assured information sharing applications where the members
of a coalition have to work together to solve a problem.

1 Introduction

We live in an information-driven world where we use data from multiple informa-
tion sources to solve problems. The local traffic report, for example, influences
choices we make to get to work on time. However, there are several situations
where the accuracy of information is crucial to success such as fighting a war
or providing medical treatment. We need innovative ways to ensure that the
accurate and secure data are shared between the parties. For example, the radio
station we get our traffic data from is regulated by the FCC. Creating an honest
environment when no central authority is available to enforce behavior presents
a new set of challenges. Peers in distributed environments must therefore be
sophisticated enough to evaluate the actions of each other and have a consen-
sus of what they should all be doing. The results of these evaluations must be
compared with some agreed upon common goal.

In peer to peer systems, a collection of peers is a number of parties that
have their own data and want to share data amongst themselves. The goal of
this system is to find a way to guarantee everyone ends up with an accurate
corpus that reflects all of the data available. Traditionally, this has been done in
a hybridized environment of peers and centralized management entities.



Despite the simplicity of their implementation, centralized systems have a
number of drawbacks. First, this system must be trusted by all peers to be an
impartial judge of activity. Second, such a system by design represents a single
point of failure. They can be broken, attacked, and even compromised, effec-
tively eliminating both the usefulness of the system and the services it offers.
Third, they must be scaled when more peers want to join the system. In general,
centralized management introduces several weaknesses into the data sharing en-
vironment. If we want to eliminate the need for such entities, we must find a
way for the parties to trust each other.

Parties, however, may have only limited influence over each other. They have
entered into this data sharing environment to gather data only because they
can offer data. When parties have sufficient motivation to get more out of the
system than they give up, the effectiveness of such a system must be questioned.
Otherwise, if all parties attempted to cheat the system by sharing bad data in
exchange for good data, none of the parties would gain anything.

1.1 Our Approach

Game theory, the study of competition and cooperation through the use of math-
ematics, offers a solution to this problem. These autonomous parties have no need
to share good data since there is no incentive to do so. However, we can assume
that they are rational and logical entities that are at least partially interested in
collecting good data from the rest of the sources available. We can then assume
proper coercion can illicit desirable behavior.

There are several options available in game theory which are designed to
elicit behavior. One approach is to create a virtual economy in which data can
be bought and sold for a price based on trust. While this is initially a promis-
ing solution, it turns out that balancing such an economy without a centralized
regulatory entity proves unnecessarily complex [9]. Another option is to fight un-
desired behavior with undesired behavior: mimic the last data action performed,
basically punishing a partner by mimicking their own actions. This works pri-
marily when all data has the same value to all participants, a poor assumption
for real-life scenarios. This method is known as Tit-for-Tat, and we discuss it in
section 4.2.

We instead explore another alternative: non-participation. Consider a dis-
tributed sharing environment in which all of these participants are interested in
acquiring each other’s data. To keep information private, everyone establishes a
secure individual connection with everyone else, forming a fully connected net-
work. Information is traded over these connections simultaneously, where any
two parties can exchange pieces of data. In the event that a party believes their
trade partner has cheated during an exchange, the link is severed indefinitely.
Thus, anyone who chooses to deviate from the desired actions will lose any po-
tential gain from trading with that party in the future.

One of the biggest challenges most applications of game theory face in the
real world is the assumption that we know exactly what the other players are
doing. Perfect knowledge allows for robust decision making and more efficient



choices. For the sake of realism, we assume that knowledge of party actions comes
at a price. Verification is the process of determining what a party has chosen as
their actions, and we assign a cost to this process.

Another type of challenge is Trust Management. In a perfect world, everyone
is trustworthy and never considers cheating the system or breaching security.
The truth is, we deal with distrust due to malicious behavior on a regular basis.
The goal of Trust Management is to decide whom to trust and how far we trust
them. When we can determine this, dealing with sensitive information becomes
much easier. However, as with the issue of perfect knowledge, we rarely know this
beforehand. Therefore, a party that wants to properly maintain security must
constantly evaluate their peers. In turn, when those evaluations indicate a party
is untrustworthy, they must be punished. Punishment allows us to actually force
a rational party into becoming more trustworthy by eliminating the benefit of
being untrustworthy.

