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Abstract—Service function chaining (SFC) provides the plat-

form for flexible resource management by dynamically 
allocating resources to virtual and/or container network func-
tions (VNFs/CNFs). To meet the quality of service (QoS) 
requirements while facing increasing resource demands, the sys-
tem will require the migration of the VNFs/CNFs from the 
current server to the others that offer sufficient resources. In 
this study, we formulate an integer linear programming (ILP) 
based optimization model to solve the function migration sched-
uling problem so that it meets QoS requirements of each service 
function (SF) chain. The remarkable points of this work are the 
following two points. The one is that we consider latency be-
tween VNFs/CNFs belonging to an SF chain, avoiding overhead 
due to their unnecessary migration and resource shortage. And 
the other is that we consider the case in which each VNF/CNF 
must be to be deployed strictly to a designated virtual machine 
(or container). To reduce complexity, we apply an encoder-de-
coder recurrent neural network (ED-RNN) as a machine 
learning model to the function migration scheduling problem. 
Performance evaluations show that the ED-RNN based ap-
proach achieves a similar performance as the ILP, while adding 
the benefits of very low complexity. 

Index terms—Service function chaining (SFC), Integer linear 
programming (ILP), Machine learning (ML), Recurrent neural 
network (RNN), Cloud-native platform. 

I. INTRODUCTION 
The 5th generation (5G) or beyond 5G (B5G) mobile 

communication systems are expected to provide many types 
of application services such as virtual reality and autonomous 
vehicles over a single network infrastructure. To enable 
network operators to effectively provide diverse services over 
the same network, the systems must be reconfigurable by 
software. For this purpose, service function chaining (SFC), 
software defined networking (SDN), and network function 
virtualization (NFV) are promising platform technologies [1]. 

A service function (SF) chain contains a series of network 
functions (NFs) such as load balancers, and firewalls, and they 
can be deployed in virtual machines (VMs) as virtual NFs 
(VNFs) or in smaller containers as container NFs (CNFs). On 
a cloud-native network service platform, services can easily 
be scaled up or down with demand. However, implementing 
NFs with smaller granularity and deploying them in many 
microcontainers makes the system architecture more complex 
to operate and monitor. Furthermore, operators should 
determine NF placement with considering QoS requirement of 
each SF chain and the constraints of the cases when SF chains 
are deployed on the cloud-native platform. To maintain the 
diverse QoS of SF chains, network operators should consider 
multiple factors those impact to performance of all NFs 
belonging to a chain, for example, latency between NFs in the 

same chain, overhead due to NF migration, and resource 
competition among NFs on the same server. 

The NF placement, resource allocation and migration 
scheduling problems for the monolithic deployment of NFs 
have been studied recently [2,3], but the techniques applied 
are limited in providing agile operations of NF migration as 
they require a significant amount of time to complete an oper-
ation cycle. Meanwhile, machine learning (ML) techniques 
are expected to be capable of meeting the diverse QoS 
requirements by autonomous and proactive resource control 
and management predicting time-varying traffic demands. 
Application of ML techniques has also been presented in 
several prior studies. The authors in [4,5] proposed SF 
chaining using multiple distributed CNFs, and discussed 
traffic steering such as load balancing. However, they did not 
address the issues of proactive and sophisticated resource 
adjustments using ML technologies. 

To adapt to the situation of dynamic NF migration in SFC, 
the prior study has applied the encoder-decoder recurrent neu-
ral network (ED-RNN) model to tackle the migration 
scheduling problem [6]. However, it is limited in that it does 
not considered the prominent feature of cloud-native platform 
features, such as the coexistence of VNFs and CNFs and the 
diversity of QoS requirements of SF chains. Therefore, in the 
work presented in this paper, we propose an NF migration 
scheduling solution suited for cloud-native platforms where 
services are deployed and provided in containers created on 
VMs meeting the desired QoS requirement of each service.  

The main contributions of this paper are as follows: 
• We formulate an NF migration scheduling problem 

for cloud-native platform as an integer linear programming 
(ILP) with the objective to meet QoS requirements of every 
SF chain. We determine its objective function as to minimize 
the uncomfortability of SF chains, by avoiding unnecessarily 
frequent NF migration while guaranteeing low latency. 
Furthermore, our formulation includes the NF placement 
constraint that each VNF or CNF is designated to be 
allocated to a VM or a container, respectively.  

