
Authenticated Relational Tables and
Authenticated Skip Lists ?

Giuseppe Di Battista1 and Bernardo Palazzi123

1 Roma TRE University, Rome Italy, {gdb,palazzi}@dia.uniroma3.it,
2 ISCOM Italian Ministry of Communication, Rome, Italy,

3 Brown University, Department of Computer Science, Providence, RI USA

Abstract. We present a general method, based on the usage of typ-
ical DBMS primitives, for maintaining authenticated relational tables.
The authentication process is managed by an application external to
the DBMS, that stores just one hash information of the authentication
structure. The method exploits techniques to represent hierarchical data
structures into relational tables and queries that allow an efficient selec-
tion of the elements needed for authentication.

Key words:Authenticated Relational Table, Authenticated Skip List, Au-
thenticated query

1 Introduction

We consider the following scenario. A user needs to store data in a relational
database, where the Data Base Management System (DBMS) is shared with
other users. For example, the DBMS is available on-line through the Web, and
anybody in the Internet can store and access data on it. Nowadays, there are
many sites providing services of this type [1, 22, 25, 30] and the literature refers
to such facilities as to outsourced databases [13, 19, 27].

When the database is accessed, the user wants to be sure on the integrity of
her/his data, and wants to have the proof that nobody altered them.

Of course, accessing the DBMS is subject to authentication restrictions, and
the users must provide credentials to enter. However, the user might not trust
the DBMS manager, or the site that provides the service, or even the DBMS
software. Extending the argument, the same problem can be formulated even in
terms of a traditional database. Also in this case, with the current technologies,
although DBMSes put at disposal logs of the performed transactions and other
security features, for a user it is somehow impossible to be completely sure that
nobody altered the data.

A first attempt for the user to be sure of the authenticity of the data is to
put a signature on each t-uple of each relational table of the database. Unfortu-
nately, this technique does not provide enough security. In fact, adversaries could
? This work was supported in part by grant IIS–0324846 from the National Science

Foundation and a gift from IAM Technology, Inc.

remove some t-uples and the user would not have any evidence of this. Another
straightforward possibility would be to sign each table as a whole. However, this
does not scale-up, and even mid-size tables would be impossible to authenticate.

We propose a method and a prototype for solving the above mentioned prob-
lem. Namely, for each relational table R of the user we propose to store in an
extra relational table S(R) (in the following security table) of the DBMS a spe-
cial version of authenticated data structure that allows to verify the authenticity
of R.

With this approach, if the user wants to have the proof of authenticity of R,
it is sufficient to check the values of a few elements stored in S(R). On the other
hand, if the user updates R, only a few variations on S(R) are needed to preserve
the proof of authenticity. We also propose efficient techniques to manage and to
query S(R) and show the practical feasibility of the approach.

Observe that the proposed approach is completely independent on the specific
adopted DBMS and can be implemented into an extra software layer or either
a plug-in, under the sole responsibility of the user. The authentication process
is managed by an application external to the DBMS that stores just a constant
size (O(1) wrt the size of R) secret. The method does not require trust in the
DB manager or DBMS.

The paper is organized as follows. Section 2 provides basic terminology and
summarizes the state of the art. Section 3 describes the adopted model. Sections 4
and 5 provide technical insights. Section 6 presents experiments that show the
feasibility of the approach. Section 7 concludes the paper analyzing the security
of the approach and proposing future work.

2 Background and State of the Art

Authenticated data structures (ADS) [29] have been devised to be used in a com-
putational model where untrusted responders answer queries on a data structure
on behalf of a trusted source and provide to the user a proof of the validity of
the answer. Early work on ADS was originated by the certificate revocation
problem in PKIs and focused the attention on authenticated dictionaries, on
which membership queries are performed.

The Merkle hash tree MHT scheme [16] can be used to implement a static
authenticated dictionary. An MHT of a set stores cryptographic hashes of the
value of elements belonging to the set at the leaves of the MHT and an au-
thentication value at each internal node, which is the result of computing a
cryptographic hash function on the values of its children. The MHT uses linear
space and has O(log n) proof size, query time and verification time.