We have two objectives in our work. First, we want to determine the condi-
tions in which non-participation punishment is effective. We use game theory to
estimate the existence of these conditions and how they can be made. Secondly,
we want to verify the existence of our results by running simulations using a
model that simulates changes in behavior.

1.2 Motivating Scenario

Consider the international political environment. We have a number of countries,
each with sovereign authority over the affairs of the state and their own set of
interests. To protect those interests, we assume that each one has an intelligence
agency designed to gather information in the interest of national security. Assume
there is some event that, if it is allowed to occur, could threaten the security of
any nation to which it happens. The problem these agencies face is that their
data are limited. They may have field operatives working in other countries, but
in most situations, they deal primarily with the affairs of their own country. If a
threat emerged that spanned multiple international borders, it would be difficult
for any one agency to track.

Given the severity of the threat, these agencies have decided to establish a
mutual agreement: they will share the information they have gathered in ex-
change for information other agencies hold. Reality dictates that even if they
have equal information resources, there is little incentive for agencies to share
their real data or to keep the policies associated with it (i.e. secret classification).
These organizations tend to reflect the relations that their respective countries
have with each other. The agreement makes no provision for requiring any given
policy to be enforced due to the lack of a common governing entity. Thus, there
is no provision to prevent sabotage within the loose alliance; each agency must
invest resources to know what the rest are doing.

Even with a fixed cost of discovering such information, there are a number
of factors to comsider. If an agency chooses to verify all of the actions taken
by others, they will waste resources when their fellow agencies are behaving
appropriately. However, if they become too trusting, other agencies can take



advantage of this situation without the fear of being caught. We assume that
every agency at least has a basic security policy of not sharing bad or corrupted
data. Now, consider the use of some punishment and assume that one of these
agencies has decided to lie to everyone about recent reports on militia activity.
Regardless of the motivation, when that agency is caught, our behavior dictates
that they will be isolated from the rest of the data sharing network due to
negligent and deviant behavior. Since the information of all agencies are roughly
equivalent in value, the loss of this one data source will not affect the ability of
the rest of the network to prevent such a militia from causing further trouble.
However, when a sufficient number of participants ostracize the offending party,
the agency that has been cut off is now left out of what is a valuable group
effort. The isolation also serves as a warning to other agencies that may choose
to deviate from providing quality information.

1.3 Related Work

Much of our work builds on the foundations of Agrawal et. al. [2]. That paper
analyzed the issue of trust management among parties and proposed a solution
that uses a management entity that 'taxes parties which use undesirable strate-
gies. This tax’ comes in the form of a discount on the gain in utility within
a game matrix. Our work uses a similar model with two fundamental differ-
ences. First, we use a simple withdrawal strategy that terminates the game if
bad strategies are used. Second, the responsibility of punishment is completely
distributed to all of the parties, eliminating the need for a centralized manager.

In the realm of distributed systems, an area that has garnered considerable
attention is that of peer-to-peer file distribution networks. The work here is
aimed at enforcing trustworthy behavior in protocols such as BitTorrent [3] and
distributed computing. Most of the work we found in this area considers only
a third-party, but the works of [10], [5], and [2] deal explicitly with peer-based
recourse for deviant behavior.

There is no shortage of game theory driven analysis on behavior enforcement.
The work of [1] has inspired our approach to repeated games, but the general
works of [5] and [11] have been notable in our efforts as well. None of this research
to our knowledge, however, deals with the possibility of refusing to participate
within a game. Instead, they suggest choosing a damaging strategy as a form of
punishment for a specific amount of time.

