Provably-Secure Schemes for Basic Query
Support in Outsourced Databases

Georgios Amanatidis Alexandra Boldyreva Adam O’Neill
Georgia Institute of Technology, USA
amana@math.gatech.edu, {aboldyre,amoneil}@cc.gatech.edu

Abstract. In this paper, we take a closer look at the security of out-
sourced databases (aka Database-as-the-Service or DAS), a topic of
emerging importance. DAS allows users to store sensitive data on a re-
mote, untrusted server and retrieve desired parts of it on request. At
first we focus on basic, exact-match query functionality, and then extend
our treatment to prefix-matching and, to a more limited extent, range
queries as well. We propose several searchable encryption schemes that
are not only practical enough for use in DAS in terms of query-processing
efficiency but also provably-provide privacy and authenticity of data un-
der new definitions of security that we introduce. The schemes are easy
to implement and are based on standard cryptographic primitives such
as block ciphers, symmetric encryption schemes, and message authenti-
cation codes. As we are some of the first to apply the provable-security
framework of modern cryptography to this context, we believe our work
will help to properly analyze future schemes and facilitate further re-
search on the subject in general.

1 Introduction

MOTIVATION. Outsourcing data to off-site database service providers is becom-
ing an attractive, cost-effective option for many organizations [40]. In this setting
(also known as Database-as-a-Service or DAS), a client stores data on a remote
untrusted database server and queries the server in order to receive required
portions of the data. Usually this data is stored in the form of a relational
database, each divided into records (or tuples) with attributes (or fields). The
basic system requirements are (1) query support, (2) computation and commu-
nication efficiency for both client and server, and (3) data security. Note that
the latter requirement is particularly important in DAS, as data often contains
sensitive financial, medical, or intellectual information and the server cannot be
trusted. Indeed, ensuring security in DAS is an important research topic that
has been receiving increasing attention [25, 37,27, 26, 20, 21, 37, 3,28, 2,29, 31, 9],
and security may even be required by law (cf. HIPAA rules [1]).

The problem is that these requirements are in conflict with each other. For ex-
ample, consider encrypting the data with a secure encryption scheme that hides

all information and is always randomized (i.e. same messages yields completely
different ciphertexts). This does not allow the user to even form a query about
any set of records smaller than the the whole database. Indeed, it turns out that
even addressing just the basic exact-match (point) queries is a non-trivial task
if one wants to treat security in a systematic, not ad-hoc, way.

PRrREVIOUS WORK. Searching on encrypted data has been a topic of multiple rele-
vant works in the cryptographic community, which focus mainly on exact-match
queries but in an unsatisfactory way for our context. In particular, the schemes of
[41,22,24,15,18,19] provide strong security guarantees (typically revealing only
the user access pattern) while allowing a server to answer exact-match queries,
but doing so requires the server to scan the whole database for each query, yield-
ing unacceptably-slow performance for medium-size to very large databases. The
schemes of [19] get around this problem by requiring the (paying) client to know
all keywords and all data beforehand and pre-computing a static index for the
server that does not allow to treat relational databases. A fundamental question
thus becomes what is the best guaranteed security that can be achieved with-
out compromising general efficiency and functionality. The work of [9] recently
raised this problem in the asymmetric (public-key) setting, where users explic-
itly consist of “senders” and “receivers,” and provided new security definitions
and provably-secure solutions for exact-match queries. We consider this problem
entirely in the more-common symmetric-key setting where a client (which may
be a large group of users, e.g. in a business) both stores and queries its own data
on an untrusted server.

Research on this subject done in the database community focuses on the first
two requirements and provides encryption schemes with attractive functional-
ity, namely efficient and optimized indexing and flexible query support e.g. for
numerical range, comparison, or aggregation queries [37, 3,25, 21,27, 28, 26, 31].
In contrast, the security of these schemes is far less clear. Many utilize cryp-
tographic primitives, such as order-preserving hash functions and encryption
schemes, which have not been studied by cryptographers, and without scruti-
nizing their security. For example, using a deterministic encryption scheme for
point queries sounds like a reasonable idea, because then forming a point query
is feasible and the server can efficiently index and locate the ciphertexts. But
what scheme should be used? One common suggestion (see e.g. [28,2]) is to use
DES or AES. But these are block ciphers for short plaintexts of at most 128
bits. If a database field holds larger data, say barcode information, then it is not
clear how to encrypt longer ones. It would be natural to apply the block cipher
block-by-block, but then the adversary will see when the underlying plaintexts
have common blocks, which is an unnecessary leak of information. Similarly, fix-
ing the randomness in an arbitrary encryption mode (e.g. CBC) will leak more
information than needed.

A noteworthy exception in this body of work is a recent paper by M. Kantar-
cioglu and C. Clifton [29], which calls for a new direction of research that aims for
“efficient encrypted database and query processing with provable security prop-
erties.” Their work provides a first step in this direction. As they observe, unless

one lowers the security bar from the previous cryptographic solutions a linear
scan of the database on each query is fundamentally necessary. But the above
discussion suggests we must be careful to not go too far. On the other hand,
the security definition proposed in [29] requires the use of server-side trusted,
tamper-resistant hardware to achieve.