• We show that the ED-RNN architecture has the pos-
sibility to be used for NF migration scheduling in a cloud-
native platform. Through computer simulation, we verify 
that the proposed method can reduce the occurrences of un-
necessary NF migration and that it has much lower 
computation complexity.  

This paper is organized as follows. In Sec. II, we introduce 
our SF migration framework. The NF migration problem is 
discussed in Sec. III and the ED-RNN model architecture is 
described in Sec. IV. Performance evaluations are presented 
in Sec. V. Finally, the conclusions are presented in Sec. VI. 
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II. AUTONOMIC SERVICE FUNTION MIGRATION SCHEME 
Our assumptions regarding the architecture of the network 

service platform are as follows. Infrastructure providers (IPs) 
construct their networks by connecting servers (nodes) that 
can deploy several NFs in VMs. Application service providers 
(ASPs) borrow an appropriate number of NFs from the IPs 
according to their service types and scales. When an IP 
receives a request for the construction of a network service 
from an ASP, it constructs and manages the SF chains of the 
desired service. If sufficient computational resources are ex-
hausted due to increased demand, the NF should be migrated 
from the current node to another. The IP must determine the 
destination server node from many available ones. Solving 
this problem using ILP in a short time is prohibitively difficult 
because of its complexity, which is the main reason for 
adopting an ML based approach for this type of problem. 

The advantage of our NF migration scheduling leveraging 
ML techniques is as follows. In the given network 
infrastructure, the ML model autonomously creates NF 
migration plans in accordance with the utilization of 
computational resources in the current state, QoS 
requirements of the NFs, position dependencies of the NFs per 
SF chain, and predicted future resource demands. If a certain 
NF is migrated from one node to another too often, the service 
deployed on the NF will experience frequent disruptions. 
Therefore, it would be optimal if a certain NF once migrated 
to a node is not migrated again to other nodes for a while. Our 
previous work revealed the efficacy of the ED-RNN in NF 
migration scheduling on a simple multihomed topology [6]. 
However, it is still necessary to consider more complex 
situations of cloud-native platform, where each server can 
accommodate NFs as service applications deployed on VMs 
and/or containers (within another VM). Notably, if an NF does 
not strictly require a specific operating system distribution, the 
NF can be deployed as an application on any container.  

In this study, we validate that the ED-RNN, which was 
introduced in our previous work for NF migration scheduling, 
is also effective for the NF migration scheduling in the cloud-
native platform. Related studies have applied ML-based 
approaches to the SFC placement problem before, but they 
mainly use deep reinforcement learning (DRL) [7] to find the 
optimal solutions to maximize the reward function. However, 
DRL requires a very long time to train complicated models, 
and is probably incapable of dealing with the rapidly time-
varying resource utilization. Our work differs from their 
approaches by applying a simple neural network trained by the 
solutions obtained by the ILP. 

III. PROBLEM STATEMENT AND FORMULATION 
Fig. 1 displays a leaf-spine topology with 𝑁 = 4 servers 

to set the stage for the problem formulation and its subsequent 
evaluation. In this section, we elucidate the VNF scheduling 
problem for SF chains deployed on a cloud-native platform 
and its ILP solution. We describe the ED-RNN training pro-
cess using the ILP solution in Sec. IV.  

In Fig. 1, an SF chain (SFC1) is composed of three NFs 
(NF1-1, NF1-2, and NF1-3) deployed on three servers. NF1-
1 and NF1-3 are deployed on VMs (as VNFs), and NF1-2 is 
installed on a container (as a CNF). In our example, because 

all functions are installed on different servers, the packet 
transmission cost induced by their encapsulation and 
decapsulation overhead and propagation delays between 
servers must not be ignored. The architecture for application 
working on a container is more complex than the cases of 
applications working on VMs. Therefore, the transmission 
cost of any SF chain increases when it includes many NFs 
deployed as CNFs. The propagation delay is proportional to 
the hop count between servers. 

