
Intent-Driven Path State Monitoring to Enable
Centralized State-Aware Flow Steering

Christoph Hardegen
Department of Applied Computer Science, Fulda University of Applied Sciences, Germany

Email: christoph.hardegen@cs.hs-fulda.de

Abstract—Running state monitoring for network switches and
links enables the derivation of a path-based data view. Thereby,
various monitoring intents like utilization and latency awareness
can be targeted during data collection. Whereas each of these
objectives relies on a particular set of state metrics, different
monitoring methods may be run to gather the data basis
serving as decision input for subsequent analysis purposes. In
addition, path conditions have an impact on the state observed
for individual packet streams being forwarded along a specific
path. While path level state data is of relevance, e.g., to evaluate
past load ratios in order to run state-aware and efficient path
determination, flow level state helps to monitor flow experience
conditions like achieved throughput or perceived latency, e.g., to
track the compliance with flow-based requirements. This paper
presents a modular architecture for path state monitoring that
considers port counter query, network probing and in-band net-
work telemetry as methods for demand-driven data collection and
focuses on utilization and latency awareness as monitoring intents.
State data is collected by a centralized controller in collaboration
with distributed modules deployed in a switch’s data plane to
run data tracking, wherefore programmable switches are used
as operational basis to ensure a flexible monitoring protocol.
Evaluations show that continuously collected data snapshots
allow to track accurate path state trends that – w.r.t. path state-
aware traffic steering – can be leveraged to improve flow-based
load distribution across available path capacities and to resolve
inefficiencies like imbalanced path load or congestion.

Index Terms—Path Monitoring, Flow Experience, Monitoring
Intent, Flow Steering, Programmable Switches

I. INTRODUCTION

The state of existing network routing and forwarding paths
is defined by the state of each contained switch and link.
Consequently, to analyze a path-based state view, data has
to be collected for each network element and afterwards
combined to determine state data describing entire paths.
Continuous and recurring data collection at periodic time
windows allows to obtain current state data snapshots and to
derive past trends from respective data sequences, whereby
the considered interval affects data granularity. While state
can be represented by various metrics, e.g., utilization ratios
or latencies, different monitoring methods may be run for
data collection. A particular set of metrics describes a specific
state context that corresponds to a data acquisition objective
like utilization or latency awareness. These monitoring intents
enable demand-driven state data views that can subsequently
be leveraged as analysis input for state-aware network man-
agement tasks like flow-based routing and forwarding.

In the context of network performance management, ob-
tained state data snapshots and respective trends for path uti-

lization and latency can be used for proactive flow steering or
reactive resteering decisions. For example, because Equal-Cost
Multi-Path (ECMP) routing does not consider dynamic path
states to map arising flows to available path capacities, traffic
volumes assigned to certain paths may vary unevenly, leading
to inefficient load distribution. To tackle this, state snapshots
can be analyzed to determine more sophisticated flow-based
forwarding paths, i.e., by running weighted path selection
w.r.t. load levels observed during past collection iterations
or choosing the least loaded path, resolving conditions like
utilization imbalance, high path load or congestion.

In addition, the state of a particular path affects the transport
of flows being routed and forwarded on it. Collecting state
metrics for single flows, e.g., achieved throughput rates or
experienced latency, allows for more granular monitoring of
individual packet streams w.r.t. existing path state conditions.
As an example, tracked flow properties provide insights re-
quired to rate flow experiences impacted by determined routing
and forwarding decisions, e.g., to evaluate flow requirements
and corresponding compliance.

Since programmable switch architectures offer a reconfig-
urable data plane, path state monitoring strategies can be
flexibly deployed while dynamic control is supported through
exposed runtime APIs. Whereas being able to track fine-
grained state metrics at packet level, approaches are enabled
to combine different data collection methods to provide the
data basis for downstream analysis tasks. While programmable
switch devices support established state monitoring concepts
like port counter query, they also enable mechanisms like
network probing and In-band Network Telemetry (INT) due
to advanced packet processing capabilities.

This paper presents a path monitoring approach entitled
PathMoni holding the following main contributions:
• An intent-driven strategy for centralized path state tracking

is proposed. Monitoring intents such as utilization and la-
tency awareness are introduced as data collection objectives
enabling to consider specific state contexts as decision input
for subsequent state-aware analysis. While each intent relies
on particular state metrics, port counter query, network
probing and INT are run to provide data views, whereby
data acquisition is entirely based on raw packet exchange.

• Based on the use-case of centralized, path state-aware flow
steering, the benefit of leveraging state data for proactive
and reactive path determination decisions is outlined.

• The code base is publicly available to ensure reproducibility.