A dynamic authenticated dictionary that uses a hierarchical hashing tech-
nique over skip lists, a data structure introduced by Pugh [26], is presented in [8,
9]. Such ADS obtains O(log n) proof size, query time, update time and verifi-
cation time. Other schemes based on variations of MHT have been proposed
in [2, 4, 12, 20]. A detailed analysis of the efficiency of authenticated dictionary
schemes based on hierarchical cryptographic hashing is conducted in [28], where

precise measures of the computational overhead due to the authentication are
introduced. Lower bounds on the authentication cost are given, existing authen-
tication schemes are analyzed, and a new authentication scheme is presented
that achieve performance very close to the theoretical optimal.

The notion of a two parties model in ADS is introduced in [10], where only
the client needs to maintain the proof of validity for his data.

A first step towards the design of more general ADS (beyond dictionaries)
is done in [7, 14, 21] with a first approach on the authentication of relational
database operations and multidimensional orthogonal range queries.

Buldas, in a more recent paper [3], studies how to extend ADS to perform
more complex queries and uses optimizations on interval queries. In [23, 24] the
authors propose a method to authenticate projection queries using different cryp-
tographic techniques for verifying the completeness of relational queries. While
the papers are quite promising in terms of theoretical bounds and analysis, the
practical efficiency is not demonstrated.

In [17], Miklau and Suciu proposed to embed into a relational table an MHT ,
with a model that is similar to the one adopted in this paper. However, the tech-
nique is described only partially and seems to have some drawbacks. Namely,
validating the result of a query seems to require several distinct queries on the
DBMS. This is in contrast with the typical atomicity requirements of concur-
rency. Also, the MHTs require frequent rebalancing for supporting updates and
it is unclear how to match this requirement with the need to have a few up-
dates in the relational table. Further, the time performance illustrated in the
paper are not supported by a clear description of the experimental platform and
show some inconsistency. For example in one of the tests the time requested for
authentication decreases with the growth of the table.

For the purposes of this paper we need to provide a description of the skip
lists. The skip list data structure [26] is an efficient tool for storing an ordered
set of elements. It supports the following operations on a set of elements.

– find(x): Determine whether element x is in the set.
– insert(x): Insert element x into the set.
– delete(x): Remove element x from the set.

A skip list S stores a set of elements in a sequence of linked lists S0, S1, . . . , St

called levels. The members of the lists are called nodes. The base list, S0, stores
in its nodes all the elements of S in order, as well as sentinels associated with the
special elements −∞ and +∞. Each list Si+1 stores a subset of the elements of
Si. The method used to define the subset from one level to the next determines
the type of skip list. The default method is simply to choose the elements of
Si+1 at random among the elements of Si with probability 1

2 . One could also
define a deterministic skip list [18], which uses simple rules to guarantee that
between any two elements in Si there are at least 1 and at most 3 elements of
Si+1. In either case, the sentinel elements −∞ and +∞ are always included in
the next level up, and the top level, is maintained to be O(log n). We therefore
distinguish the node of the top list St storing −∞ as the start node s.

An element that is in Si−1 but not in Si is said to be a plateau element of
Si−1. An element that is in both Si−1 and Si is said to be a tower element in
Si−1. Thus, between any two tower elements, there are some plateau elements.
In randomized skip lists, the expected number of plateau elements between two
tower elements is one. The skip list of Fig. 1 has 7 elements (including sentinels).
The element 6 is stored in 3 nodes with different level. The overall number of
nodes is 17.

- ���� 109865 + ����

S2

S 1

S 0

10

10

+ ����

+ ����

96

6

5- ����

- ����

Fig. 1. Skip List

To perform a search for element x in a skip list, we begin at the start node
s. Let v denote the current node in our search (initially, v = s). The search
proceeds using two actions, hop forward and drop down, which are repeated one
after the other until we terminate the search. See Fig. 2.

– Hopforward: We move right along the current list until we find the node of
the current list with largest element less than or equal to x. That is, while
elem(right(v)) < x, we perform v = right(v).

– Dropdown: If down(v) = null, then we are done with our search: node v
stores the largest element in the skip list less than or equal to x. Otherwise,
we update v = down(v).