To formulate the problem, we denote the computational 
resources (such as CPU) of server 𝑖 (𝑖 = 1,2,… , 𝑁) 
allocated to VNFs as 𝑆𝑖

𝑣 and to CNFs as 𝑆𝑖
𝑐. There are 𝐹  SF 

chains, and each SF chain 𝑐𝑓  (𝑓 = 1,2,… , 𝐹 )  consists of 
several NFs. The ℎ-th NF of SF chain 𝑐𝑓  is denoted as 𝑣𝑓,ℎ, 
where ℎ ∈ 1,2,… , 𝐻𝑓  and 𝐻𝑓  denotes the hop count of chain 
𝑐𝑓 . The demands of NF computing resources dynamically 
change at each time slot (𝑡 = 𝑡1, 𝑡2,… , 𝑡𝑇 ). Thus, to simplify 
the problem, we assume that the orchestrator can accurately 
predict the changes in the resource demands of all SF chains 
during each time slot. Therefore, the appropriate placement 
positions of the NFs can change significantly. Some NFs are 
required to be migrated from one server to another when the 
total resource demand of NFs deployed on the server exceeds 
the server’s total capacity. Notably, the QoS requirements of 
each SF chain differ from those of the others. When severe 
resource competition occurs, it is better to migrate the NFs of 
a disruption-insensitive service.  

Each SF chain has unique parametric requirements. The 
uncomfortability of 𝑐𝑓  at time 𝑡, 𝑈(𝑐𝑓 , 𝑡), is defined as:  
𝑼(𝒄𝒇 , 𝒕) = 𝜶𝒇𝑮(𝒄𝒇 , 𝒕) + 𝜷𝒇𝑴(𝒄𝒇 , 𝒕) + 𝜸𝒇𝑳(𝒄𝒇 , 𝒕)   (1) 
where 𝐺(𝑐𝑓 , 𝑡),  𝑀(𝑐𝑓 , 𝑡),  and 𝐿(𝑐𝑓 , 𝑡)  represent the 
performance degradations induced by the resource shortages 
of servers (i.e., due to the gap between capacity and demand), 
the temporal service disruptions induced by NF migration, and 
the transmission costs (latency) of NF packet forwarding, 
respectively. Their concise definitions of 𝐺(𝑐𝑓 , 𝑡), 𝑀(𝑐𝑓 , 𝑡) 
and 𝐿(𝑐𝑓 , 𝑡) are provided later. The parameters 𝛼𝑓 , 𝛽𝑓  and 
𝛾𝑓  are coefficients exhibiting the importance of these metrics 
in the SF chain 𝑐𝑓 . We formulate the optimization problem of 
minimizing the sum of the uncomfortability values.  

To formulate the NF scheduling problem as an ILP 
problem, we define several variables, as follows: 
𝑆: Set of servers. |𝑆| = 𝑁 × 2 because server 𝑖 

includes 𝑆𝑖
𝑣 and 𝑆𝑖

𝑐. 
𝑉 : Set of NFs. |𝑉 | = Σ𝑓∈𝐹 𝐻𝑓 . 
𝑥(𝑠, 𝑣, 𝑡) ∈ 0,1: Binary variable indicating whether server 𝑠 

hosts NF-𝑣 at time 𝑡. 𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 . 

NF1-1
(VNF)

NF1-2
(CNF)

Leaf SW

NF1-3
(VNF)

Leaf SW

Spine SW

Resource
for VMs

(𝑆𝑖𝑣)

Resource
for containers

(𝑆𝑖𝑐)

Server 4

VM

Container

SFC1

Server 3Server 2Server 1

Fig. 1 Network topology (N=4 servers). 
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𝑑𝑣(𝑡) ≥ 0: Demand level of NF-𝑣 at time 𝑡 (input param-
eters, constant real number). To simplify, 
values of 𝑑𝑣(𝑡) have only three values, high (H), 
middle (M), and low (L). 

𝐶𝑠 > 0: Capacity of server 𝑠 ∈ 𝑆  (input parameter, 
constant integer). 

𝑔(𝑠, 𝑡) ≥ 0: Variable representing the resource shortage 
amount in server 𝑖 at time 𝑡 (real number). 
𝑔(𝑠, 𝑡) = 0 indicates no shortage. 

𝑚(𝑠, 𝑣, 𝑡) ∈ 0,1: Binary variable indicating whether NF-𝑣  is 
migrated at time 𝑡 or not. 

𝑙(𝑠, 𝑠′) ≥ 0: Variable representing the latency between a 
pair of servers (𝑠, 𝑠′) (input parameter, con-
stant real number). 𝑠, 𝑠′ ∈ 𝑆. 