OVERVIEW OF CONTRIBUTIONS. In a broad sense, our goal is to narrow the gap
between query-processing-efficient but ad-hoc schemes with unclear security and
schemes with strong security guarantees but with unsuitable functionality. We
review the provable-security methodology in Section 2. Then to start with, we
consider exact-match queries (i.e. with boolean conditions involving only equal-
ities). In Section 4, we formulate what algorithms and properties constitute an
efficiently-searchable authenticated encryption or ESAE scheme that will allow
a server to process such queries, when used to separately encrypt each search-
able field, with, unlike for previous cryptographic-community schemes, query-
processing efficiency comparable to that for unencrypted databases.

As opposed to previous works in the database community, we go significantly
beyond explaining why some attacks do or do not work in order to develop a
foundation for our understanding of security. Observe that while typically en-
cryption hides all partial information about the data (which is still true for
previous searchable schemes in the cryptographic community, and homomorphic
encryption schemes in a basic model of security), ESAE cannot because some
information needs to be leaked to allow efficient query processing. Hence we
formulate a new definition of security that captures the intuition that no ad-
versary should be able to learn any useful information about the data within
reasonable time, beyond what is unavoidable for the given functionality, namely
when two ciphertexts correpond to equal plaintexts; we argue that permitting
false-positive results cannot help to hide this correlation in practice. Our defi-
nition moreover captures a notion of authenticity that ensures attributes values
are not modified or added over the network or at the server side without the
user noticing.! Thus in a sense we provide the strongest possible notion of secu-
rity one can reasonably ask for without relying on trusted hardware as in [29)].
Note that we do not explicitly model security in the terms of a client-database
interaction but always instead simply derive security in this context from that
of the “ideal” cryptographic object in question. (This step is crucially absent in
[31].) In Section 5 we propose and analyze two exact-match ESAE constructions
meeting our definition.

Then in Section 6 we extend our framework to treat prefix-matching queries
as well and refer to [4], where we investigate a recent approach [31] to handling
range queries and point out some difficulties in achieving a reasonable level of
security with it.

! The issues of authenticity for the database and the records as a whole, and ensuring
that the server returns all the current, requested data, are outside our scope and can
be dealt with the methods of [32, 35, 36, 30].

2 The Provable-Security Methodology

Cryptographic protocols were often designed by trial-and-error, where a scheme
is implemented and used until some flaws are found and fixed, if possible, and
the revised scheme is used until new flaws are found, and so forth. A revolu-
tionary and superior “provable-security” approach was originally proposed by
Goldwasser and Micali [23]. The approach requires a formal definition of a secu-
rity goal (e.g., data privacy) for a given cryptographic object (e.g., an encryption
scheme). A security definition comprises a formal description of adversarial ca-
pabilities (what an adversary knows and can do) and of what an adversary must
do to break the scheme. A proof of security then shows by reduction that a given
scheme satisfies the definition under widely accepted assumptions (e.g., that fac-
toring big composite numbers or distinguishing outputs of a block cipher from
random strings is hard). The proof thus shows that the only way to break the
scheme in reasonable time is by breaking the underlying assumption about the
hard problem. See [6] for a detailed overview of the provable-security framework.

3 Preliminaries

NOTATION. We refer to members of {0,1}* as strings. If X is a string then
|X| denotes its length in bits and if X,Y are strings then X||Y denotes the
concatenation of X and Y. If S is a set then X < S denotes that X is selected
uniformly at random from S. If A is a randomized algorithm then A(z,y,...; R),
or A(z,y,...) for short, denotes the result of running A on inputs z,y, ... and
with coins R, and a & A(z,y,...) means that we choose R at random and
let a = A(z,y,...; R). Oracle access, when given to algorithms (and denoted
by superscript), is done as a “black-box,” meaning the algorithms see only the
input slots provided to them.

SYMMETRIC ENCRYPTION AND MESSAGE AUTHENTICATION. We recall the basics
concerning symmetric encryption and, following this, message authentication.

Definition 1. [Symmetric encryption] A symmetric encryption scheme SE
= (K,&, D) with associated message space MsgSp(SE) consists of three algo-
rithms. (1) The randomized key generation algorithm K returns a secret key
sk; we write sk <& K. (2) The (possibly randomized) encryption algorithm &
takes input the secret key sk and a plaintext m to return a ciphertext; we write
C & E(sk,m) or C — E(sk,m;R). If C = E(sk,m, R) for some coins R then
we say C is a valid ciphertext for m under sk. (3) The deterministic decryption
algorithm D takes the secret key sk and a ciphertext C' to return the correspond-
ing plaintext or a special symbol L indicating that the ciphertext was invalid; we
write m «— D(sk,C) (or L «— D(sk,C).)
Consistency: we require that D(sk, (E(sk,m)) = m for all m € MsgSp(SE).

The idea behind security of encryption is that an adversary against a scheme
should not be able to deduce anything about the underlying message (except

its length, which encryption cannot hide), upon seeing the ciphertext, even if it
has some a priori information of its choice about the message. This intuition is
captured via a notion of “indistinguishability” of encryptions [11], which requires
that no efficient adversary should be able to distinguish between encryptions of
two messages, even if the adversary can choose these two messages and request
to see ciphertexts of other different messages of its choice.