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

352



II. RELATED WORK

[1] proposes an architecture to monitor switch and link
states. While INT is run for data collection, obtained network
state data views are leveraged for centralized traffic scheduling
to reactively eliminate experienced congestion. Compared to
[1], this paper introduces a modular architecture that is com-
prised of different data acquisition methods and supports mul-
tiple monitoring intents that can be considered for subsequent
state-based analysis like efficient flow steering. [2] presents an
architecture for intelligent network management. Whereas INT
is considered as data collection technique, traffic engineering,
which also includes flow steering tasks, is described as use-
case scenario. The path monitoring approach presented in this
paper can be integrated into the data collection part of this
architecture to respect the concept of monitoring intents while
supporting different data acquisition methods.

[3] and [4] introduce a network telemetry system that
relies on probe packets to collect state data for switches and
links. Based on telemetry requirement policies specified for
a particular network management application, probes traverse
an intended path using source routing to gather corresponding
state metrics on it. The data acquisition approach outlined
in this paper also includes probing as one collection method
to provide path state data views, whereby switch-local probe
replication is run to achieve timely full topology coverage.
The concept of demand-driven data tracking and gathering is
also the same as for [3] and [4], wherefore monitoring intents
describing a particular data collection objective are introduced.

Data plane counters are not only used to track switch port
states but also to measure per-flow ones [5] [6]. This paper
adapts the use of counters to account volume metrics for both
link and flow level. While probing and INT are inherently
based on raw packet exchange to gather data, port counter
queries are also decoupled from runtime APIs such that the
entire data acquisition relies on pure packet sharing.

[7] and [8] propose distributed utilization-aware traffic
scheduling schemes to improve ECMP. Both methods run at
data plane level entirely, whereby [7] selects forwarding paths
based on least utilization and [8] applies weighted path deter-
mination w.r.t. observed load levels. In addition, approaches
like [9] and [10] confirm that a centralized state data view,
e.g., based on collected flow statistics or link utilization,
helps to resolve inefficiencies that arise from ECMP-based
traffic distribution, e.g., to rebalance observed load levels and
avoid congestion. While the motivation for efficient traffic load
distribution is common with aforementioned works, this paper
runs proactive and reactive utilization- and latency-aware flow
steering at a centralized controller, which is considered as use-
case for centrally collected path state data snapshots.

III. USE-CASE: PATH STATE-AWARE FLOW STEERING

A set of programmable switches acting as routers in collab-
oration with an assigned controller maintain five paths P1 to
P5 between edge switches SE,1 and SE,2 connecting multiple
host networks and forwarding a variety of flows (Figure 1).

Since each path has one transit hop ST,1 to ST,5, paths are
of equal costs in terms of hops and enable multi-path routing.

The centralized controller platform consists of a Path State
Monitor and a Flow Steering Engine. The first runs state
monitoring for switches and their links to derive path level
views, whereby data is tracked and collected in collaboration
with associated switches. The second operates flow-based path
determination and programming on affected switches.

First, a routing decision is required if a flow arises and
the controller receives a Flow Steering Request from an edge
switch (proactive behavior). Second, the controller contin-
uously evaluates obtained path state data at periodic time
windows and can send a Flow Resteering Request if non-
optimal network state conditions like high load, imbalance or
congestion are revealed (reactive behavior).

Host
Network

Flow Steering Request

Host
Network

P1

P2

P3

P4

P5

Flow Steering Engine
Flow Resteering Request

Path State DataPath State Monitor

SE,1 SE,2

ST,5

ST,1

ST,2

ST,3

ST,4

State Data
Monitoring

Flow Path
Programming

Fig. 1: Centralized Path State-Aware Flow Routing.
Consider a set of flows that has to be forwarded from SE,1

to SE,2. Since ECMP leverages multiple paths of equal costs
but does not respect existing state conditions, the distribution
of flow loads across available capacities may be unequal and
hence inefficient. As a consequence, in case of experiencing
high load on a particular path, alternatives may remain consid-
erably less utilized or even entirely unused (load imbalance).

Running PathMoni allows to include obtained state data
metrics into the flow steering and resteering process to achieve
a more efficient traffic distribution. Collected path states serve
as decision basis for a centralized and state-aware flow control
that supports multi-path routing using paths of equal cost.
Different routing objectives relying on a particular monitoring
intent are distinguished while selecting forwarding paths:
Whereas observed path load w.r.t. utilization awareness is con-
sidered as primary routing target, experienced path delay w.r.t.
latency awareness can be included as secondary objective.
The rationale behind this two-staged approach is based on the
interdependence of both state metrics.

Also, flow-based state conditions like achieved throughput
or perceived latency that arise in response to programmed
steering decisions can be measured using PathMoni.