𝑟(𝑣, 𝑣′) ∈ 0,1: Binary variable indicating whether a pair of 
adjacent NFs (𝑣, 𝑣′) is deployed in the path of 
SF chain 𝑐𝑓  or not. 𝑣, 𝑣′ ∈ 𝑉 . 

𝑝(𝑣) ∈ 0,1 
(¬𝑝(𝑣) ∈ 0,1): 

Binary variable indicating whether NF- 𝑣 
must be deployed as VNFs (CNFs) (input pa-
rameter). Details are described later. 

We formulate the NF migration scheduling problem as 
follows. 

Objective: 
𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 ∑ ∑ 𝑼(𝒄𝒇 , 𝒕)

𝒇∈𝑭𝒕∈𝒕𝟏,…,𝒕𝑻
  (2) 

subject to: 
 ∑ 𝑥(𝑠, 𝑣, 𝑡)

𝑠∈𝑆
= 1, ∀𝑣 ∈ 𝑉 , ∀𝑡,  (3) 

 ∑ 𝑥(𝑠, 𝑣, 𝑡) ⋅ 𝑑𝑣(𝑡)𝑣∈𝑉
− 𝐶𝑠 < 𝑔(𝑠, 𝑡), ∀𝑠 ∈ 𝑆, ∀𝑡,  (4) 

 𝑚(𝑠, 𝑣, 𝑡𝑘) ≥ 𝑥(𝑠, 𝑣, 𝑡𝑘) − 𝑥(𝑠, 𝑣, 𝑡𝑘−1), 
∀𝑠 ∈ 𝑆, ∀𝑣 ∈ 𝑉 , ∀𝑘 ∈ 2,3,… , 𝑇 .  (5) 

Fig. 2 illustrates the relationship between these constraints. 
In this figure, the upper two tables represent the values of 
𝑥(𝑠, 𝑣, 𝑡) at times 𝑡1  and 𝑡2 . Thus, it denotes the server that 
accommodates NF-𝑣 at time 𝑡1 (and 𝑡2). Similarly, the lower 
table represents the values of 𝑑𝑣(𝑡), which denote the resource 
demands of SF chains at time 𝑡 = 𝑡1, 𝑡2,… , 𝑡𝑇 . The constraint 
of Eq. (3) indicates that each NF must be allocated to only one 
server. In Eq. (4), the resource shortage value, 𝑔(𝑠, 𝑡) , 
becomes larger than zero only when the sum of the demands 
in the SF chains on server 𝑠 exceeds its capacity, 𝐶𝑠, at time 
𝑡. Eq. (5) denotes whether an NF is migrated from one server 
to another or not, at time 𝑡𝑘. The value of 𝑚(𝑠, 𝑣, 𝑡𝑘) equals 
one when NF-𝑣 is migrated to server 𝑠. For example, when 
NF- 𝑣1,2  is migrated from server 𝑆1

𝑣  to server 𝑆2
𝑣, 

𝑥(𝑆2
𝑣, 𝑣1,2, 𝑡2)− 𝑥(𝑆2

𝑣, 𝑣1,2, 𝑡1) = 1, as shown in Fig. 2. If 
NF-𝑣 is not migrated at time 𝑡𝑘, 𝑚(𝑠, 𝑣, 𝑡𝑘) remains zero.  

As described, the objective function (Eq. (2)) includes 
three factors, 𝐺(𝑐𝑓 , 𝑡), 𝑀(𝑐𝑓 , 𝑡) and 𝐿(𝑐𝑓 , 𝑡). The metric of 
the resource shortage affecting the chain 𝑐𝑓 , 𝐺(𝑐𝑓 , 𝑡) , is 
defined as 

𝑮(𝒄𝒇 , 𝒕) = ∑ ∑ 𝒈(𝒔, 𝒕) ⋅ 𝒙(𝒔, 𝒗, 𝒕)𝒗∈𝒄𝒇𝒔∈𝑺 .  (6) 
The value of 𝐺(𝑐𝑓 , 𝑡) increases if NF-𝑣 is deployed on server 
𝑠 at time 𝑡, and the amount of resource demand exceeds the 
capacity of server 𝑠 . 𝑀(𝑐𝑓 , 𝑡)  represents the frequency of 
migration of VNFs in 𝑐𝑓  at time 𝑡. The metric of the resource 
shortage affecting the chain 𝑐𝑓 , 𝐺(𝑐𝑓 , 𝑡), is defined as 

