
Lowcaf: A Low-Code Protocol Analysis Framework

1st Alexander Frank
University of the Bundeswehr Munich

Research Institute CODE
Neubiberg, Germany

alexander.frank@unibw.de

2nd Michael Steinke
University of the Bundeswehr Munich

Research Institute CODE
Neubiberg, Germany

michael.steinke@unibw.de

3rd Wolfgang Hommel
University of the Bundeswehr Munich

Research Institute CODE
Neubiberg, Germany

wolfgang.hommel@unibw.de

Abstract—Evaluating a communication protocol’s design in
terms of compliance and security is a very complex and time-
consuming task. It requires the configuration of suitable test
environments and test scenarios as well as the evaluation of
procedures and handling of network traffic. A plethora of tools
and frameworks exist that tackle individual problems of low-
level networking but they usually presume robust programming
skills and lack visualization. In contrast we propose an approach,
derived from node-based processing systems, that conveys a clear
logical picture that is still flexible and extensible enough to
be adaptable to real-time processing or simulation of arbitrary
networking components. In this paper, we present the concept
for a visually programmable low-code communication protocol
analysis framework (Lowcaf) that can be used either stand-
alone to simulate network components or be used together
with arbitrary backends. We also showcase our prototypical
implementation of this framework and how it can be combined
with the popular deterministic network simulator ns-3.

Index Terms—network analysis, protocol analysis, low-code,
scapy, ns-3

I. PROBLEM DESCRIPTION

Secure and reliable operation of communication protocols
is crucial for a holistic security approach in information
processing. Minimum security requirements for information
systems are among others described by the NIST in the Federal
Information Processing Standards 200 [1], aiming at assuring
of information’s confidentiality, integrity and availability.

Ensuring these properties during the life of a protocol –
from its design and implementation through enhancements
and updates – is challenging and many flaws are publicly
exposured like Heartbleed, FREAK, or KRACK [2]–[5]. It
is reasonable to assume that the situation for more use case
specific protocols is no different, just that the process of
adapting and fixing is typically not public information.

As a result continuous protocol testing and evaluation by
developers or the security community for public protocols
is necessary. Testing relies on network simulation, traffic
generation, inspection or manipulation [6]. This functionality

This work has been funded by Airbus Defence and Space as part of the
Airborne Cybersecurity Enhancement project and by dtec.bw – Digitalization
and Technology Research Center of the Bundeswehr – as part of the project
DEFINE. dtec.bw is funded by the European Union – NextGenerationEU.
Any opinions, findings, and conclusions or recommendations are those of the
authors and not necessarily of the funding institutions. We thank our colleague
Mario Silaci for providing the LoRa data set for our evaluation.

is split across a plethora of specialized tools, e.g., wireshark
for packet sniffing, nmap for system and service probing, ns-
3 for discrete network simulation. The entry barrier for the
tools varies greatly, ranging from learning a few command
line options to complex APIs and GUIs. Additionally, there are
cases where a combination of multiple tools achieves desired
results more effectively, e.g., a network simulator manages
simulation but traffic visualization and packet processing is
realized through other tools. However, the integration of tools
is usually use case specific and done manually.

Especially for protocol analysis or prototyping, where tasks
are to be performed through various tools based on network
traffic provided by a network backend, we recommend a
new solution without the intent to replace any of the ex-
isting tools. Instead we argue the need for a framework
that enables joint usage of different tools in a modularized
fashion atop a network backend such as to integrate packet
processing and analysis functions provided either natively or
through external tools in an accessible and reusable way.
We believe to fulfill this idea and to leverage more visual
abstraction and simplicity in protocol testing by introducing a
graphical low-code protocol analysis framework (Lowcaf). We
propose a low-code based solution especially inspired by GUI-
driven network simulations like OPNet, OMNet++ or GNS3
(cf. [7]). In Lowcaf, we want to leverage a similar approach
for communication protocol analysis and processing with the
following key features: a) Accessibility for users with less
coding experience, b) fast reconfigurability and natural code
reuse, c) usability along with arbitrary network backends.

Lowcaf is loosely coupled to networking backends via a
reusable application. Lowcaf and an exemplary connector to
the ns-3 simulator are public available on GitHub1.