Definition 2. [Security of encryption] Let S€ = (K,&,D) be a symmetric
encryption scheme with MsgSp(SE). Let LR (left-or-right) be the “selector” that
on input mg, my,b returns my. The scheme SE is said to be secure against
chosen-plaintext attack or ind-cpa if for every efficient adversary B the value
called the advantage of B Advglg’}gpa is sufficiently small, where

AdviE TP = Pr[Exple 7 = 0] — Pr[Expie 577 = 0]

and the experiments above are defined for b € {0,1} and an ind-cpa adversary
B who is required to query messages of equal length and in MsgSp(SE), as:

Experiment Expg];:i _gpa_b

sk & K i d & BEGKLR(:-b)) . Returnd |

We purposely do not mathematically define an “efficient” adversary and how
“small” the advantage should be. This will vary according to the particular
appliation. For example, guaranteeing that all adversaries whose running time is
up to 2% in some fixed RAM model of computation have maximum advantage
2720 would usually be considered sufficient.

Definition 3. [MAC]| A deterministic message authentication code or MAC
scheme MAC = (K, M, V) with associated message space MsgSp(M.AC) consists
of three algorithms. (1) The randomized key generation algorithm K returns a
a secret key sk; we write sk & K. (2) The deterministic mac algorithm M
takes input the secret key sk and a plaintext m to return a “mac” for m; we
write o «— M(sk,m).(3) The deterministic verification algorithm V takes the
secret key sk, a message m, and a mac o to return a bit b € {0,1}; we write
b« V(sk,m,o). If b is 1 we say that o is a valid mac for m under sk.

Consistency: we require that V(sk,m,(M(sk,m)) = 1 for all m € MsgSp
(MAC).

More generally, one can permit M to flip coins as well, but most practical MACs
(e.g., CMAC or HMAC) are deterministic, which is important in our context.
Thus in this paper “MAC” means “deterministic MAC.”

The standard definition of security of MACs, unforgeability under chosen-
message attacks (or uf-cma) requires that no efficient adversary that sees macs
of the messages of its choice can produce a valid mac for a new message.

Definition 4. [Security of MACs] A MAC scheme MAC = (K, M, V) is said

to be unforgeable against chosen-message attack or uf-cma if for every efficient

uf-cma

adversary B the value Advy, 4c'p called advantage of B is sufficiently small,
where

Advﬂj‘?f‘B = Pr[Expj;jrg?B =1] and the experiment is defined as

uf-cma

Ezperiment EXpy ac s
sk &K (m, o) & pM(sk)V(sker) o Return V(sk, m,0)

and B is not allowed to query m to its mac oracle. |

We will also use an additional property of MACs, namely privacy preservation,
originating recently in [12], which requires the outputs of the MAC to hide
information about the messages similarly to encryption.

Definition 5. [Privacy-preserving MACs] [7, 12] A MAC scheme MAC =

(K, M, V) is said to be privacy-preserving if for every efficient adversary B the

value called the advantage of B Advﬁ/p[:ﬁ%CB is sufficiently small, where
Advf\f’t:ﬂfCB = Pr[ExpE’\f’tﬂigo =0] - Pr[Exp%’tﬂigl =0]

and the experiments above are defined for the adversary B and ;b € {0,1} as

Experiment Exphl i’

sk & K i d & BMkLR(:.0)) ; Return d

Above LR is the oracle that on input mg, mq,b returns my; and we require that
for any sequence of oracle queries (m1,1,M1.2),...,(Mg1,Mg,2) that B can make
to its oracle, there does not exist any m;1 = mj1 or my2 = mjo fori# j and
moreover |m; 1| = |m; 2| for alli. |

4 Efficiently-Searchable Authenticated Encryption

WHAT 1s ESAE. We now define the syntax of an ESAE (Efficiently-Searchable
Authenticated Encryption) scheme.

Definition 6. [ESAE] Let S€ = (K, &, D) be a symmetric encryption scheme.
We say that ESAE = (K,E,D,F,G) an efficiently-searchable authenticated en-
cryption (ESAE) scheme if K,E,D are the algorithms of a regular encryption
scheme and F,G, are deterministic efficient algorithms where the former takes
a secret key and message as input and the latter takes a ciphertext and:

(1) Completeness:

Pr {sk E K f1— Flsk,my); g1 — G(E(sk,my)) : f1= gl] =1 and
(2) Soundness:
Pr [sk E K5 (mo,my) & Mgse : Flsk,mo) = Q(E(Sk,ml))] is sufficiently

small

for every message my € MsgSp(SE) and every efficient randomized algorithm
Mg that outputs distinct messages mg, my € MsgSp(SE). We refer to the out-
put of F,G as the tag of a message m or a corresponding ciphertext C'.

The algorithm F is used by the user to form queries, and G is needed by the
server to be able to index the encrypted data a priori, using the standard data
structures (e.g. B-tress), and locate records on request (see below), for which
it is crucial that F,G are not randomized. Thus the completeness property en-
sures that encrypted data can be efficiently searched, in logarithmic-time in the
database size, meaning this time has not gone up over unencrypted data. The
soundness property ensures that false positives do not occur too often so that
post-processing is efficient. We first focus on the case that the soundness proba-
bility in the definition so small that each ciphertext essentially has a unique tag;
we will address increasing the number false-positive results later.