Our current research is actually a refinement on our existing work in this
field, published as a technical report [8]. We originally attempted to construct
a behavior that could govern interaction in a hostile, purely peer-based game
that provided the option of either lying or telling the truth. Trade in this case
happened between two parties by their own choice, instead of all parties si-
multaneously. Punishment occurred when certain trade partners were favored
more than others, leaving parties that chose to lie with less of a chance of being
selected for trade.



1.4 Organization of this paper

Section 2 presents our approach to the game theory, payoff matrix, role of ver-
ification, and how malicious behavior is punished. Section 3 is a proof of the
sub-optimality of our theory. We discuss how we tested our equilibrium in sec-
tion 4 along with a detailed listing of significant competing behaviors. The results
of our experiments are outlined in 5. Our conclusions, observations, and future
directions are left to section 6.

2 Putting a price on consequence

We consider our scenario as an application of 2-person evolutionary game theory.
The intelligence agencies are represented by game theory agents, which have
behaviors and choose a strategy when deciding what to do each round. The
measurement of an agency’s success is determined by the amount of ’good’ data
that has been collected. To simplify the array of policies we can choose to enforce,
we focus on a simple security policy of telling the truth. Thus, the strategies
explicitly available are to Lie, tell the Truth, or Withdraw, but the option of
verification also factors into how an agency can behave.

The value of information varies depending on who receives it and what con-
text they plan to use it in. Data rarely has a uniform benefit to intelligence
agencies in the real world. The perception some party 7 holds about the value of
data in a particular round of trade ¢ is A% . This value is assumed to be bounded
within some range, and represents the raw gain to the party receiving it.

Next, we must address the issue of verification. Using the data acquired
during an exchange immediately will obviously cost less than spending resources
to verify as long as the information is valid. Therefore, we associate a fixed cost
with verification that is uniform among all parties for the sake of fairness. The
cost of verification is represented by the constant Cy, .

Always verifying results would ensure that the other party never succeeded in
deviations such as lying, but it is wasteful with trustworthy parties. Therefore,
the probability p¢ that a single party i will verify the results in a round of
transactions ¢ should be inversely proportional to the probability that any given
party will tell the truth. Note that no verification allows an attacker to build
trust then betray it without consequence.

We assume that agencies have the ability to change their behavior at will. In
most real-life situations, parties will periodically change their behavior if they
believe it will help them. To accomplish this effect, we adopted the use of a
genetic algorithm to allow behavior to ’evolve’ among agencies. We save the
explanation of this for discussion later.

Based on these observations, we have constructed a payoff matrix that re-
flects what every rational party should consider. The complete set of actions
I' available to each agency is [Truth, Lie, Withdraw]. We assume these actions
are only considered on a per-interaction basis; that is, we only consider party
strategy choice in pairs during trade.



Player 1

Truth Lie Withdraw
A; —pvCv A; —pvCy 0
Truth A2 —phCy —pi Cy
Player 2 —pvCv —pv Cv 0
Lie AZ — pl.Cy —pvCv
0 0 0
Withdraw 0 0 0
Fig. 1. Payoffs for each pair of strategies during trade
Variable| Meaning
A} The value of information offered by agent i in round ¢ of the simulation
pi, The probability that agent ¢ will perform verification
Cv The cost of performing verification

Fig. 2. The lookup table for variables used in figure 2

The {Truth,Truth} strategy is trivial. Both parties expect to receive the
utility value of the data from each other, minus the estimated cost of verifica-
tion should they choose to do so. This is calculated by evaluating how often
verification takes place.

Selecting {T'ruth, Lie} or {Lie, Truth} is where deviant behavior is intro-
duced. Although we believe equilibrium is virtually impossible to achieve at
these points, they must be evaluated: selection of these actions means an equi-
librium does not exist yet. Consider two parties ¢ and j that, up to round k£ — 1,
have been telling each other the truth. Both parties do not expect the other
to tell a lie, and as such the probability of verification p}_; is at the minimum
threshold. It becomes possible therefore in round k that ¢ could lie to j with
little chance of being caught. By doing so, ¢ gains the value of j’s shared data
without ever having to give up significant data of their own, giving ¢ an imme-
diate advantage. If this action is performable without being caught over long
periods of time, ¢ can guarantee that they will gain more data and ultimately
decrease the effective amounts of information j can acquire.