In Section II, we describe requirements for a low-code
protocol analysis and testing approach. Section III summarizes
similar already existing approaches and evaluates their suit-
ability. Section IV describes the concepts of Lowcaf, followed
by selected implementation details in Section V. In Section VI
we show an exemplary use of Lowcaf, discuss it and point out
current limitations. Section VII summarizes our key findings
and gives an overview of future work in this area.

1https://github.com/ubwafr/lowcaf

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP



II. REQUIREMENTS

With the Lowcaf framework we want to leverage traffic gen-
eration, inspection and manipulation (contentual, temporal or
quantity aspects). The sections describe general requirements
for a suitable tooling approach just as specific requirements
for the aforementioned network traffic analysis tasks. Each
requirement is prioritized in conformity with RFC 2119 [8].

A. General and User Interface Requirements

Following requirements are based upon the low-code plat-
form design’s dynamic perspective and functional perspective
defined in [9]. The functional perspective demands for suit-
able domain-specific functions. An approach MUST provide
the ability to break down testing scenarios in visual func-
tional protocol analysis blocks (RG1). These blocks SHOULD
be reusable (RG2). They MUST be linkable as processing
pipelines (RG3) to provide process modeling. Visual ele-
ments SHOULD be programmatically extensible with arbi-
trary networking backends like simulators (RG4) or bare-
metal networks (RG5). Storing and loading processing designs
SHOULD be given (RG6). The ability to integrate existing
network traffic analysis tools SHOULD be given.

B. Traffic Generation

Traffic generation is crucial for protocol analysis and veri-
fication [10]. A low-code protocol analysis framework MUST
provide traffic generation capabilities (RTG1). Traffic may be
produced via replaying prerecorded PCAP files (RTG2) or by
injecting real-time traffic from already set up services (RTG3).

C. Traffic Inspection

Traffic inspection is mandatory for protocol security testing;
it is provided by several existing tools. For one to understand
traffic, it MUST be able to be visualizable (RTI1) (cf. [11],
[12]) and SHOULD be able to be filtered via pattern matching
(RTI2). Traffic MUST be able to be recorded and exported
(RTI3) then again, for instance to provoke incorrect content
handling via traffic injection.

D. Traffic Manipulation

Traffic manipulation helps ensuring that protocol procedures
are well designed. We consider five traffic manipulations:
Packet duplication (RTM1), packet filtering (RTM2), and field
manipulation (RTM3). Besides data centric manipulations,
timing relations are interesting: Delaying (RTM4) and re-
ordering packets (RTM5) is necessary. Required functionality
is dependent from each protocol analysis scenario. Hence,
any function SHOULD be provided. More detailed traffic
manipulation characteristics were elaborated in [13].

III. RELATED WORK

To the best of our knowledge no concept for a node-
based framework to realize network protocol evaluation exists.
However, low-code is a highly active research topic with
several tools and a similar logic in different application areas.

A. Related Scientific Research

Lowcaf aims at enabling a low-code (following the def-
inition of [14]) for communication traffic processing. Low-
code is used in different areas, e. g., Internet of Things (IoT)
[15]–[17], robotics [18], and agriculture [19] for development,
design, and testing. For IoT [15], [16] low-code approaches for
tasks such as application development, architectural modeling,
integration of IoT devices into larger IoT platforms and many
more are actively researched. Other work, as presented in [20]
investigates what benefits and challenges arise from using low-
code approaches for testing purposes in the context of low-
code development platforms.

B. Existing Node-based Processing Tools

Low-code (especially node-based programming) is popular
for complexity reduction of processing tasks, e.g., in the areas
of 3D rendering (e.g., in Blender2) and signal processing,
which is closely related to our approach. The purpose of nodes
varies between use cases. For example considering network
simulators (besides those already named in Section I), a node
may be a simulation of one specific device or for a category of
devices. In general, a node encapsulates specific functionality,
which leverages natural code reuse. For our concept we extend
this node-based network method with the ability to model the
processing behavior of network equipment via a node-based
system. This is shown in upper half of Figure 1, the Packet
Processing Framework (PPF).

Node-based processing systems are also used for radio
frequency (RF) signal-processing. Two popular frameworks
in this area are MATLAB/Simulink3 and GNURadio (GR)4.
Both feature node editors that allow to create signal processing
chains to modify signals (e.g., modulate, interpolate, rasterize,
etc.), visualize and analyze them. Such a chain has typically
one logical starting point and one logical end.