𝑴(𝒄𝒇 , 𝒕) = ∑ ∑ 𝒎(𝒔, 𝒗, 𝒕)𝒗∈𝒄𝒇𝒔∈𝑺 .  (7) 
Finally, 𝐿(𝑐𝑓 , 𝑡)  indicates the total transmission latency 
through the NFs comprising the SF chain 𝑐𝑓  at time 𝑡. It is 
defined by 
𝑳(𝒄𝒇 , 𝒕) = ∑ ∑ ∑ ∑ 𝑳′

𝒗𝒇,𝒈′∈𝒄𝒇𝒗𝒇,𝒈∈𝒄𝒇𝒔𝒃∈𝑺𝒔𝒂∈𝑺
, 

𝐿′ = 𝑙(𝑠𝑎, 𝑠𝑏) ⋅ 𝑥(𝑠𝑎, 𝑣𝑓,ℎ. 𝑡) ⋅ 𝑥(𝑠𝑏, 𝑣𝑓,ℎ′ , 𝑡) ⋅ 𝑟(𝑣𝑓,𝑔, 𝑣𝑓,ℎ′). 
(8)  

In Eq. (8), the transmission cost from server 𝑠𝑎  to 𝑠𝑏  is 
included in the value of 𝐿(𝑐𝑓 , 𝑡) if NF-𝑣𝑓,ℎ and NF-𝑣𝑓,ℎ′ are 
adjacent pairs of VNFs comprising the SF chain 𝑐𝑓  and NF-
𝑣𝑓,ℎ(𝑣𝑓,ℎ′) is deployed on server 𝑠𝑎(𝑠𝑏).  

As mentioned, NFs should be deployed in VMs or 
containers according to their requirements when considering 
the features of the cloud-native platform. Thus, if an NF-𝑣 is 
marked for deployment on a VM (𝑝(𝑣) = 1), it should be 
installed in a VM. We replace Eq. (3) using the following 
detailed constraints: 

∑ 𝑥(𝑆𝑖
𝑣, 𝑣, 𝑡)

𝑖∈𝑁
+ ∑ 𝑥(𝑆𝑖

𝑐, 𝑣, 𝑡)
𝑖∈𝑁

= 1, 

∑ 𝑥(𝑠𝑖
𝑣, 𝑣, 𝑡) = 𝑝(𝑣)

𝑖∈𝑁
, 

∑ 𝑥(𝑠𝑖
𝑐, 𝑣, 𝑡) = ¬𝑝(𝑣)

𝑖∈𝑁
, 

𝑝(𝑣) + (¬𝑝(𝑣)) = 1, ∀𝑣, ∀𝑡. 

 (9) 

This set of equations denotes the following constraints: First, 
NF-𝑣 must be deployed on at least one server. Second, NF-𝑣 
should be installed in a VNF if 𝑝(𝑣) = 1. Third, NF-𝑣 should 
be installed in a CNF if ¬𝑝(𝑣) = 1. Finally, 𝑝(𝑣) and ¬𝑝(𝑣) 
exhibit an exclusive relationship. 

In summary, solving this problem clarifies the best 
combination of 𝑥(𝑠, 𝑣, 𝑡) values. Thus, server 𝑠 ∈ 𝑆 should 
accommodate NF- 𝑣  ( 𝑣 ∈ 𝑉 ) at each time slot ( 𝑡 ∈
𝑡1, 𝑡2,… , 𝑡𝑇 ). The optimal solutions maintain the sum of the 
uncomfortability metrics of SF chains as low as possible.  

IV. ED-RNN ARCHITECTURE 
We trained the ED-RNN model with the solutions of the 

optimization problem as described in Sec. III. Our NF 
migration scheduling problem uses the time-series data on the 
resource demands of SF chains. As clarified by a prior study 
[6], the ED-RNN architecture is suitable for reducing the 
frequency of migration because the past state’s information is 
adopted effectively during scheduling. Note that the past state 
information includes the NF placement and resource 
utilization at each time slot.  