However, if the choice is {Lie, Lie}, neither party gains anything. Both par-
ties waste resources for taking the time to interact. Any verification within an
equilibrium of this behavior would only add to the loss. In the real-world, this
would likely mean that the organization would only benefit if they withdraw
from the alliance entirely.

This is the point at which we consider Withdraw as an option. When played,
the party severs their link with another party, eliminating any further trade.
Such an action should be considered a last resort. For example, i has chosen to
withdraw from it’s connection with j, it will from that point on no longer gain
anything from j in future rounds of the game. This would be a tremendous loss,
negating any future gains for either party. Therefore, since any strategy choice



with Withdraw in it has the same results, {Withdraw, Withdraw} becomes an
automatic (and undesirable) Nash equilibrium.

Verification has become an interesting factor in the success of behavior. Al-
ways choosing to verify would decrease the overall benefit of trade when dealing
with a highly reliable source. Reflecting periodic verification checks in the matrix
would unnecessarily complicate the game theory and would require a much more
complex model.

One of the most interesting characteristics of our application of game theory
is the uncertainty of the other party’s actions. The nature of the information we
consider is not easily verifiable. Most of the research in the area of data sharing
does not address games with imperfect information. We believe that reflecting
such a property in our work makes our research much more practical, especially
when discovering such perfect information comes at a measurable utility cost in
the real world.

3 Equilibrium Emergence

Before analyze the above game, we briefly introduce some of the related game
theoretic notions.

For any vector v = (v1,...,v,), we use v_; to represent (v1,...,V;—1,Vit1,-..Upn),
and (v;,v_;) to denote the reconstruction of the v.

Definition 31 Nash Equilibrium(1] A strategy profile o* = (07, 0%) is a Nash
equilibrium in a two person game with utility functions u; if the following in-
equality hold for each agent i,

wi(os",0-3") > ui(a;, 0-;")

where a; belongs to set of possible actions A; that could be taken by agent i

Intuitively, the above definition states that if all agents predict that a particular
equilibrium will occur then no player has an incentive to deviate from equilibrium
strategy.

Consider a traditional one-shot game. We must pick a strategy in which we
can guarantee our success. Consider Withdraw, Withdraw as a natural Nash
equilibrium. At first glance, this would appear to be a poor choice. Clearly, better
payoffs are found in Truth, Truth. However, if we choose Truth as our strategy
of choice in this setup, the other player can choose Lie as it increases their
utility. If we choose Lie instead, we can take advantage of another player’s trust.
Should they choose Truth and deviate from the equilibrium, their payoff will
dramatically decrease while ours increases; at Lie, our payoff is as we expected.
Withdraw of course neutralized both results. Thus, a Nash equilibrium exists
at Withdraw,Withdraw.

In practice, not all games are classified as one-shot. Some involve players that
play the same game multiple times. Such games enable players to use past data
to both predict their opponent’s behavior and even affect a particular outcome.



In our model, the “data sharing” game will be played many many times by the
participating agents. This scenario can be easily modeled by the “repeated game”
ideas from game theory literature [6]. The main observation in repeated games is
that the honest behavior in games like the “data sharing” game can be enforced
if the game continues to be played with probability 6 > 0. In other words, if
there are possible future gains, (i.e. if game continues with some probability)
each agent can be motivated to be truthful.

We can define the expected payoff for a player 7 participating in the repeated
“data sharing” game as the

U; = (1 — (5) Z(Sf 'gi(O'it,O'_it)
t=0

where of = (of, 0t ,) is the strategy employed at time ¢, § is the halting proba-

bility of the game, and g; is the gain achieved at each play of the “data sharing”
game. Let u = (v1,v3) be the payoff vector of the repeated game. Note that if
every period g;(o;t, 0_;!) is equal to some u then u; will be equal to .