As existing systems work with streams of different data
types (e. g. floats, integers, bits), they are not suitable for
packet-based communication on top of. While GR and simi-
larly Simulink offer a low-code design meeting requirements
RG1 to RG6, they show restrictions in compatibility with
existing protocol analysis tools (RG7). They theoretically
support traffic generation, inspection and manipulation but no
dedicated nodes are currently implemented.

IV. LOW-CODE PROTOCOL ANALYSIS FRAMEWORK
CONCEPTS

The basic idea is shown in Figure 1 with two major parts:
The Packet Processing Framework (PPF) and the Networking
Backend (NB). Since the term node is used to refer to both
nodes in node editors and systems in a network, we differ-
entiate between both by designating the former Processing
Nodes (PNodes) and the latter Networking Nodes (NNodes).
The PPF is our proposed low-code-based approach for network

2docs.blender.org/manual/en/latest/modeling/geometry nodes/index.html
3de.mathworks.com/products/simulink.html
4www.gnuradio.org/

2024 20th International Conference on Network and Service Management (CNSM)



LAN 1 LAN 2

In 1

In 2

Out 1

Out 2P
P

F
N

B

Fig. 1. Modeling the packet processing of single components with Lowcaf.

PNode Editor/
Visualization

JGF

Networking Backend (NB)

Packet 
Processing
(External)

PNode IDs

Packet 
Processing

(Native)
Import/Export

Packet Import/Export

Fig. 2. Relation between the software components.

traffic analysis processes with chainable PNodes. The NB is
an arbitrary networking environment. The processing logics
defined in PPF can be understood as a processing pipeline
residing in a NNode of the NB.

A detailed view of Lowcaf is shown in Figure 2. The
PPF consists of the PNode editor and graphical frontend to
visually edit processing chains and to visualize their state.
The Packet Processor (PProc) is responsible for packet pro-
cessing. The PProc can either be native (part of the editor
and visual components) or external. The structure and state of
the processing chain are stored in JSON Graph Format (JGF)
files (see Section IV-A2). Its contents can be disseminated to
external PProc and the NB. The NB may be connected to the
PPF: The primary connection is towards the packet processing
component (on the right). Alternatively, the connection can be
passed through external packet processing tools (middle inter-
face). Both interfaces are bidirectional. For the NB to properly
communicate with the PProc, the IDs of corresponding PNodes
are required from the JGF file. The third connection is an
optional downstream connection from the PPF towards the
NB via JGF. If supported by the NB, network topologies can
be loaded from the JGF-based configuration.

A. Packet Processing Framework (PPF)

Packets are exchanged between PNodes. In Lowcaf a packet
is a data structure that contains the corresponding data buffer
and metadata like timestamps of the original reception. The
overall architecture of the Lowcaf framework and its main
components is shown in Figure 3. The Lowcaf simulation runs
independently of an underlying network backend. The PProc
schedules the PNodes for execution and for forwarding packets

Packet Processor

Communication Manager

IPC

Processing Function

Packet

Packet Data

Metadata:
- Timestamps
- Dropped

0
1

1
2

0 2

Adj. Matrix

Forwards 
data between 

PNodes

Signal ready/not 
ready

PNode: 1

GUI

Remote Software PNode: x

Fig. 3. Relation between the simulation driver and a PNode.

from outputs to the corresponding inputs. The components
performing the actual processing are the PNodes. Each PNode
can have an arbitrary number of inputs and outputs, a process-
ing function with user-defined code. Running the processing
function may require any number of packets from one or more
inputs. A PNode signals to PProc as soon as it has enough data
available to run at least once.

In addition to processing packets from one of the inputs a
PNode can also register an Interprocess Communication (IPC)
connection. They can be used to connect to any other system
supporting our data exchange format (cf. Section IV-C) via
system sockets. External programs can also be attached via
shared PCAP files or virtual TUN or TAP interfaces. Each
PNode is also connected to a graphical representation of itself.
The graphical representation can be used to configure settings
of the PNode or to visualize its state or statistics.