Fig. 3 illustrates the architecture of the ED-RNN model, 
which  is composed of three parts: encoder, decoder, and 
attention. The encoder reads a certain length of sequential 

𝑆1𝑣 𝑆1𝑐 𝑆2𝑣 𝑆2𝑐 𝑆3𝑣 …

𝑣1,1 0 1 0 0 0 …

𝑣1,2 1 0 0 0 0 …

𝑣2,1 1 0 0 0 0 …

…
…

NF
(𝒗𝒇,𝒉))

Server status (𝑥(𝒔, 𝒗, 𝒕𝟏))

NF
(𝒗𝒇,𝒉)

Demand Transition (𝒅𝒗(𝒕))

t1 t2 t3 … tT
𝑣1,1 H L L …

𝑣1,2 M M M …

𝑣2,1 L H H …

…
…

𝑆1𝑣 𝑆1𝑐 𝑆2𝑣 𝑆2𝑐 𝑆3𝑣 …

𝑣1,1 0 1 0 0 0 …

𝑣1,2 0 0 1 0 0 …

𝑣2,1 1 0 0 0 0 …

…
…

Server status (𝒙(𝒔, 𝒗, 𝒕𝟐))

NF(𝑣1,2) is migrated from 𝑆1𝑣 to 𝑆2𝑣.
𝒙(𝑺𝟐𝒗, 𝒗𝟏,𝟐, 𝒕𝟏) = 𝟎
𝒙(𝑺𝟐

𝒗, 𝒗𝟏,𝟐, 𝒕𝟐) = 𝟏

Eq. (3): 𝑥(𝑠, 𝑣, 𝑡)𝑠∈𝑆 = 1,
∀𝑣, ∀𝑡

Eq. (4): 𝑥 𝑠, 𝑣, 𝑡 ⋅ 𝑑𝑣(𝑡)𝑣∈𝑉 − 𝐶𝑠 < 𝑔𝑠 𝑡 ,
∀𝑠, ∀𝑡, 0 ≤ 𝑔𝑠 𝑡

Eq. (5):
𝑚 𝑠, 𝑣, 𝑡𝑘 ≥ 𝑥 𝑠, 𝑣, 𝑡𝑘 − 𝑥 𝑠, 𝑣, 𝑡𝑘−1 ,
∀𝑠, ∀𝑣, 𝑘 = 2…𝑇,𝑚 𝑠, 𝑣, 𝑡𝑘 ∈ {0,1}

+1

Fig. 2 Illustration of constraints of the VNF(CNF) scheduling problem. 
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input data. The decoder then processes the input data step-by-
step alongside the hidden state retrieved from the gated recur-
rent unit (GRU) cell, which is used for an RNN to memorize 
the long- and short-term behaviors of the encoder part. This 
architecture improves scheduling performance by using both 
past and future input data. Our VNF/CNF migration 
scheduling problem also uses sequential input data that in-
clude the time series of SFC demands. The encoder reads the 
input data, 𝐼(𝑡𝑘)(𝑘 = 1,2, . . . , 𝑇 ) , and the attention part 
integrates the output data from the encoder at each occasion. 
The output data from the encoder at each time are gathered at 
the attention part, which memorizes the 𝑇 × 𝐻 matrix. This 
part supports the decoder in identifying parameters that have 
a significant impact on NF scheduling. Our previous work [6] 
showed that the attention part plays a key role in improving 
NF placement performance because it handles dynamically 
changing conditions, i.e., fluctuations in resource demands.  

To more effectively use the ED-RNN model architecture, 
we apply the QoS parameters of each chain and the placement 
constraint. The input tensor to the encoder at time 𝑡𝑘, 𝐼(𝑡𝑘), is 
shown in Fig. 3. The input data include the capacity of servers 
(𝐶𝑠, 𝑠 ∈ 𝑆), constraints of NFs deployed as a VNF (𝑝(𝑣), 𝑣 ∈
𝑉 ), QoS requirements of SF chains (𝛼𝑓 , 𝛽𝑓 , 𝛾𝑓)  (𝑓 =
1,2,… , 𝐹), and predicted resource demands of NFs at time 𝑡 
(𝑑𝑣(𝑡), 𝑣 ∈ 𝑉 ). We assume that the demand for NFs can be 
met by some prediction techniques; thus, we did not focus on 
these in this study. The size of the input data at time 𝑡, is |𝑆| +
|𝑉 | + 3𝐹 + |𝑉 |. The size of the output data, 𝑒(𝑡), is the same 
as the output size of the hidden layer in GRU 𝐻.  