Note that exact-match functionality can also be used to build various other
useful more-complicated query types. These include equijoin and group-by, the
latter of which is especially useful for example in supporting multi-faceted search
that projects among various dimensions (e.g. features/types of products). More-
over, the server can ipso facto compute counts over the data, which would also
be useful in this context for example to support a product search interface that
shows there are, say, 100 CRT and 200 LCD monitors in the database, and 100
157,100 17”7, and 100 20” monitors. You click on LCD monitors link and it now
shows 50 15”7, 75 17”7, and 75 20” such monitors.

SECURITY OF ESAE. Efficient “searchability” (ensured by the completeness
property) necessarily violates the standard ind-cpa security for encryption. Thus
we provide a relaxed definition suitable for given functionality. Completeness im-
plies that the server (and the adversary) will always be able to see what cipher-
texts correspond to equal plaintexts, and a security definition should ensure that
this is all the adversary can learn. To this end we design an indistinguishability
experiment (cf. Definition 2) where we disallow the adversary from seeing ci-
phertexts of equal messages such that it can trivially succeed. The adversary can
also mount chosen-ciphertext attacks according to a relaxed chosen-ciphertext-
security definition [5,16] that is suitable for our application. For integrity of the
data, we also want to require that it is hard produce a new ciphertext or change
the existing one without the user noticing, which corresponds to a notion of
ciphertext-integrity for authenticated encryption [13].

Definition 7. [Security of ESAE] Let S€ = (K,€,D,F,G) be an ESAE
scheme. Let LR (left-or-right) be the selector that on input mg, my,b returns my.
Let B be an adversary who is given access to two oracles (called lr-encryption
and the decryption oracles). For b € {0,1} define the experiment:
Experiment Expg‘g’_g,sae_b

sk S K;d & BEGKLR(-,,b)),D(sk,")

If m # 1 was returned from D(sk,-) at any point then d — b

Return d

We call B an esae adversary if for any sequence of queries (mi1,mi12),...,
(mg,1,mq2) that B can make to its Ir-encryption oracle, there does not exist any
M1 = Mj1 0T M2 = My fori # j,k # 1 such that m; 2 # mj2 or my1 # My,
in addition to the usual requirements that |m; 1| = |m; 2| for all i and if B does

not query the decryption oracle on a ciphertext that has the same tag as any
ciphertext that has been returned by the Ir-encryption oracle. The advantage of
an esae adversary B is defined as follows:

AdVELF™ = Pr Explgd 5 = 0] — Pr{ Explid 5 = 0],

The ESAE scheme S€ is said to be esae-secure if for every efficient esae adver-
sary B the function Advglg:;sae is sufficiently small. |

We note the similarity of ESAE to deterministic authenticated encryption
(DAE), studied in [39] in the context of transporting (encrypted) symmetric keys.
However, the definition of security for DAE in [39] is shown there be equivalent
to that for “pseudorandom injections,” and we will see that an ESAE scheme
need not be pseudorandom nor deterministic.

DiscussioNn. In the context of DAS, the server receives queries with tags for the
data, the former of which it would have computed itself, thus the definition of
security we provide essentially guarantees that the server cannot learn anything
about the data of the user beyond its occurrence profile (or distribution), i.e. how
many times a given attribute value (without knowing anything else about it)
occurs in the database and in which records, even if it is one of only two possible
such values that it can pick itself, and analogously the user access pattern.

As for authenticity (aka. integrity) of ciphertexts, our definition guarantees
integrity in that any modification or substitution (malicious or not) to the en-
crypted data is detected by the user. We note that authenticity is ensured at
the field level, and not on the record level or for the entire database; an adver-
sary can still, for example, switch (encrypted) attribute values stored in different
records. If the data is updated and returned as whole records, then one can sim-
ply authenticate at the record level instead. In many applications, the server can
be trusted to return the correct ciphertexts to its paying customers (even when
it may try to learn and sell their data). Thus one should mainly protect against
non-adversarial transmission or storage errors, and our definition does it.

INCREASED FALSE-POSITIVES. It seems intuitive that permitting false positive
results (i.e. relaxing the soundness condition in Definition 6) via a “bucketiza-
tion” technique where a fixed number of randomly-chosen plaintexts correspond
to each tag, [34,33,17], though requiring the client to do more work to filter
out these false-positives, would allow a proportional increase in security by pre-
venting the adversary from correlating equal plaintexts. But we claim that this
intuition is not always correct; in practice such information may still be leaked.
To see this, consider the a posteriori probability of a plaintext occurring a certain
number of times given an occurrence distribution on the buckets; the “farther”
the latter is from the uniform distribution means a better estimate on the plain-
text occurrence profile, and one cannot expect anything close to the uniform
distribution in practice. One solution would be make the bucket distribution
instead depend on that of the input, but in particular as noted in [34] this would
require impractical communication cost between client and server as this distr-

bution changes over time, and it is noted in [31] that such mappings are typically
not efficiently computable, making storing and managing them impractical.