1) Packet Processor: We considered two packet processing
approaches: First, running each PNode’s processing function
independently from each other in a loop, where data will
be processed as soon as it is available. Second, schedule
the execution of each PNode from a coordinating entity. The
first approach can be massively parallelized and is thus more
suitable for real time network processing. In contrast, the
second approach is more suitable for network simulation as it
can ensure deterministic processing and repeatability. As we
want to leverage protocol understanding and reliable testing,
we pursue the latter approach with PProc. It schedules the
execution of the processing function of all PNodes. Users may
modify the selection order according to their needs. In each
step the following tasks are performed in order:

1) Get the next PNode from the selection algorithm. If there
is no next PNode terminate.

2) Execute the PNode’s function.
3) Move the generated outputs to the respective target

PNode’s port.
4) Jump to the first step.
As a simple example, we provide a priority selection algo-

rithm that internally maintains a first in, first out (FIFO) list

2024 20th International Conference on Network and Service Management (CNSM)



PNode 1

PNode 2 PNode 1PNode 3

Step 1

Step 2

PNode 1PNode 3Step 3

PNode 1Step 4 PNode 4

Step 5 PNode 4 PNode 2 PNode 1PNode 3

Step 6 PNode 2 PNode 1PNode 3

PNode 1

PNode 2

PNode 3

PNode 4

Step n

Fig. 4. Operation of the packet processor for a small example.

A

a1

a2

Cc2

c1

B b1 c3

A

B

C

A

B

C

a1, b1, a2

b1

a1, a2

A

B

c2

a1

a2

b1

c1

c3

C
A

B

C

a1 -> c3
a2 -> c1

b1 -> c2

Direct (insufficient)

Edge Ordering

Edge with Metadata

Attributes as Nodes

Native PNodes

Fig. 5. Options for the representation of our PNodes as generic graph.

of all processing functions that are able to be executed at that
moment in time. The list is initially filled with all PNodes that
could directly be executed, ordered by each PNode’s unique
ID. If at some point no PNode is able to run its processing
function anymore, the processing graph is exhausted. This does
not mean that no more packets are contained in the processing
network, since a processing function may depend on more
than one input. An small example of this process is depicted
in Figure 4. PNode 1 is always ready and for each execution
it produces one packet for each output. PNode 2 and 3 each
require one input and create one output and PNode 4 requires
one packet in each input. Thus initially only PNode 1 is ready
and produces two packets, which means that both PNode 2
and PNode 3 become available (in this order because of port
priority), additionally PNode 1 is added to the queue.

2) PNodes as Multigraphs: The PPF represents all logical
state in the aggregation of PNodes and their connections. We
need to represent and save this state, such that it can be
executed at a later point in time or a different system. At its
core, PNodes and their connections can be viewed as a cyclic
directed multigraph where two PNodes may have multiple
edges between each other. This is exemplarily illustrated in
Figure 5. In this case PNode A has two ports a1 and a2 which
both connect to ports of PNode C. If we directly interpreted
each PNode as a vertex (see Direct in Figure 5) we cannot
recover the actual ports. To solve this issue we considered
three alternatives: First, one may specify an edge ordering,
i.e., store a list of connected edges for each vertex. Second,

one could store the port information as part of metadata for
each edge. The third option is to not only represent PNodes
as vertices but also the ports. The third option is preferred as
it can represent the basic relation between PNodes and their
connections without having to resort to additional metadata
which is stored outside the graph representation.

Having mapped the PPF structure to a graph representation
we can make use of existing graph-exchange file formats for
storing or transmitting our PNode architecture. An extensive
overview of such formats is provided in [21]. We formulate
three requirements towards

1) the ability to assign metadata to vertices to store the
internal state of PNodes (integral meta-data in [21]).

2) a well known and portable format.
3) a public and completely documented specification.
Due to our design – representing ports as vertices – we

do not necessarily require multigraph functionality, and also
compression does not apply, as for our node networks to be
easily understandable for humans are not likely to become
extremely large. Under these constraints we chose JGF5. It has
a public specification, allows to add metadata to vertices and
edges, supports hypergraphs and is built on JSON for which
parsers are widely available in most programming languages.

B. Networking Backend

The Packet Processing Framework is designed to be usable
atop arbitrary networking backends complying with the back-
end model described in the following section. We envisage
bare metal backend, emulation (virtual machines) and simula-
tion backends (e. g. ns-3 simulator) or hybrid backends. The
individual backends are connected to the PPF via an Lowcaf
Application (LApp), that can be reused for homogeneous
backends.