In a deterministic skip list, the above searching process is guaranteed to take
O(log n) time. Even in a randomized skip list, it is fairly straightforward to show
(e.g., see [11]) that the above searching process runs in expected O(log n) time,
for, with high probability, the height t of the randomized skip list is O(log n)
and the expected number of nodes visited on any level is 3.

To insert a new element x, we determine which lists should contain the new
element x by a sequence of simulated random coin flips. Starting with i = 0,
while the coin comes up heads, we use the stack A to trace our way back to the
position of list Si+1 where element x should go, add a new node storing x to this
list, and set i = i + 1. We continue this insertion process until the coin comes
up tails. If we reach the top level with this insertion process, we add a new top
level on top of the current one. The time taken by the above insertion method
is O(log n) with high probability. To delete an existing element x, we remove

- ���� 109865 + ����

S2

S 1

S 0

10

10

+ ����

+ ����

96

6

5- ����

- ����

Fig. 2. A value searching in a Skip List: search for element 9 in the skip list of Figure
1. The nodes visited and the links traversed are drawn with thick lines and arrows.

all the nodes that contain the element x. This takes time is O(log n) with high
probability.

To introduce the Authenticated Skip Lists we need to use the commutative
hash technique [9] developed by Gooodrich and Tamassia. A hash function h is
commutative if h(x; y) = h(y; x), for all x and y. Given a cryptographic hash
function h that is collision resistant in the usual sense, we construct a candidate
commutative cryptographic hash function, h0, as follows [9] :

h0(x, y) = h(min(x, y),max(x, y))
It can be shown that h0 is commutatively collision resistant [9].
The authenticated skip list introduced in [9] consists of a skip list where each

node v stores a label computed accumulating the elements of the set with a
commutatively cryptographic hash function h. For completeness, let us review
how hashing occurs. See [9] for details. For each node v we define label f(v)
in terms of the respective values at nodes w = right(v) and u = down(v). If
right(v) = null, then we define f(v) = 0. The definition of f(v) in the general
case depends on whether u exists or not for this node v.

– u = null, i.e., v is on the base level:
• If w is a tower node, then

f(v) = h(elem(v), elem(w))
• If w is a plateau node, then

f(v) = h(elem(v), f(w)).
– u 6= null, i.e., v is not on the base level:

• If w is a tower node, then
f(v) = f(u).

• If w is a plateau node, then
f(v) = h(f(u), f(w)).

We illustrate the flow of the computation of the hash values labeling the nodes
of a skip list in See Fig. 3. Note that the computation flow defines a directed
acyclic graph DAG, not a tree. After performing the update in the skip list,
the hash values must be updated to reflect the change that has occurred. The
additional computational expense needed to update all these values is expected
with high probability to be O(log n). The verification of the answer to a query

is simple, thanks to the use of a commutative hash function. Recall that the
goal is to produce a verification that some element x is or is not contained in
the skip list. In the case when the answer is ”yes”, we verify the presence of
the element itself. Otherwise, we verify the presence of two elements xa and xb

stored at consecutive nodes on the bottom level S0 such that xa < x < xb. In
either case, the answer authentication information is a single sequence of values,
together with the signed, timestamped, label f(s) of the start node s.

- ���� 109865 + ����

S2

S 1

S 0

+ ����10

10

10

+ ����

+ ����

9

9

86

6

6

5

5

- ����

- ����

- ����

Fig. 3. Authenticated Skip List: Flow of the computation of the hash values labeling
the nodes of the skip list of Fig. 2. Nodes where hash functions are computed are
drawn with thick lines. The arrows denote the flow of information, not links in the
data structure.

Let P (x) = (v1; ...; vm) be the sequence of nodes that are visited when search-
ing for element x, in reverse order. In the example of Fig. 4, we have P (9) that
needs not only the nodes (9, 6,−∞) with the thick line but also all the siblings
with the stroke dash-dot-dash-dot. Note that by the properties of a skip list, the
size m of sequence P (x) is O(log n) with high probability. We construct from
the node sequence P (x) a sequence Q(x) = (y1; ...; ym) of values such that:

– ym = f(s), the label of the start node;
– ym = h(ym−1; h(ym−2;h(...; y1)...)))