COMPARISON TO THE MODEL FROM [29] . The security definition of [29] guaran-
tees that an adversary (e.g. the server) cannot distinguish between two queries
whose results sets have the same size, whereas ours reveals which records are
accessed by such queries. This hold even with respect to extremely powerful
adversaries who can mount chosen-ciphertext attacks, whereas our definition
applies to somewhat more passive adversaries, which we nevertheless believe is
reasonable for the given application. On the other hand, the definition of [29]
requires server-side trusted hardware to achieve.

5 Proposed Constructions and Their Security Analyses

MAC-AND-ENCRYPT. We first present an easy-to-implement, “off the shelf” way
to construct an ESAE scheme from any encryption and MAC schemes and then
analyze its security and comment on implementation.

Definition 8. [Mac-and-encrypt construction] Let S€ = (Kg,E,D) be a
symmetric encryption scheme and MAC = (Kyr, M, V) be a message authenti-
cation code. Then we define a new symmetric encryption scheme SE* = (K*, £*,
D*,F,G), whose constituent algorithms work as follows:
— K* sets sky < Ky and sk < Kg, then outputs skar||skg.
— &* on input skyr||skg,m, sets o — M(skyr,m) and C & E(skg,m), then
outputs ol|C.
— D* on input sky||skg, o||C, first sets m « D(skg,C) and then b «— V(skyy,
m, o). It outputs m if b=1 and L otherwise.
— F and G on inputs skys||skg, m and o||C, respectively, return M(skpr, m)
and o.

We first argue that SE* is an ESAE scheme if MAC is uf-cma. Clearly com-
pleteness is satisfied. The soundness condition relies on the uf-cma security of
MAC. Namely, suppose MAC is uf-cma but there is an algorithm Mgg that
outputs mg,my such that M(skps,mg) = M(skpr, mq) with high probability.
This violates uf-cma security as follows. We construct a uf-cma adversary B as
per Definition 4 that first runs Mgsg to receive its output (mg,m;) then queries
its signing oracle for M(sk, mg) to get back o, and finally itself returns (mq, o).
By the forgoing assumption on Mgsg this adversary has high uf-cma advantage,
a contradiction.

Theorem 1. Let S€ = (Kg, &, D) be a symmetric encryption scheme and MAC
= (K, M, V) be a deterministic MAC. Then let SE* = (K*,E*,D*, F,G) be the
mac-and-encrypt ESAE scheme defined according to Definition 8. We have that
SE* is esae-secure if SE is ind-cpa and MAC is uf-cma and privacy-preserving.

Due to lack of space the concrete security statement that shows explicit relations
between the advantages of the adversaries and the proof are given in [4].

There are many efficient and standardized provably-secure symmetric en-
cryption and MAC schemes that can be used to build an ESAE scheme accord-
ing to Definition 8. Our recommendations for encryption schemes include CBC
and CTR (aka the counter or XOR) encryption modes based on the AES block
cipher, which are proven to be ind-cpa under the assumption that AES is a
pseudorandom function (PRF) [11]. For MACs, one can use SHA-1 or SHA-256
and AES-based HMAC or CMAC (a variation of CBC-MAC), proven uf-cma as-
suming the underlying hash function is collision-resistant or PRF and the block
cipher is PRF [10, 7, 14]. Theorem 1 implies that the resulting mac-and-encrypt
ESAE is secure under the respective assumptions.

We remark that in database literature (e.g. [25]), some proposed solutions
for this problem suggest to use a “random one-to-one mapping” whose output
is included with a ciphertext, in order to facilitate “searchability.” Thus one
interesting implication of the above result is that such a map need not be random,
or even pseudorandom, in order to achieve the best-possible notion of security.

ENCRYPT-WITH-MAC. We now present a construction that is more computation-
efficient on the client side and more communication-efficient over the network.
This can be crucial, for example, when users have a low-bandwidth connection
to the database or are connecting via a battery-constrained device [35]. The
idea is to use the mac of the plaintext “inside” the encryption, namely as the
randomness used in the encryption algorithm of a standard encryption scheme.

Definition 9. [Encrypt-with-mac construction] Let S€ = (Kg,E,D) be a
symmetric encryption scheme and MAC = (Kyr, M, V) be a deterministic MAC.
Then we define a new symmetric encryption scheme SE* = (K*,&*, D*, F,G),
whose constituent algorithms work as follows:

— K* sets sky < Kay and sk < Kg, then outputs skys||skg.

— &* on input skpr||skg, m, sets o — M(sky,m) and C «— E(skg, m; o), then
outputs C'.

— D* on input skyl||skg,C, first sets m «— D(skg,C). It outputs m if C =
E(skg, m; M(skar, m)) and L otherwise.

— F is same as £*. G on input C returns C.

To see that SE* is an ESAE scheme, we note that the completeness requirement
is clearly satisfied and the probability in the soundness requirement is zero here
due to the consistency requirement in Definition 1.

Ideally, we would like to prove that the above construction is ease-secure
assuming that MAC is a uf-cma and SE* is ind-cpa secure. However, slightly
stronger assumptions turns out to be needed, but they are met by practical
schemes anyway. First, we will need the mac algorithm of M.AC to be a pseu-
dorandom function (PRF). Naturally, this requires a mac to “look like random
bits” without the secret key, a well-studied notion formalized as follows.