1) Networking Backend Model and Lowcaf Application:
The components of the NB are illustrated in Figure 6. A
qualified networking backend complies with a generic net-
working model. It provides a) Networking Nodes (NNodes)
and b) communication links connecting two or more (e. g.
radio channels) NNodes.

The a) NNodes provide a LApp in their networking context
each. For bare metal or emulated backends, the LApp is im-
plemented according to the specific operating system running
on the machine. Simulation backends usually demand for an
integrated approach (cf. Section V-B). The NNode buffers
incoming packets and forwards them towards the Lowcaf
framework. A NNode can have three different roles in the
network. Source Networking Nodes (SoNNodes) only send
network packets towards other NNodes. Intermediate Net-
working Nodes (ImNNodes) receive as well as send network
packets from or to adjacent NNodes. Sink Networking Nodes
(SiNNodes) only receive packets from adjacent NNodes. The
b) communication links transmit network packets originating
from one NNode to all other connected NNodes. The commu-
nications links are not directly affected by the PPF.

5https://jsongraphformat.info/

2024 20th International Conference on Network and Service Management (CNSM)



Intermediate

NNode


(InNNode)

Sink

NNode


(SiNNode)

Comm.

Link

LApp

N
et
w
or
ki
ng

B
ac
ke
nd P [P']

Source
NNode


(SoNNode)

Comm.

Link

LAppLApp

Packet P

PNode PNode

P
Processed Packet(s)


[P']

...

Pa
ck
et

Pr
oc
es
si
ng

Fr
am

ew
or
k

Fig. 6. NB components and interrelations, including an exemplary commu-
nication path of packets (blue color).

Figure 6 shows the interplay of the NB and the PPF
by an exemplary packet P (blue path): P is infused to a
SoNNode from the PPF and is then forwarded via the first
communication link to an ImNNode. The ImNNode holds P,
forwards it to the PPF via its LApp and waits for the response,
which may contain processed packets [P’] of arbitrary count.
The ImNNode then forwards every packet in [P’] towards the
next node, in this case a SiNNode. This one then passes all
packets towards the PPF and does not wait for a response.

The LApp may run on each NNode and connects them to
one PNode. It transmits incoming network packets towards
the PPF (only ImNNodes and SiNNodes). The LApp also
receives packets from the PPF and initiates their transmission
towards the next NNode (SoNNodes or ImNNodes). The LApp
communicates with the PPF according to a common protocol,
which is described in the next Section.

C. Communication

The communication between the LApps and the PPF (cf.
Figure 6) provides transmitting received packets from the NB
towards the PPF (upstream communication) and the other
way around, i.e., transmitting processing results (downstream
communication). Our model currently provides Ethernet-based
communication but it is extensible to other protocols analo-
gously.

1) Upstream Communication: The required packet data,
needed by PPF is described in Table I upper half. The first
field identifies the type of data (ToD). It has three functions,
that are differentiated via the ToD’s value: Transmit packet
data to the PPF, terminate the processing and shut down the
connection towards the PPF, or indicate that no further data is
sent upstream. Packet data, marked with value 1 has further
fields: The PPF is informed about the ID of the source NNode
and the ID of the destination PNode. Each packet data also
contains a delay or timestamp value, the PPF can access and
modify. The plen field tells the length of the payload message
that is transmitted as byte sequence afterwards.

2) Downstream Communication: The downstream commu-
nication has the same functions (ToD) as the upstream commu-
nication. The second and third command do no require further
parameters. Packet data communications may be chained to
provide the receiving LApp with a list of generated packets.

TABLE I
FIELDS FOR THE UP- AND DOWNSTREAM COMMUNICATION

Upstream Communication
Field Name Comment
Type of Data (ToD) Packet data; End of Simulation; No Reply

Further fields for ToD = 1 (Packet Data)
Origin NNode ID NNode’s ID the data is sent from in the NB
Destination PNode ID ID of the PNode, the data is sent to
Delay/Timestamp Delay or receipt timestamp at the source NNode
Packet length (plen) Length of the packet data payload
Packet Data Actual packet data of length plen from the NB

Downstream Communication
Type of Data (ToD) Packet data; End of Simulation; No Reply

Further fields for ToD = 1 (Packet Data)
Delay/Timestamp Delay or receipt timestamp at the source NNode
Protocol Type Type of payload protocol frame
Packet Length (plen) Length of the packet data payload
Packet Data Packet data from the networking backend

V. IMPLEMENTATION

We implemented the PPF as well as a LApp for the ns-3
network simulator6 as an exemplary NB due to its practical
relevance in academia and research (see [22]).