The user verifies the answer for element x by simply hashing the values of the
sequence P (x) in the given order, and comparing the result with the signed value
f(s), where s is the start node of the skip list. If the two values agree, then the
user is assured of the validity of the answer at the time given by the timestamp.

3 The Reference Model

A user stores a relational table R into a DBMS. The user would like to perform
the usual relational operations on R, namely, would like to select a set of t-uples,
to insert elements, and to delete elements. The user wants to verify that a query
result is authentic. The amount of information that the user has to maintain in

- ���� 109865 + ����

S2

S 1

S 0

10

10

+ ����

+ ����

96

6

5- ����

- ����

Fig. 4. Values needed to authenticate the result of a query.

a secure environment to be certain of the authenticity of the answer should be
kept small (ideally constant size) with respect to the size of R.

We propose to equip R with an authenticated skip list A to guarantee its
integrity. Of course, there are at least two approaches for implementing A. Either
A is stored in main memory within an application controlled by the user, or A is
stored into the same DBMS storing R. We follow the second approach. Namely,
we investigate how to efficiently store A into a further relational table S(R),
called security table, used only for that purpose. Fig. 5 shows a relational table,
an authenticated skip list for its elements, and the implementation of the skip-list
into a second relational table.

����

A
B

DB ADS

������	
�� �����

��������

�������	

�������

�������� C

B
A

C

�����
��
���	
 �����

���� ����

���� ��
�

Fig. 5. A relational table and its security table.

There are two options. We call them the coarse-grained and the fine-grained
approach.

What we call coarse-grained approach is probably the most natural way to
represent an authenticated skip list S inside a relational table S(R). Namely,
it consists of storing each element of S inside a specific record of S(R). On the
other hand, the fine-grained approach shifts the attention on a smaller element
of S. It consists of storing each level of an element of S inside a record of S(R).

In order to visualize the coarse-grained approach, it is effective to think at S
in terms of a “quarter clockwise rotation”. As an example, Table 1 is a coarse-
grained representation of the authenticated skip list of Fig. 6.

More precisely, the fields of Table 1 have the following meaning.

– Key: The value of an element of S. It can be any type of value, not only a
number, but on such a type a total ordered must be defined.

– Prv n - Nxt n: Pointers to the previous and to the next element in S, for
each level n.

– Hash n: Information needed to authenticate S, stored at each level n.

Each element of S has a height, that is, the number of nodes with the same
value of key that constitute an element of S, that is randomly determined. This
is the main trade-off of this technique, because on one hand this kind of rep-
resentation has the property to maintain the identity between the number of
records in S(R) and the elements present in S, but on the other hand it has
an overhead in the size of the table, because each record has a number of fields
equal to the highest S in A. This is necessary because we do not know the height
of a new S and then we have to arrange S(R) for worst cases, when an S is at
the highest level. So, we must pad with ”null” values the fields that do not reach
the highest level.

- ���� 109865 + ����

S2

S 1

S 0

10

10

+ ����

+ ����

96

6

5- ����

- ����

Fig. 6. Storing a Skip List inside a Relational Table.

Once stated how to represent S inside the security table S(R), we developed
methods to perform in S a set of authenticated relational operations, without
the need to load in main memory the whole S(R). Performing authenticated

Key Hash 0 Prv 0 Nxt 0 Hash 1 Prv 1 Nxt 1 Hash 2 Prv 2 Nxt 2

- ∞ f(−∞, 5) null 5 f(f(−∞), f(5)) null 5 f(f(−∞),f(6)) null 6
5 f(5, 6) −∞ 6 f(f(5), f(6)) −∞ 6 null null null
6 f(6, f(8)) 5 8 f(f(6), f(9)) 5 9 f(f(6), f(10)) 10 −∞
8 f(9,6) 9 6 null null null null null null
9 f(9, 10) 8 10 f(9, 10) 6 10 null null null
10 f(10, f(+∞)) 9 +∞ f(f(10), f(+∞)) 9 +∞ f(f(10), f(+∞)) 6 +∞

Table 1. A coarse-grain representation of an authenticated skip list into a relational
table. In bold face the elements necessary to authenticate element 9.

operations on R requires the usage of queries that retrieve all the elements that
are needed to compute the authentication path. Such elements are spread on all
S(R). The main requirements in devising such queries are:

– The need to build queries that retrieve only the authentication elements that
are strictly necessary, to reduce, as much as possible, the amount of required
memory.