Definition 10. A family of functions is a map F: {0,1}* x {0,1}¢ — {0,1}¢,
where we regard {0,1}° as the keyspace for the function family in that a key

k € {0,1}* induces a particular function from this family, which we denote by
F(k,-). The family F is said to be pseudorandom (or a PRF) if for every efficient
adversary B given oracle access to a function, its prf-advantage

Adv%rj3 = Pr [BF(’“") = O} —Pr [BQ(') = O]

is sufficiently small, where F(k,-) is the oracle for a random instance of F
(specified by a randomly chosen key k) and Q(-) is the oracle for a truly ran-
dom function with the domain and range of F'(k,-). Pseudorandom permutations
(PRPs) are defined analogously, and in this case the adversary B above is also
given an tnversion oracle.

To define the assumption needed for encryption, let us say that an encryption
scheme S€ = (K, &, D) has a maz-collision probability [9] mese if we have that:

Pr[E(sk,m, Ry) = E(sk,m, Ry)] < mcse ,

for every m € MsgSp(SE), where the probability is taken over the random
choices of the key sk and coins Ry, Ro (chosen independently).
All practical encryption schemes satisfy the above property. The proof of the
following is in [4]. It also contains the concrete security statement. .

Theorem 2. Let S€ = (Kg, £, D) be a symmetric encryption scheme and MAC
= (K, M, V) be a deterministic MAC. Let SE* = (K*,E*,D*) be the encrypt-
with-mac ESAFE scheme defined via Definition 9. Then SE is esae-secure if
MAC is a PRF and S& is ind-cpa and has sufficiently small maz-collision prob-
ability.

The same recommendations for the underlying schemes (CBC, CTR modes, and
HMAC and CMAC) we gave for the mac-and-encrypt construct apply here.
As we mentioned, CBC and CTR are proven to be ind-cpa assuming the base
block cipher is PRF. Randomized CBC and CTR have max-collision probability
27128 when used with AES and the counter-based CTR has zero max-collision
probability. HMAC was recently proved to be a PRF assuming the underlying
hash function is PRF [7], and CMAC is known to be PRF assuming the base
block cipher is PRF; Theorem 2 implies that the resulting encrypt-with-mac
ESAE scheme is secure under these respective assumptions.

We remark that our construction is similar to the SIV (“synthetic initializa-
tion vector”) construction for deterministic authenticated encryption (DAE) in
[39]. Indeed, it is straightforward to check that a secure DAE scheme as defined
in [39] is also secure as an ESAE scheme. However, our construction and analysis
is in fact somewhat more general than the SIV construction, which pertains only
to some “initialization-vector-based” symmetric encryption schemes (including
CBC and CTR) that implicitly guarantee to meet the max-collision requirement
we pinpoint for security.

6 Prefix-Preserving ESAE

PREFIX-MATCHING QUERIES. We extend our ESAE framework to encryption
that allows to efficiently process prefix-matching queries, i.e. locating records

whose attribute value starts with a given prefix, for example all phone numbers
starting with area-code 310.

Our treatment builds on the study of “online ciphers” (so-called because they
can be used on streaming data without buffering) in [8], which we view here as
deterministic length-preserving encryption schemes whose input is composed of
fixed-length blocks (which we call “characters” of the prefixes), where the ith
block of the output depends only on the first ¢ blocks of the input. Thus if two
plaintexts agree on their first k characters then so do their ciphertexts. Following
Definition 4, to show this implies efficient prefix-searchability (via appropriate
server-side index structures for the tuples) we make functions F,G return the
encryption of an [-character prefix and the first [characters of a ciphertext; the
fact that completeness is one and soundness is zero follows from the fact that
the encryption is deterministic.

In our construction, the characters of a prefix will be of the input-length
for an underlying block cipher (e.g. 64 bits or 4 UTF-16 characters using DES-
variants). At the cost of revealing more information to the server for a more
flexible granularity of prefixes in the queries ,a bitwise prefix-preserving scheme
of Xu et al. [42] can similarly be used here (an issue we will return to later),
which makes one block cipher computation per bit of the input. However, that
this may be too inefficient for, say, text files as input. Moreover, as for our
previous schemes our construction also achieves ciphertext-integrity, whereas it
seems hard to somehow modify the former to achieve such a notion.?

SECURITY. The stronger security definition for an online cipher in [8] requires it
to be indistinguishable from an “ideal” object that is a function drawn at random
from a family of all possible such “online” permutations with the correspond-
ing domain, even when given access to the corresponding “inverter” decryption
oracle. Note that for example applying encryption character-by-character is com-
pletely insecure: encryptions of “HAT” and “BAT” should look totally unrelated
in this setting despite sharing a suffix. We also formulate an additional property
of ciphertext-integrity, and thus the encryption algorithm should contain some
redundancy at the end so the ciphertext is verifiable. For our definition, we use
an ideal object that encrypts a message with a random block appended, and
the decryption oracle in the ideal experiment always returns L to capture the
intuition that the adversary should not be able to create a new valid ciphertext.
The novelty of our definition is its generality: it uses only the ideal object in
question and without any specific redundancy.