A. Selection of GUI Framework

For the realization of the graphical frontend we considered
using existing node editor frameworks. Our requirements are
based on the typical expectations of GR or Simulink users:

• Multiple inputs/outputs: De-/Multiplexing is essential to
realize components like switches or routers.

• User interaction: The framework should provide base
blocks allowing to add, drag, and remove nodes as well
as zooming and panning the current view.

• Arbitrary number of node inputs and data visualization.
Several suitable frameworks exist. For instance the commer-

cial Nodes7 tool or the open source Node Editor Framework8.
Rete.js9 is a JavaScript framework while QtNodes10 builds
upon the Qt framework [23]. We decided to built our solution
upon DearPyGui11 due to the flexibility of its nodes. It is a
general purpose GPU-accelerated GUI toolkit for Python and
based on the Dear ImGui framework. Each node in the editor
behaves similar to a window and thus can contain nearly all
widgets which are provided by the framework.

B. LApp for ns-3

The ns-3 network simulation framework is written in C++
and demands users to write their simulations accordingly.

1) LApp-integration into the ns-3-model: Just like in a real
system, a NNode’s functionality in ns-3 is encapsulated into
one or more applications, that can be installed atop of it. We
use this circumstance to implement a basic LApp, which can
be installed on arbitrary nodes in the ns-3 model. Just like it

6https://www.nsnam.org
7https://nodes.io/
8https://nodeeditor.seneral.dev/
9https://github.com/retejs/rete
10https://github.com/paceholder/nodeeditor
11https://github.com/hoffstadt/DearPyGui

2024 20th International Conference on Network and Service Management (CNSM)



Fig. 7. Screenshot of the Lowcaf user interface.

is usual for applications in ns-3, one can set the point in time
in the simulation, where the LApp is active.

2) Integration into the ns-3 process: The ns-3 simulator
does not support multi-threading, preventing the LApp to pass
packets from the PPF at any time in the simulation. The
consequence is, that for ns-3 as a networking backend, the
upstream and downstream communication with the PPF must
be sequentialized and always works according to the same
procedure depending on the role of a NNode: SoNNodes as
sources of packets buffer packets until the simulation checks
them. For that, we use the select function for checking input
from selected sockets. ImNNodes only initiates the commu-
nication with the PPF in answer to a received packet from a
preceding NNode. SiNNodes only send received packets from
preceding NNodes towards the PPF and do not get responses.

C. Communication

We implemented the communication protocol from Sec-
tion IV-C based on UDP and in a binary format. The field
sizes are proposed in a sufficient magnitude: We described
the ToD field with one byte, the delay timestamp with eight
bytes allowing a nanoseconds precision and the protocol type
field with two bytes. The NNode and PNode ID and plen are
described with four bytes each.

VI. EVALUATION AND LIMITATIONS

We practically evaluated our approach in two use-cases
which we describe along with our findings and limitations of
our approach in the following sections.

A. Test Scenario 1: Basic Demonstration

We tested Lowcaf using ns-3 as a NB and Scapy [24] as a
packet parser in the PPF. We modeled a realistic and real-time
traffic analysis process in PPF (cf. shown in Figure 7, process
from left to right). In the scenario, we read input from a PCAP
file (Pcap Source node) and repeat its content via the Repeater
node. We then split the packet stream in two paths: The
upper path counts the packets and the Dist node manipulates
their timestamp according to a given distribution. The lower
path sends packets towards the ns-3 backend. In ns-3, we
set up a simulated infrastructure with two NNodes that are
connected via an Ethernet channel. The first SoNNode receives
the packets from the NS3 Sink and the second SiNNode sends

Fig. 8. Excerpt of Lowcaf graph for detection of LoRa duty cycle violations.

them on receipt towards the NS3 Source node in the PPF. Both
streams are then joined in the Multiplexer node and the stream
bandwidth is visualized in the Gui node.