– The need of fast queries that allow to authenticate a result with a small time
overhead. In this respect it is meaningful to minimize the number of used
queries.

It is important to perform such queries using only standard SQL. In fact,
our model does not allow any modification of the DBMS engine. Also, think-
ing in terms of SQL allows the identification of a precise interface between an
authentication tool based on our techniques and the DBMS, allowing its imple-
mentation in terms of a plug-in. The main idea here is to use an algorithm that
retrieves the authentication elements, starting from the knowledge of the value
K to authenticate:

1. We perform a query that loads in memory all the records that are not null
at top level and that have a value smaller than K.

2. We select the greatest element in the query result (that is the predecessor
of K at the top level).

3. We perform an interval query on the elements (that are not null) at the
immediately lower level, with the following range: from the element retrieved
in the previous step to the element stored in its field next to the top level.

4. We repeat the steps 2− 3 until we reach level 0.

In order to understand which elements are loaded in main memory by queries
of the algorithm, it is effective to think at a shape like a ”funnel” that has its
stem on K. See Fig. 7. The loaded elements are those that “touch” the funnel.

Note that the number of queries that is needed to retrieve the authentication
root path is proportional to the number of levels in S, that is logarithmic in the
number of elements that are currently present in S.

- ���� 109865 + ����

S2

S 1

S 0

10

10

+ ����

+ ����

96

6

5- ����

- ����

Fig. 7. Loaded elements in an authentication query.

4 A Fine Grained Approach

This approach stores inside each record a node instead of an element of S. A
node is an invariant-size component in S. Hence, it can be stored in a record
with a fixed number of fields, independently on the number of elements stored
in S. More precisely, in this case the fields of S(R) have the following meaning:

– Key: value of an element of S;
– Level: height of an element of S, that is the number of the lists that the

element belongs to;
– prvKey-nxtKey: pointers to the previous and to the next element of S at

the same level;
– parentLvl-parentKey: pointer to the parent element in the path of au-

thentication; it is needed to allow the retrieval of the root path;
– Hash: information needed for the authentication, performed with the method

used in S [9].

The direct storage of S nodes significantly reduces the space overhead, that
it is typical of the coarse grain approach. In fact, in this case there is no need to
store null values.

This approach allows the usage of very efficient techniques to manage S(R)
dynamically and securely. The method we adopt is based on the nested set
method for storing hierarchical data structures inside adjacency lists, that in
turn fit well into relational tables [5] See Fig. 8 and Tab. 2.

5 Exploiting Nested Sets

The problem of storing hierarchical data structures inside relational tables has
been already studied in database theory [6, 15]. The solution that we exploit is
due to Celko [5], that shows a method to store a tree inside a relational table.
Such a method is based on augmenting the table with two extra fields.

In order to understand what is a nested set, it is effective to think at the
nodes of the tree as circles and to imagine that the circles of the children are

- ���� 109865 + ����

S2

S 1

S 0

10

10

+ ����

+ ����

96

6

5- ����

- ����

Fig. 8. Storing a Skip List inside a Relational Table. A Fine Grained Approach

Key Level prvKey nxtKey parentLvl parentKey Hash

−∞ 2 null 6 null null f(f(−∞), f(6))

−∞ 1 null 5 2 −∞ f(f(−∞), f(5))

−∞ 0 null 5 1 −∞ f(−∞, 5)

5 1 −∞ 6 1 −∞ f(5,6)

5 0 −∞ 6 1 5 f(5, 6)

6 2 −∞ 10 2 −∞ f(f(6),f(10))

6 1 5 9 2 6 f(f(6),f(9))

6 0 5 8 1 6 f(6, f(8))