To illustrate, consider an instance of the game between two intelligence agen-
cies a; and ay at some point in time on round ¢. From the perspective of a;, o_;*
is expected to be Truth for as since o_; =1, o_;*72, ..., o_;! have all been Truth
as well. According to this equation, we should expect the maximum utility of
u for Truth, Truth. However, a; could have a behavior that tries to deviate at
round ¢t if as has proven trustworthy. In this instance, o; will be Lie, and v will
be greater than Truth, Truth.

Below we prove that our repeated “data sharing” game can be used to enforce
truthful behavior by refusing the deal with dishonest agents that caught cheating.
Our proof technique is very similar to the one used for proving “Nash Folk”
theorem from the repeated game theory literature [6]. Our main difference as
compared to the generic Nash Folk theorem is that in our case opponents actions
could not be observed unless a party to choose to verify the correctness of the
data. Given the above “data sharing” game, we can prove that truth telling
emerges as a Nash equilibrium as follows:

Theorem 31 If telling the truth each round has a gain g; > 0 for both parties
then there exits 0 < § < 1 such that telling the truth for both parties is a Nash
Equilibrium for “data sharing” game.

Proof. Sketch

We will prove that utility of telling the truth given that the other party tells the
truth is bigger then any other strategy that lies with some probability p. To see
that let us calculate the expected gain of a given party who chooses to lie with
probability p > 0 at each round. Note that in a given round with probability
(1 —p) he will gain gr  (i.e. the gain achieved when both party tells the truth)
and with probability p he will gain g, 7 (i.e.the gain achieved when he lies while
the other party is telling the truth). If he cheats and is caught, he will earn zero
for the rest of the game; otherwise, a new round starts. Under these observations,



we can write the total expected utility of lying with probability p given that the
other party verifies the correctness of the received data with probability ¢ as

wi=01-p)-grr+p-9rr+1—p-q) -5 -u (1)

_(A-p) grr+p-grr

- — 1 (2)
1-(1-p-q)-0

Similarly we can write the utility of always telling the truth (denoted as ul
below) if the other party tells the truth as

ul =gror+6-u (3)
gr,T

= I, 1

=5 (4)

Note that u] > u; if we set the § such that it satisfies the following inequality

gL, T
gr, T

5> gL,T_q_l

gr,T

Therefore, for the above given 9§, telling the truth will be a Nash equilibrium
because each party has no incentive to lie given that the other party is telling
the truth.

4 Simulation Construction

Obviously, if every party used the game theory we proposed as their primary
logic, we would have no issue with reaching an equilibrium immediately. How-
ever, we would instead like to see how our design interacts in a variety of game
environments. A diverse environment will enhance the robustness of our theory.

The gaming environment of our design is straightforward. We have a col-
lection of N game theory agents representing parties that interact via secure
bidirectional communication pipes. Each party a; is initially linked to every
other party in the system, forming a fully connected graph. This pipe can be
broken voluntarily by the party at either end. We assume this pipe is completely
secure from tampering or eavesdropping for the sake of simplicity. All players
act simultaneously in each round.

We wanted to analyze the results of our theoretical conclusions in a di-
verse environment of party behaviors. In order to do this, we use three exist-
ing possible approaches to this scenario (Random, T'it-For-Tat, Dishonest), our
own behavior Truth ful-Punisher along with two variations on our own work
(Liar, SubtleLiar).

4.1 Random Behavior

The Random behaviors simply randomly selects Lie or Truth. This strategy rep-
resents a party which has no desire to spend time on the details of the alliance



while simultaneously lacking a consistent motivation to adopt proper behav-
ior. In theory, this randomized behavior can succeed when other parties do not
consider the past and there is little effect due to punishment.