Definition 11. [Security of prefix-preserving ESAE] Let S€ = (K,€&,D)
be a length- and prefix-preserving symmetric encryption scheme whose message
space MsgSp(SE) contains messages of multiple of block-length n and let d be the
mazximum possible number of blocks (hereafter we denote the set of such strings
by Dg). Let OPermgy,, denote the family of all length- and prefiz-preserving
permutations on Dy .. Let L(-) denote the oracle that always returns L and r

2 Of course, one can always achieve authenticity using a MAC on top of the encryption
scheme, but the point is that this would be excessive in some applications.

denote a random n-bit block (picked fresh each time it is encountered). For an
adversary A with access to two oracles define the experiments:

Experiment Expg%:gl Experiment Expf;pgle
sk & Ky d & AEGk),D(sk,) g < OPermyyq,, ; d & A9CIN.L0)
Return d Return d

We call A a pp-adversary if it never repeats queries, never queries a response
from its first oracle to its second, and all queries to its first oracle belong to Dg
and queries to its second belong to Dyyq n. The advantage of a A is defined as

Advg%A = Pr[Expg%_’?4 =0] - Pr[Epo‘E}4 =0].

The scheme SE is said to be pp-secure if for every efficient pp-adversary A the
probability Advgy 5 is sufficiently small. 1

DiscussION. Analogous to the case of exact-match queries, our security defini-
tion here ensures that the server cannot learn anything about the data except
which attribute values share a same prefix, which is obviously unavoidable in this
context, where the granularity of such prefix-correlation is given by the length
of the block cipher used in our construction below (and on the other hand it
is bit-wise for the less-efficient, no-authenticity scheme of [42]). Here one has to
be wary of frequency-based (in terms how many distinct plaintexts with a given
prefix occur in the database) deduction of some prefixes when using text data,
which may require adding bogus data to balance these frequencies. We stress
that this analysis holds only in the presence of prefix-matching (or exact-match)
queries. In a generalization and refinement of the approach of [31] that we present
in [4], we show that our scheme can in some sense be used to efficiently support
range-queries as well, but the security analysis is more delicate.

OUR CONSTRUCTION AND ANALYSIS. As in [8], appealing constructions such
as the authenticated encryption scheme OCB [38] with fixed IV can be shown
insecure under Definition 11. We design a prefix-preserving ESAE scheme based
on an interesting modification of the HPCBC cipher [8, Construction 8.1] that
appends an all-zero block to a message to encrypt and uses a different block
cipher on this last block to also achieve ciphertext-integrity, which may also be
of independent interest.? It is efficient and uses one block cipher and one hash
function operation per block of input.

Definition 12. [HCBC+] Let E: {0,1}¢* x {0,1}* — {0,1}" be a block ci-
pher. Let H: {0,1}" x{0,1}2" — {0,1}" be a family of functions. We associate
to them a prefiz-preserving ESAE scheme HPCBCT = (K, &, D) defined as fol-
lows. The key generation algorithm chooses randomly a key eK||eK'|hK where
eK,eK' are (independent) keys for E and hK is a key for H. The encryption
and decryption algorithms are defined as follows:

3 In fact our construction treats HPCPC as a black-box so any on-line cipher that
is OPRP-CCA (see [8] for the definition) can be used, but we suggest HPCBC for
concreteness.

Algorithm E(eK||eK'|hK,m) Algorithm D(eK || eK'||hK,C)
{ Parse m as m[1]...m][l] {Parse C as C[1]...Cll + 1] withl > 1
C[0] < 0™ ; m][0] « O™ C[0] < 0™ ; m[0] < O™
Fori=1,...,1 do Fori=1,...,1 do
R — m[i —1]||C[i — 1] R — mli—1]||C[i — 1]
P[i] — H(hK, R) ® ml[i] P[i] «— E~(eK,C[i|® H(hK, R))
C[i] < E(eK, P[i]) ® H(hK,R)} m[i] — H(hK, R) ® P[i]}
R — mll|Cl] R —mllCl]
P[l41] « H(hK,R) ® 0" Pll+1] « E™*(eK',C[l +1] @ H(hK, R))
Cll+1] — E(eK',P[l+1]) ® H(hK,R)|m[l + 1] «— H(hK,R) ® P[l + 1]
Return C[1]...C[l + 1] If m[l 4 1] = 0™ then return m[1]...m[l + 1]
Else return L

We note that the 6 first lines of the algorithms (i.e. the part between braces)
could be expressed more compactly as C[1]...C[l] <« HPCBC(eK ||hK,m) and
m[1]...m[l] «— HPCBC '(eK||hK,C). This explicit description of HPCBC is
given here for completeness. To see the benefit of using our construction over
plain HPCBC note that encryption along with a separate MAC (e.g. CMAC)
to additionally achieve integrity would roughly double the computation time,
making two passes over the input, as compared to our construction.

Security of the scheme is based on the security of the underlying block cipher
and the hash function. The corresponding definitions of PRP-CCA security of
a block cipher and of almost-xor-universal hash functions is recalled in [8]. AES
is believed to be PRP-CCA, and [8] provide references for secure hash function
constructions. The proof of the following theorem is in [4]. It also contains the
concrete security statement.