The decoder sequentially decides on the placement of NFs 
at each time slot using the output data from the encoder and 
the attention. The decoder consists of combined linear and 
GRU cells. As shown in Fig. 4, at time 𝑡𝑘, the Attn-GRU reads 
the output data from the encoder (ℎ𝑑(𝑡𝑘−1)), attention part 
(𝐸𝑇 ), and previous slot 𝑡𝑘−1 (𝑂(𝑡𝑘−1)). The group of |𝑉 | 
classifiers produces an NF placement matrix at the time 𝑡𝑘 
(i.e., {𝑥(𝑠, 𝑣, 𝑡𝑘)|𝑠 ∈ 𝑆}). Each classifier thus corresponds to 
the NF- 𝑣  placements (𝑣 ∈ 𝑉 ).  The NF placement is 
represented by one-hot vector in which only one element is 
arranged as one, and the others are forced to be 0. As shown 
in Fig. 3, the size of each one-hot vector becomes |𝑆| + 1 
because it also includes the element 𝑥’(𝑣), which represents 
don’t care (the first element, whose index is 0). This is used 
to handle cases in which the resource demands of the 

corresponding NFs are 0. Consequently, the output data com-
prise a vector of size |𝑉 | × (|𝑆| + 1). 

Each one-hot vector output from the classifier exhibits a 
server that should accommodate the VNF. For example, if the 
𝑣-th one-hot vector is (0, 0.3, 0.7, 0.4) at time 𝑡, then NF-𝑣 
should be deployed on the second server because the element 
indexed by 2 (starting from 0) shows the largest value. In some 
cases, a solution obtained from the ED-RNN is not suitable for 
meeting the NF requirements, that is, the cases when the 
server type mismatches its requirements (e.g., 𝑆𝑖

𝑐 is selected 
despite 𝑝(𝑣) = 1). In these cases, the NF-𝑣 is deployed on the 
server corresponding to the element having the second-largest 
value in the one-hot vector. 

V. EVALUATION AND DISCUSSION 
To train the ED-RNN model, we first generated 10,000 

patterns of QoS requirements and time-series data as resource 
demands in SF chains. We then solved the NF migration 
scheduling plans for each pattern as ILPs. The number of 
combinations 𝑥(𝑠, 𝑣, 𝑡)  is 2|𝑆|+𝐹+𝑇 . The ranges of the 
number of active chains, 𝐹 , and the SF chain length (max: 
𝐻𝑓 ) were set to [3, 8] and [1, 3], respectively. Thus, the 
maximum value of |𝑉 | was 8 × 3 = 24. The capacities of 𝑆𝑖

𝑣 
and 𝑆𝑖

𝑐 were 3 and 2, respectively. There were 𝑁 = 4 servers 
in the network, thus, |𝑆| = 4 × 2 = 8. The number of time 
slots, 𝑇 , was 10. The values of 𝑝(𝑣) were randomly chosen, 
and the resource demands of VNFs at each time, 𝑡, (𝑑𝑣(𝑡)) 
were randomly chosen from 0.1 (low), 0.5 (middle), and 1 
(high). When the number of active chains and active NFs in 
the chains was smaller than 8 and 3, respectively, the gap was 
filled with padding zeros. 𝑙(𝑠𝑎, 𝑠𝑏) was defined as the sum of 
hop counts and connection overheads. Hop counts are defined 
by the shortest paths from 𝑠𝑎 to 𝑠𝑏 in the topology shown in 
Fig. 1. The connection overheads are 0, 0.4, and 0.6, which 
correspond to cases in which both of 𝑠𝑎 and 𝑠𝑏 are in VMs, 
when one is in a VM and the other is in a container, and when 
both are in containers, respectively. The QoS requirements of 
SF chains (𝛼𝑓 , 𝛽𝑓 , 𝛾𝑓)  were randomly selected from ((0.5, 
0.2, 0.1), (0.15, 0.05, 0.05), and (0.05, 0.01, 0.01)). These 
represent expensive, moderate, and low-price services, 
respectively. We solved the above optimization problem using 
MATLAB. If the computation time exceeds a 5-min threshold, 
the solution- seeking process is disrupted, and one of the 
feasible solutions is chosen as a provisional solution.  