4.2 Tit-for-Tat Behavior

Next, we have the famous Tit-For-Tat strategy. A party using this strategy
starts by telling the truth. After that, this party mimics whatever action was
taken by their trade partner. Research has proven that, unless other parties
conspire against it in some fashion, this is the most effective behavior possible
for games resembling the Prisoner’s Dilemma, as discovered by Anatol Rapoport
[4].

Within our scenario, this behavior operates at a disadvantage. Since perfect
information is not free, the party must verify the results of each and every
trade they make. This could lead to a situation in which it actually gains less
utility against behaviors that are relatively trustworthy but have little regard
for verification.

However, it also has a potentially larger advantage: it does not use the grim
trigger punishment system. The idea behind punishment is that the party takes a
calculated “hit“ to the immediate trade benefits by refusing to deal with parties
that do not tell the truth, in the hopes that they will become more honest.
While this has obvious ramifications for dishonest behavior, unless interacting
with that party has a net loss (i.e. tells a lie more often than it tells the truth),
it is still beneficial to maintain an open communications channel and choose the
less harsh strategy of mimicking their choice. In essence, this behavior should
provide the best competition to our own construction.

4.3 Dishonest

In order to add the appropriate amount of realism to our scenario, we must also
consider parties that have no desire to contribute meaningfully to the group.
Such behaviors are simply classified as Dishonest, and as such they choose to
always lie. They still may reap the benefits of those that choose to tell them the
truth, but they will never bother to verify what they receive nor punish those
that lie as well. Thus, this agent exists in our simulation solely to insure the rest
of the parties cannot make the assumption that all behaviors will ultimately
yield any sort of positive or ’break-even’ net gain. This is in contrast with the
Random behavior, which will arguably still yield a net gain of zero through
prolonged participation.

4.4 Truthful-Punisher Behavior

Before we describe the variations on our ideal behavior, we must first describe
what our game theory analysis has suggested to us. Since there is a clear Nash
Equilibrium at {Truth, Truth} with our punishment modifications, our behavior
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always chooses T'ruth. The probability of verification is done as a percentage that
is handed off as part of the behavior characteristics. When the simulation is first
created, each time a party using this behavior type (or a variant) is instantiated,
a random percentage is chosen for its’ verification probability. Essentially, this
party either tells the truth or cuts the other party off.

4.5 Periodic Liar Behavior

The first variant on our behavior is to try and get away with lying a fraction of
the time. This is designed to represent an party that believes they can deviate
from time to time when they have a desire to sabotage their competition. More
importantly, it simply represents a mindset in which the party does not believe
that the original conclusions of always telling the truth is a true equilibrium
within the 'real-world’ environment, making it a close relative of the Random
behavior.

4.6 Subtle Liar Behavior

In theory, any party could choose to deviate only when they know that their
trade partner is going to give them valuable data. They believe they can lie
without worry of significant punishment. We assume that party ¢ will choose
{Lie} during communication with j whenever A! > Az during round ¢, where
Ar is simply a threshold above a significant majority of all possible piece values.
This is especially handy when dealing with T'it-For-Tat, as retaliatory behavior
assumes that by lying to them on the next round will neutralize gains from
deviation. Since piece values vary over a set range, this works to the behavior’s
advantage as long as the data it will not receive due to punishment during the
next round is of lesser value.

5 Experiments

Information is exchanged between our virtual parties every round. During each
round, a party trades with the rest of the parties they are connected to. No
one party has an advantage over the other through knowledge of the move their
partner has made due to the synchronous nature of our setup.

All experiments are run to no more than 20,000 rounds. The game will ter-
minate early if an equilibrium is achieved (i.e. all agencies go to a particular
behavior, leaving no other possible behaviors to choose from). Note that we are
not explicitly using game theory approaches for infinitely repeated games; we
assume that at some point there will no longer be a need for the alliance.