8 0 6 9 0 6 f(8, 10)

9 1 6 10 1 6 f(9, 10)

9 0 8 10 1 9 f(9, 10)

10 2 6 +∞ 2 6 f(10,f(+∞))

10 1 9 +∞ 2 10 f(10,f(+∞))

10 0 9 +∞ 2 10 f(10,f(+∞))

Table 2. A fine grain representation of an authenticated skip list into a relational
table. In bold the elements necessary to authenticate element 9

nested inside their parent. The root of the tree is the largest circle and contains
all the other nodes. The leaf nodes are the innermost circles, with nothing else
inside them. The nesting shows the hierarchical relationship.

The two extra fields have the role of left and right boundaries of the circle
and allow to represent the nesting of the hierarchy.

Unfortunately, skip lists are not trees but a directed acyclic graph. Hence,
we have to extend the nested set method to this different setting. Table 3 illus-
trates how the fine-grained approach can be equipped with nested-sets features.
Observe the Left and Right fields that represent the boundaries of the “circles”.
Fig. 9 shows the correspondence between boundaries and nodes of the skip-list.
The figure shows also a root path.

Now we show one of the features of the proposed approach. Namely, we argue
that, in order to authenticate an element of a relational table R, we need just one
query on S(R). Such a query is used to retrieve the complete root-path and all
its sibling elements. Observe that, authenticating an element in an ADS requires
a number of steps that is logarithmic (worst case or average case) in the number

-���� 109865 +����

S2S 2

S 1

S 0

�

�

� �

�

� �

�	

�

��

�� �� �� ��

�
 ��

�� ��

�	

��

��

�� ��

��

������

Fig. 9. An ADS and its Nested Set. Thick lines show the authentication root path for
element 9.

of the elements while this logarithmic dependence does not yield a logarithmic
number of queries in our case but a constant number of queries. We make the

Key Level prvKey nxtKey parentLvl parentKey Left Right

−∞ 2 null 6 null null 1 28

−∞ 1 null 5 2 −∞ 2 9

−∞ 0 null 5 1 −∞ 3 4

5 1 −∞ 6 1 −∞ 5 8

5 0 −∞ 6 1 5 6 7

6 2 −∞ 10 2 −∞ 10 27

6 1 5 9 2 6 11 20

6 0 5 8 1 6 12 15

8 0 6 9 0 6 13 14

9 1 6 10 1 6 16 19

9 0 8 10 1 9 17 18

10 2 6 +∞ 2 6 21 26

10 1 9 +∞ 2 10 22 25

10 0 9 +∞ 2 10 23 24

Table 3. A representation of an authenticated skip list into a relational table using
nested set. In bold the key value and the left and right fields. The 2 extra fields added
are needed for fast queries.

argument using an example. The following query uses directly the value of the
element to authenticate. The example is for the authentication of element 9.

SELECT *
FROM skiplist
WHERE Left <= (SELECT Left

FROM skiplist
WHERE key = 9 AND level = 0)

AND Right >= (

SELECT Right
FROM skiplist
WHERE key = 9 AND level = 0);

The above query retrieves only the authentication root-path starting from 9.
To validate 9 we have to retrieve also all sibling nodes of the root-path. This is
possible by using two subqueries that retrieve all elements that are:

– in the fields nxtKey of the root-path;
– on the level below and with the same key of the root-path.

Using this method we built a quick algorithm to get the complete authenti-
cation path needed to validate a table interrogation, using only one query, that
is that all concurrency problems related to selection queries will be managed by
the DBMS. Also, it is possible to modify the query in order to retrieve all the
information needed to authenticate all the t-uples obtained by a Select with just
one query.