In the training data, the output data were converted to a 
one-hot vector, as described in the previous section. For 
example, if the NF-𝑣 is deployed to server 5, the output vector 
becomes (0, 0, 0, 0, 0, 1, 0, 0, 0). Note that, the output one-hot 
vector becomes (1, 0, 0, 0, 0, 0, 0, 0, 0), if the demand of NF-
𝑣 is 0. The case in which the first element equals 1 means don’t 
care. We defined the loss function as the sum of the cross-
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entropy loss values, and the ED-RNN model was 
implemented using PyTorch. We set the number of 
input/output sizes from the hidden layers (𝐻) in the GRU cells 
of the encoder and decoder as 𝐻=1,000, which gave the best 
performance among the other values in [800, 2000].  

All 10,000 patterns of training data were used in  random 
order for each epoch. To validate the learning results, we 
generated another set of 1,000 patterns and their optimal 
solutions in the same manner. We repeatedly trained and 
validated the ED-RNN model for 100 epochs. In total, it took 
approximately 30 minutes on an Intel Core i9-10850K and 
Nvidia GeForce RTX 3090. To evaluate the performance, we 
generated an additional 1,000 data patterns.  

Fig. 5(a) shows the evaluation results of the scheduling 
solution obtained from the trained ED-RNN. For comparison, 
the results obtained by the optimization (Opt.) and random NF 
placement (Rnd.) are plotted in Fig. 5(b), which shows the 
average uncomfortability (𝑈(𝑐𝑓)) values. The average values 
of 1,000 trials and the error bars represent the 95% confidence 
interval of the average 𝑈(𝑐𝑓). 𝑈(𝑐𝑓) is the sum of 𝐺(𝑐𝑓), 
𝑀(𝑐𝑓) , and 𝐿(𝑐𝑓) . Therefore, this figure represents a 
breakdown. The values of 𝐺(𝑐𝑓) and 𝑀(𝑐𝑓) are zero in the 
optimization results; thus, the solution provided by solving the 
optimization perfectly avoids resource shortages and unneces-
sary NF migration. Our ED-RNN exhibited the best 
performance at the 60th epoch as it is effective in avoiding 
unnecessary NF migrations at the cost of a slightly increased 
number of resource shortage cases. The migration frequency 
was lower than that of random placement. As a result, the ED-
RNN shows about 30% better performance than random 
placement when we focus on the sum of metrics, 𝑈(𝑐𝑓).  

Fig. 6 shows the average uncomfortability values (i.e., 
expensive, moderate, and low) of each service type. The 
values found by the ED-RNN at the 60th epoch were approx-
imately 28%, 30% and 40% larger than those of the optimal 
solutions, respectively. The results became worse than those 
of the optimization when we focused on the performance of 
expensive services. However, the ED-RNN showed 
remarkable improvement in the cases of expensive services 
when we compared the results to those of the random 
placement. The average uncomfortability value was about 
40% smaller than that of the random placement. 

A performance gap remains between ED-RNN and the op-
timal results. However, the derivation of optimal solutions 
takes a longer time, in the worst case, it takes more than an 
hour. Therefore, to keep pace with dynamically changing 
network conditions in a short period, it is difficult to optimize 

at all. However, the ED-RNN requires only a few seconds to 
find the solutions, and the evaluation results reflect sufficient 
generalizability for SFC management in a short period. 
Therefore, our ED-RNN based approach overcomes the 
critical issue of the optimization methods. Moreover, the ED-
RNN is a practical method of remaining the uncomfortability 
of SF chains that do not exceed 30% larger than that of the 
optimization method. 

VI. CONCLUSION 
The dynamic adjustment of the computational resources 

assigned to NFs in a cloud-native platform is essential for the 
5G/B5G systems. In this study, we investigated the problem 
of NF migration scheduling to satisfy the diverse QoS require-
ments of SF chains against dynamically changing resource 
demands. We first formulated the NF scheduling problem as 
an ILP problem, considering cases in which each SF chain has 
different QoS requirements and when each NF is deployed to 
designated nodes. We showed that the ED-RNN model trained 
with the optimal solutions obtained by ILP has high potential 
to prevent unnecessary NF migrations while guaranteeing low 
latency, and avoiding resource shortages. In a future work, we 
will improve the ED-RNN model architecture by applying it 
to larger topologies and cases with more diverse requirements. 
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