B. Test Scenario 2: Duty Cycle Violations in LoRa Networks

LoRa is a wireless technology used, i.a., for IoT applica-
tions. The available bandwidth must be shared and to ensure
fair access for all participants, rules govern the acceptable
usage of bandwidth per time frame per user. This is referred to
as duty cycle and in this context a duty cycle of 1% is common
[25]. We use Lowcaf to build an application that analyzes
the duty cycle of a given LoRa device. The input data is a
PCAP file covering one week’s worth of LoRa traffic captured
by a gateway. We first filter in multiple stages to a) operate
only on packet types that we can attribute to participants
(those with a network and a device address) b) extract the
packets for the device of interest. By first duplicating the
resulting packet stream and then removing the very first packet
of one of the streams we yield two streams offset by one
that serve as input for a comparison node. The difference
between each pair’s timestamps is computed and attached to
the packets’ metadata for further visualization and processing.
Figure 8 shows the corresponding excerpt of the graph. Our
(simplified) assumption is that a duty cycle violation occurs
if tdiff [i + 1] < 99 · tairtime[i], with i as the packet index,
tdiff as the inter packet gaps and tairtime as the time that
each packet occupies the shared medium.

2024 20th International Conference on Network and Service Management (CNSM)



C. Discussion and Limitations

In the Lowcaf framework concepts, we considered the
requirements stated in Section II. The general (RG1-RG6) re-
quirements can be met and were shown (except programmatic
aspects) in the scenarios. Traffic generation, inspection and
manipulation, were shown via PCAP content replay (RTG2)
and visualization, pattern matching and export (RTI1-RTI3).
We showed packet delaying and re-ordering (RTM4, RTM5).
RTG1 and RTG2 were not used in the scenarios; RTM1-RTM3
are not yet implemented, but can be realized analogously.

We also experienced some additional limitations, e.g., some
usability and organizational aspects between the PProc and
the NB are still unattended. Currently, one must map each
PNode and NNode manually by a unique identifier and set
service port numbers for communication purposes. While our
current concept does not use 1-to-n connections (hypergraph),
it would be a relatively minor change enabling transparent
copies of packets. Furthermore, as already mentioned in Sec-
tion IV-C, while the PPF is protocol agnostic, the interface to
the NB currently only serves Ethernet-based communication.
An extension to other communication standards is feasible
but may require minor adaptions of our up- and downstream
communication scheme. Our code is currently not optimized
for performance, which is unproblematic for use in conjunction
with discrete simulators such as ns-3 but could be relevant for
real-time applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented Lowcaf, a low-code framework
for protocol analysis and testing. We argue, that by visually-
aided analysis processing, protocols are easier to comprehend
and that flaws can be found more reliably. It provides a set
of built-in blocks that can be used out-of-the-box but also
provides an interface for adding custom blocks for new tasks.
Lowcaf can be set up for an arbitrary networking backend.
Only a connector application for a backend is needed to
communicate with the Packet Processor and can thus be
reused for homogeneous network backends without further
adaptions. Our solution allows storing and loading designed
analysis scenarios by which protocol testing can be accelerated
significantly. For the future we plan to approach the limitations
from Section VI-C.

REFERENCES

[1] NIST, “Minimum security requirements for federal information
and information systems,” Mar. 2006. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf

[2] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman,
“The Matter of Heartbleed,” in Proceedings of the 2014 Conference on
Internet Measurement Conference. Vancouver BC Canada: ACM, Nov.
2014, pp. 475–488.

[3] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A
messy state of the union: Taming the composite state machines of TLS,”
Communications of the ACM, vol. 60, no. 2, pp. 99–107, Jan. 2017.

[4] M. Vanhoef and F. Piessens, “Key Reinstallation Attacks: Forcing Nonce
Reuse in WPA2,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. Dallas Texas USA: ACM,
Oct. 2017, pp. 1313–1328.

[5] ——, “Release the Kraken: New KRACKs in the 802.11 Standard,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, Oct. 2018, pp. 299–314.

[6] A. Frank, W. Hommel, and B. Hopfner, “An intermediary protocol
representation to aid in avionics network development,” in NOMS 2023-
2023 IEEE/IFIP Network Operations and Management Symposium,
2023, pp. 1–5.

[7] C. Smera and J. Sandeep, “Networks simulation: Research based im-
plementation using tools and approaches,” in 2022 IEEE 3rd Global
Conference for Advancement in Technology (GCAT). IEEE, 2022, pp.
1–7.