6 Experimental Evaluation

This section shows the experimental results obtained using a prototype imple-
mentation of the techniques presented in the previous sections. The Hardware
architecture where tests have been performed consists of quite common laptop
with following features:

– cpu intel c©centrinoTMduo T2300 (1.66 GHz, 667 FSB);
– RAM 1.5 Gb DDR2
– HDD 5,400 rpm Serial ATA

The Software architecture consists of following elements:

– Microsoft c©WindowsTMXP Tablet edition 2005;
– JavaTMversion 1.5
– MySql JDBC Connector Java-bean 5.03
– MySql DBMS version 4.1

The data sets for tests have been chosen with a scale from 10, 000 to 1, 000, 000
of elements. Such elements were sampled at random from a set 10 times larger.
All values presented in this section have been computed as average of the results
of 5 different tests. The elements in each test are a sample, randomly selected,
composed of 1

1000 of the entire set. All times are in milliseconds. All tests show
the clock-wall time.

The first test is about the authentication of a single value inside a relational
table. Table 4 shows the results of the authentication of a single element inside
different size authenticated tables, stressing the differences between coarse grain
and fine grain approaches. Tests are about the following measures:

– RAM: the time to validate a value in main memory;

– DB → RAM: the time to load in main memory from a secondary memory
storage system (e.g., a hard disk), the elements necessary to validation;

– NODES: the numbers of elements loaded from the database in main mem-
ory;

– STEPS: the numbers of elements actually used in the authentication pro-
cess, the difference between NODES value and this value shows the overhead
of the elements loaded in main memory.

10, 000 100, 000 1, 000, 000
CHECK Coarse Fine Coarse Fine Coarse Fine

RAM 0 0 0 0 0 0

DB → RAM 36 11 252 42 2680 377

NODES 35 27 44 31 57 43

STEPS 25 27 33 30 39 41

Table 4. Test results for validation of an element inside different size tables. All the
results are in ms. Times for fine- and coarse-grained approaches.

The results showed above are very similar to those obtained from the authen-
tication of an element not-present in the table. In fact it is sufficient to check
the previous and the next element of the value that is not present to proof the
element lack.

The second test is about the insertion of a single value inside an authenticated
relational table. The table 5 shows the results of the insertion of a single element
inside different size authenticated tables using only coarse grain approach. Tests
concern the following measures:

– RAM: the time to insert in main memory a value;
– DB → RAM: the time to load in main memory from a secondary memory

storage system (e.g., a hard disk), the elements necessary to insertion;
– RAM → DB: the time to store in secondary memory the elements updated

in main memory;

INSERT 10, 000 100, 000 1, 000, 000

RAM 0 0 0

DB → RAM 32 260 2605

RAM → DB 14 26 26

Tot. Time 46 286 2631

Table 5. Test results for insertion of an element inside a different size tables. Using
coarse grain approach. All results are in ms.

Methods that allow to delete and modify an element inside an authenticated
table are similar to times showed for insertion operation.

The obtained experimental results put in evidence the feasibility of the ap-
proach. In fact, the time for answering a query is comparable to the one obtained
in a non authenticated setting. The fine-grained approach, based on Celko tech-
niques, shows much better performance wrt the coarse-grained one.

7 Conclusions and Future Work

We have described methods that allow a user to verify the authenticity and
completeness of simple queries results, even if the database system is not trusted.
The overhead for the user is limited at storing only a single hash value. Our work
is the first to design and evaluate techniques for authenticated skip list that are
appropriate to a relational database, and the first to prove the feasibility of
authenticated skip list for integrity of databases.

The security of the presented method is based on the reliability of ADSes.
There are many works [3, 9, 12, 16] in the literature that demonstrate that the se-
curity of ADS is based on the difficulty to find useful collisions in a cryptographic
hash function. So all the security relies on the effectiveness of hash functions.
The prototype used for the experiments uses commutative hashing. In [9] it is
demonstrated that commutative hashing does not augment the possibility to
find a collision in the used hash function.

In the future we would like to investigate how to authenticate more complex
queries making use of a larger set of relational operations. Further, we would like
to study models to build integrity verification services in peer to peer systems.

References

1. Web based Database Software Solutions On-Demand. http://www.teamdesk.net.
2. A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management using

undeniable attestations. In ACM Conference on Computer and Communications
Security, pages 9–17, 2000.

3. A. Buldas, M. Roos, and J. Willemson. Undeniable replies for database queries. In
In Proceedings of the Fifth International Baltic Conference on DB and IS, volume
2, pages 215-226, 2002., 2002.