We judge a party’s fitness by the value of accumulated data. Each time
a party is told the truth, the data value is added to the total value of the
party. Whenever a party chooses to verify, the cost of verification is subtracted.
Obviously, being told a lie and choosing to verify the data will result in a net
loss. In the spirit of our scenario, a positive gain in data is much more desirable.
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Every L rounds, we pause the game to perform an evaluation of the per-
formance of these parties. This reflects when agencies choose to evaluate their
performance to maximize efficiency. First, we need to see how each of them has
performed since the last check. Every party’s gain ¢; is calculated from the in-
crease in their net value. This value is added up to yield a total utility value
over the whole system, qr.

Next, we calculate péehmor = q;/gr for each party’s behavior, where p};ehamw
denotes the normalized probability that the behavior held by party i should
be used by parties in the next generation. A behavior embodies both the core
logic mentioned in section 4 along with any attributes. We use this normalized
percentage as a way of measuring how well a particular approach has performed
in contrast with the rest of the system. The higher a party’s relative gain, the
higher their percentage ’score’.

We want our population to reflect the fitness of each behavior proportionally,
according to the basics of genetic algorithms[12]. In our scenario, we assume
that agencies will want to maximize their data trading success by adopting the
behaviors of those that are most successful. Since Y Pijavior = 1, We can use
Di o havior L0 €nsure that the next ’generation’ of agencies adhere to this principle.
We thus reassign the strategies for every agency based on this probability. We
do not consider the very real notion that a successful agency is unlikely to want
to change it’s strategy; we simply need the population to reflect the evolved
characteristics of the system.

We expect a number of properties to emerge based on our analysis. First,
we expect that our equilibrium-based behavior to outperform and ultimately
dominate the overall population given enough generations. Next, we expect that
this behavior will adjust it’s verification rates based on how many parties use
a deviant behavior. Finally, we expect our approach to dominate all possible
variations available.

5.1 Results

The outcome of our experiments confirms our theory is correct. Verification and
punishment appear to be highly effective even in a diverse population, as our
simulation consistently converged to a homogeneous population of our particular
behavior. There’s a clear correlation between the use of our punishment method
and the success of agents within the system. Since agencies that did not obey
the truth policy were cut-off, agencies which told the truth remained within a
somewhat exclusive clique. As long as this clique’s benefits exceeded those that
are offered by those outside of it, the system eventually began to encompass only
agencies that used the adhered to an honest strategy remained after just a few
rounds.

As we suspected, T'it-For-Tat did not perform well enough to beat our strat-
egy. Despite the fact that the strategy kept links open to several parties which
still offered a net gain, the population eventually became devoid of any dishon-
est participants. Once this happened, Truth ful-Punisher’s ability to settle for
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less than perfect information (via infrequent verifications) gave it a clear advan-
tage, as fewer resources were wasted verifying information that would never be
a lie. It at times took several generations, but eventually, Tt-For-Tat would
disappear from our population, leaving only Truth ful- Punisher with complete
dominance.
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Fig. 3. Behaviors by population per generation

The rest of the behaviors which choose not to tell the truth consistently
did not perform well enough to pose a threat to our equilibrium. Despite the
two variants which attempted to lie only periodically, those that choose such
an approach were eventually caught and collectively punished. The only time
this did not happen was when we set a very low threshold for the SubtleLiar
behavior; when the probability of lying was less than 10%, the difference made to
the agency’s performance was so low that our experiments converged to SubtleLie
with equal probability. However, since the net gain from such periodic lying was
also very low, we suspect that this has more to do with a small fraction of
difference lost in the varying cost of the pieces. Additionally, the probability
that they would be caught was simply too low to be of significant value. At rates
at or above this threshold, our original behavior prevailed consistently against
it.

Convergence to our behavior happened in an average of 20 generations. The
leading competitor often ended up clinging to a small portion of the population
as a handful of agents before eventually succumbing to the agents bearing our
behavior. Typically, this was a small sub-population of no more than 5 parties,
which were usually T'it-For-Tat. We believe the reason for this is rooted in the
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fact that our own constructed behavior tends to seek a verification probability
based on how honest the population is at a given time. As our behavior propa-
gates, the need to verify decreases, leaving it more vulnerable to future attacks
that never occur.