Theorem 3. Let E: {0,1}°* x {0,1}" — {0,1}" be a block cipher that is a
PRP-CCA. and let H: {0,1}"* x {0,1}?>" — {0,1}" be an almost-zor-universal
family of hash functions. Then HPCBC" defined via Definition 12 is a pp-secure
prefix-preserving ESAE scheme.

6.1 On Efficient Range-Query Processing

In [31] it is shown that encrypting data via a bit-wise prefix-preserving scheme
allows efficient (as opposed to scanning the whole database) range queries over
the data by specifying the possible prefixes for a desired range. Introducing our
prefix-preserving ESAE as well provides a generalized approach, where the block
size is not just one bit but a variable parameter. It is shown in [31] that certain
attacks are possible if their scheme is used for range queries. In the full version
of the paper [4], we generalize such attacks and discuss what is the best level of
security prefix-preserving schemes can provide in this context.

7 Acknowledgments

We thank Brian Cooper and Andrey Balmin for useful comments and references.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The final HIPAA security rule. Federal Register. Available at http: //www.
hipaadvisory. com/regs/ finalsecurity/ index. htm, 2003.

G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Mot-
wani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep a secret: A distributed
architecture for secure database services. In CIDR, 2005.

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for
numeric data. In SIGMOD, 2004.

G. Amanatidis, A. Boldyreva, and A. O’Neill. New security models and provably-
secure schemes for basic query support in outsourced databases. A full version of
this paper. Available at www-static.cc.gatech.edu/ aboldyre/publications.
html, 2007.

J.-H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In EUROCRYPT, 2002.

M. Bellare. Practice-oriented provable-security. In Information Security Workshop,
ISW, 1997.

M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. CRYPTO, 2006.

M. Bellare, A. Boldyreva, L. R. Knudsen, and C. Namprempre. Online ciphers and
the Hash-CBC construction. In CRYPTO, 2001.

M. Bellare, A. Boldyreva, and A. O’'Neill. Efficiently-searchable and deterministic
asymmetric encryption. Cryptology ePrint Archive, Report 2006/186, 2006. http:
//eprint.iacr.org/2006/186/.

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In CRYPTO, 1996.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In FOCS, 1997.

M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the Encode-then-Encrypt-
and-MAC paradigm. In ACM Transactions on Information and System Security,
7(2), 2004.

M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In ASIACRYPT, 2000.
J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key
constructions. In CRYPTO, 2000.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In EUROCRYPT, 2004.

R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO, 2003.

A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Modeling and assessing inference exposure in encrypted databases.
ACM Trans. Inf. Syst. Secur., 8(1):119-152, 2005.

Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In ACNS, 2005.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: Improved definitions and efficient constructions. Cryptology ePrint
Archive, Report 2006,/210, 2006.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Comput-
ing range queries on obfuscated data. In Information Processing and Management
of Uncertainty in Knowledge-Based Systems, 2004.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

E. Damiani, S. De Capitani Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati.
Balancing confidentiality and efficiency in untrusted relational DBMSs. In CCS,
2003.

E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216/.

S. Goldwasser and S. Micali. Probabilistic encryption. In Journal of Computer
and Systems Sciencies, volume 28, 1984.

P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over
encrypted data. In Applied Cryptography and Network Security Conference.

H. Hacigiimiis, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted
data in the database-service-provider model. In SIGMOD, 2002.

H. Hacigiimiis, B. R. Iyer, and S. Mehrotra. Efficient execution of aggregation
queries over encrypted relational databases. In DASFAA, 2004.

B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries.
In VLDB, 2004.

B. R. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu. A framework for
efficient storage security in RDBMS. In EDBT, 2004.

M. Kantracioglu and C. Clifton. Security issues in querying encrypted data. In
DBSec, 2005.

F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index
structures for outsourced databases. In SIGMOD. ACM Press, 2006.

J. Li and E. Omiecinski. Efficiency and security trade-off in supporting range
queries on encrypted databases. In DBSec, 2005.

E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced databases. In NDSS, 2004.

E. Mykletun and G. Tsudik. Incorporating a secure coprocessor in the database-as-
a~service model. In International Workshop on Innovative Architecture for Future
Generation High Performance Processors and Systems, 2005.

E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service
model. In DBSEC, 2006.

M. Narasimha and G. Tsudik. DSAC: integrity for outsourced databases with
signature aggregation and chaining. In CIKM, 2005.

M. Narasimha and G. Tsudik. Authentication of outsourced databases using sig-
nature aggregation and chaining. In DASFAA, 2006.

G. Ozsoyoglu, D. A. Singer, and S. S. Chung. Anti-tamper databases: Querying
encrypted databases. In DBSec, pages 133—-146, 2003.

P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of
operation for efficient authenticated encryption. In ACM CCS, 2001.

P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap
problem. In EUROCRYPT, 2006.

Arsenal Digital Solutions. Top 10 reasons to outsource remote data protection.
http: //www. arsenaldigital. com/services/remote_ data_protection. htm.
D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-
crypted data. In IEEE Symposium on Security and Privacy, 2000.

J. Xu, J. Fan, M. H. Ammar, and S. B. Moon. Prefix-preserving IP address
anonymization: Measurement-based security evaluation and a new cryptography-
based scheme. In ICNP, 2002.