4. Barbara Carminati. Selective and authentic third-party distribution of xml docu-
ments. IEEE Transactions on Knowledge and Data Engineering, 16(10):1263–1278,
2004. Fellow-Elisa Bertino and Member-Elena Ferrari and Fellow-Bhavani Thu-
raisingham and Senior Member-Amar Gupta.

5. Joe Celko. Joe Celko’s Trees and hierarchiesin SQL for smarties. Morgan-
Kaufmann, 2004.

6. C.J. Date. Why is it so difficult to provide a relational interface to ims. In Relational
Database– Selected Writings, pages 241–257. Addison-Wesley, 1986.

7. P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine. Authentic third-
party data publication. In Proceedings of the IFIP TC11/ WG11.3 Fourteenth
Annual Working Conference on Database Security, pages 101–112, Deventer, The
Netherlands, 2001. Kluwer, B.V.

8. M. Goodrich, A. Schwerin, and R. Tamassia. An efficient dynamic and distributed
cryptographic accumulator. Technical report, Johns Hopkins Information, 2000.

9. M. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip lists
and commutative hashing. Technical report, Johns Hopkins Information, 2000.

10. M. T. Goodrich, M. Shin, R. Tamassia, and W. H. Winsborough. Authenticated
dictionaries for fresh attribute credentials. iTrust 2003, 2003.

11. Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in
Java. John Wiley & Sons, Inc., New York, NY, USA, 2000.

12. Paul C. Kocher. On certificate revocation and validation. In FC ’98: Proceedings
of the Second International Conference on Financial Cryptography, pages 172–177,
London, UK, 1998. Springer-Verlag.

13. F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index
structures for outsourced databases. In SIGMOD ’06: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages 121–132, New
York, NY, USA, 2006. ACM Press.

14. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A
general model for authenticated data structures. Algorithmica, 39(1):21–41, 2004.

15. A. Meier, R. Dippold, J. Mercerat, A. Muriset, J. Untersinger, R. Eckerlin, and
F. Ferrara. Hierarchical to relational database migration. IEEE Softw., 11(3):21–
27, 1994.

16. R. C. Merkle. A certified digital signature. Advances in Cryptology-Crypto’89,
435:218–238, 1989.

17. Gerome Miklau and Dan Suciu. Implementing a tamper-evident database system.
In ASIAN: 10th Asian Computing Science Conference, pages 28–48, 2005.

18. J. Ian Munro, T. Papadakis, and R. Sedgewick. Deterministic skip lists. In SODA
’92: Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
pages 367–375, Philadelphia, PA, USA, 1992.

19. Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and in-
tegrity in outsourced databases. Trans. Storage, 2(2):107–138, 2006.

20. Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. In
Proceedings 7th USENIX Security Symposium, Jan 1998.

21. G. Nuckolls, C. Martel, and S. Stubblebine. Certifying data from multiple sources.
In EC ’03: Proceedings of the 4th ACM conference on Electronic commerce, pages
210–211, New York, NY, USA, 2003. ACM Press.

22. Caspio Bridge online database. http://www.caspio.com.
23. H. Pang, A. Jain, K. Ramamritham, and K. Tan. Verifying completeness of rela-

tional query results in data publishing. In SIGMOD Conference, pages 407–418,
2005.

24. H. Pang and K. Tan. Authenticating query results in edge computing. In ICDE
’04: Proceedings of the 20th International Conference on Data Engineering, page
560, Washington, DC, USA, 2004. IEEE Computer Society.

25. Livebase project Blog on Web-based db. http://livebase.blog.com/1142527/.
26. William Pugh. Skip lists: A probabilistic alternative to balanced trees. In Workshop

on Algorithms and Data Structures, pages 437–449, 1989.
27. R. Sion. Query execution assurance for outsourced databases. In VLDB ’05, pages

601–612. VLDB Endowment, 2005.
28. R. Tamassia and N. Triandopoulos. On the cost of authenticated data structures.

Technical report, Brown University, 2003.
29. Roberto Tamassia. Authenticated data structures. In ESA 2003, LNCS, Sep 2003.
30. online database Zoho Creator. http://creator.zoho.com.