[8] S. Bradner, “Key words for use in rfcs to indicate requirement levels,”
Mar. 1997. [Online]. Available: https://www.ietf.org/rfc/rfc2119.txt

[9] A. C. Bock and U. Frank, “Low-code platform,” Business & Information
Systems Engineering, vol. 63, pp. 733–740, 2021.

[10] O. A. Adeleke, N. Bastin, and D. Gurkan, “Network traffic generation:
A survey and methodology,” ACM Computing Surveys (CSUR), vol. 55,
no. 2, pp. 1–23, 2022.

[11] S.-Y. Ji, B.-K. Jeong, and D. H. Jeong, “Evaluating visualization
approaches to detect abnormal activities in network traffic data,” Inter-
national Journal of Information Security, vol. 20, no. 3, pp. 331–345,
Jun. 2021.

[12] H. Shiravi, A. Shiravi, and A. A. Ghorbani, “A Survey of Visualization
Systems for Network Security,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 8, pp. 1313–1329, Aug. 2012.

[13] M. Gadelrab, A. Abou El Kalam, and Y. Deswarte, “Manipulation of
network traffic traces for security evaluation,” in 2009 International
Conference on Advanced Information Networking and Applications
Workshops. IEEE, 2009, pp. 1124–1129.

[14] M. Hirzel, “Low-Code Programming Models,” Communications of the
ACM, vol. 66, no. 10, pp. 76–85, Oct. 2023.

[15] F. Ihirwe, D. Di Ruscio, S. Mazzini, P. Pierini, and A. Pierantonio,
“Low-code engineering for internet of things: A state of research,” in
Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings,
ser. MODELS ’20. New York, NY, USA: Association for Computing
Machinery, Oct. 2020, pp. 1–8.

[16] S.-G. Pantelimon, T. Rogojanu, A. Braileanu, V.-D. Stanciu, and C. Do-
bre, “Towards a Seamless Integration of IoT Devices with IoT Platforms
Using a Low-Code Approach,” in 2019 IEEE 5th World Forum on
Internet of Things (WF-IoT), Apr. 2019, pp. 566–571.

[17] K. Panayiotou, E. Tsardoulias, and A. L. Symeonidis, “Defining a
Domain-Specific Language for the Verification of IoT-Enabled Cyber-
Physical Application,” Rochester, NY, May 2023.

[18] R. Brouzos, K. Panayiotou, E. Tsardoulias, and A. Symeonidis, “A Low-
Code Approach for Connected Robots,” Journal of Intelligent & Robotic
Systems, vol. 108, no. 2, p. 28, Jun. 2023.

[19] G. Fatouros, G. Kousiouris, T. Lohier, G. Makridis, A. Polyviou,
J. Soldatos, and D. Kyriazis, “Enhancing Smart Agriculture Scenarios
with Low-code, Pattern-oriented functionalities for Cloud/Edge collabo-
ration,” in 2023 19th International Conference on Distributed Computing
in Smart Systems and the Internet of Things (DCOSS-IoT). Pafos,
Cyprus: IEEE, Jun. 2023, pp. 285–292.

[20] F. Khorram, J.-M. Mottu, and G. Sunyé, “Challenges & opportunities in
low-code testing,” in Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. Virtual Event Canada: ACM, Oct. 2020, pp.
1–10.

[21] M. Roughan and J. Tuke, “Unravelling graph-exchange file formats,”
arXiv preprint arXiv:1503.02781, 2015.

[22] L. Campanile, M. Gribaudo, M. Iacono, F. Marulli, and M. Mastroianni,
“Computer network simulation with ns-3: A systematic literature re-
view,” Electronics, vol. 9, no. 2, p. 272, 2020.

[23] D. P. et al, “Qtnodes. node editor,” https://github.com/paceholder/
nodeeditor, 2017.

[24] R. Rohith, M. Moharir, G. Shobha et al., “Scapy-a powerful interactive
packet manipulation program,” in 2018 international conference on
networking, embedded and wireless systems (ICNEWS). IEEE, 2018,
pp. 1–5.

[25] EN. ETSI, “300 220-2 V3. 2.1 (2018-06), short range devices (SRD) op-
erating in the frequency range 25 mhz to 1000 mhz; part 2: Harmonised
standard for access to radio spectrum for non specific radio equipment.”

2024 20th International Conference on Network and Service Management (CNSM)