One of the ways in which we observed system performance is by way of four
metrics: Truces, Fools, Follies, and DeadLinks. Truces represent both parties
choosing to tell the truth. Fools are situations in which one party told the truth
while the other lied. Follies represent when both parties choose to lie to each
other, resulting in either no gain or net loss. DeadLinks simply indicated when
trade never happened between two parties. In Figure 4, we see that Truces
exceed the other options in only four generations, indicating that the system is
achieving optimality as early as possible.

The dynamic behavioral choices of any given iteration of our simulation in-
volve the life and death of the various behavioral choices, as seen in Figure
3. Starting from an equal distribution of six different behaviors, we find that
the first variant Liar ’dies’ after only one generation. The next death is of the
SubtleLiar variant in the generation following. Both of these variants are sur-
prisingly beaten by the Random behavior; clearly, even small deviations from
our proposed behavior can prove disastrous. Finally, and least surprisingly, is
the delayed demise of T'it-For-Tat, which is the last behavior to go. This is
most likely due to the fact that it will never lie to a trustworthy opponent which
punishes; thus, it is never isolated from the productive members of the group
and only loses due to dependency on perfect information.
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6 Conclusions

Overall, we were pleased with the results of our simulations. The populations
converged rather quickly to a {Truth,Truth} equilibrium, and our behavior
eventually overcame any competition provided there was enough time. Dishonest
behaviors were eliminated rather quickly, even in variants of the experiments we
performed with unfair advantages given to competing behaviors. Although their
were restrictions in involved on its’ effectiveness, we were overall pleased to say
that our work has fulfilled our objectives.

Despite this success, we were not entirely satisfied with the results. Clearly,
there is no need to continue verifying results once the system converged to a
Truth strategy. We originally asserted that the verification rate would thus go to
our lower bound for verification (10%), as agents using a strategy reflecting little
or no verification should pull ahead. Instead, our system simply approached a
30% rate with significant deviation. The problem we believe lies in the nonde-
terministic nature of our choice of genetic algorithms. Since verification costs
are relatively small compared to the payoff from the information, there is al-
ways a net gain regardless of verifying the information when the truth is always
told. However, even when we doubled the cost of verification and set payoff in
{Truth, Truth} to be a constant, there was simply never enough of a gain to
converge.

The last question we want to answer is how effective our agent is as a group.
Obviously, a single agency cutting off others is not going to be a significant de-
terrent on their own. Our results show that approximately 40% of the population
must use punishment to significantly deter others from deviating from Truth.
This reflects similar findings found in distributed computing, such as the Byzan-
tine Generals Problem, in which a certain majority of the participants must be
trustworthy in order to properly succeed against deviant strategies [7].

Another pressing issue is the vulnerability of the population to constructed
behaviors which could wait for convergence to a mostly honest population and
then switch to a dishonest policy of strategy choice. Since the characteristics
of our design favors a more vulnerable state when it appears ’safe’ to do so,
we are concerned that future generations would have little defense against a
growing dishonest population. The only way we could combat this is to introduce
mutation rates among our behavioral characteristics.

The most endearing application of our work is how it can apply to the en-
forcement of any desired behavior. The nature of the Folk theorem is that, with
sufficient patience and time, any desirable equilibrium can be achieved. Based
on this work, we can enforce any security policy as long as the actions taken are
verifiable in some capacity. Given the traditional approaches that require a man-
agement party, true distribution of responsibility makes it possible to have much
more robust security that does not rely on any one entity to enforce behavior.

In order to bring more realism to our model, our future work will also address
two major assumptions: imperfect verification and insecure lines of communica-
tion. The former deals with situations in which we cannot guarantee information
will be properly classified as a truth or a lie. The latter raises the possibility
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that we have insecure communication channels; a would-be attacker could easily
cause communication disruption through information tampering. Both can be
addressed by assigning a confidence factor in the form of a probability reflecting
the likelihood that data can be trusted while relaxing the grounds on which the
Withdraw option is selected.
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