IV. PATHMONI APPROACH

A. High-Level System Overview

PathMoni performs distributed data tracking and central-
ized collection to provide path state data views. Therefore,
the system architecture is comprised of a central PathMoni
Monitor that is assisted by PathMoni Modules deployed as
part of the packet processing pipeline on switches (Figure 2).
The monitor combines three sub-monitors each having an
individual switch module assigned and operating a particular
monitoring method to collect different state metrics.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

353



PathMoni Protocol PathMoni Protocol

PathMoni Monitor (Sub-Monitors)
Port Counter Probing INT

Topology 
Database 

Host
Network

Host
Network

Switch

SSS
...

Packets
...

Packets
Edge Switch Transit Switch Edge Switch

...
Controller

PathMoni Modules
Port Counter Probing INT

Flow 
Database 

PathMoni Modules
Port Counter Probing INT

Fig. 2: PathMoni Deployment Architecture.

While a Port Counter and Probing Monitor allow to track
path load states enabling utilization awareness, the latter also
permits to consider latency measures for latency awareness.
Whereas an INT Monitor supports both path monitoring pur-
poses as well, it also allows to track flow level state conditions
treated as flow experience. The aforementioned objectives are
understood as monitoring intents that focus on specific state
contexts. Each intent is described by a set of state metrics
gathered during data collection, whereby the obtained data
basis serves as decision input for state-aware analysis tasks.

Therefore, any combination of the proven monitoring meth-
ods port counter query, network probing and INT can be
deployed. Each strategy not only enables to collect different
state data metrics but also has individual deployment proper-
ties that can be respected for certain management scenarios.
For example, network probing and INT run in-band, either
leveraging explicit packets or using regular ones as carriers
implicitly, whereas counter query can be run out-band.
PathMoni runs window-based monitoring, whereby data

collection is continuously initiated at periodic time intervals.
State data obtained during a monitoring iteration corresponds
to snapshots that describe a path element at a particular point
in time or on average for a continuous timeframe. Consecutive
snapshots enable to derive past data trends over time while the
used collection window length defines data granularity.

To permit communication between sub-monitors and asso-
ciated modules, management channels for API calls towards
exposed switch runtime environments used for module config-
uration and for raw packet exchange used for data sharing are
established over trusted and secure out-of-band networks. The
latter channel corresponds to a direct physical or virtual link,
i.e., connected to a programmable device’s CPU port, whereas
the first only requires socket endpoint connectivity.

Besides the sub-monitors, PathMoni Monitor has a Dis-
covery System as well as a Topology and Flow Database.
The first handles switch registration and configuration sharing.
While the second maintains switch and link states as part of a
digraph-based network model, the third holds flow level states.

B. Path State Metrics

Path state data metrics are gathered for each switch and link
individually. Afterwards, values are combined to form path
level ones. Table I lists the metrics that are supported to respect
the monitoring intents of utilization and latency awareness.

Besides packet timestamps and metadata provided by the
switch platform, PathMoni relies on tracked counter objects
for data collection. Packet and byte counters are maintained
for each switch port while separate instances for ingress and

TABLE I: PathMoni State Metrics.
Metric
Type State Metric State Metric Source

PathMoni Sub-Monitor
Port

Counter Probing INT

Raw
Values

Packet Count Switch Counter Objects 3
Byte Count 3

Packet Timestamps Switch Clock 7 3 3
Hop Latency Switch Metadata 7 3 3

Derived
Values

Average
Throughput

Packet Rate Packet & Byte Counter, 3
Bit Rate Data Collection Interval 3

Utilization Ratio Throughput, Capacity 3
Link Latency Packet Timestamps 7 3 3

egress direction are used. Each directed counter allows to
derive the state of the ingress or egress link a particular port
belongs to. In addition, in case of tracking flow level state
conditions, counter objects hold data for single packet streams.

C. Sub-Monitor Operation

1) Port Counter Monitor & Module: While the switch
module maintains counter objects based on observed packet
data, the monitor collects tracked values for each port on
associated switches at a predefined time interval wPC . Based
on wPC and counter data, average link throughput rates and
utilization ratios for the last collection window are calculated,
whereafter combined path level states are derived.

Decoupled from any runtime API, one port counter request
packet per switch is asynchronously injected by the monitor
to query counters from the module running packet replication
and manipulation before returning response packets per switch
port. Besides this bidirectional exchange, the module can also
push packets containing counter values directly after wPC

elapses without previously receiving a request packet.
2) Probing Monitor & Module: At periodic time frames

denoted by wPB , the monitor injects probing packets into each
associated switch. After the module receives the packet, it is
replicated for each egress port to collect local state data and
store it in the packet before it is forwarded to a neighbor
switch. Accordingly, packet timestamps for ingress and egress
processing, measured hop latency as well as maintained packet
and byte counter values are determined and added. As soon
as the packet arrives at the neighbor switch, it is redirected to
the assigned monitor after collecting and adding state metrics
for the local ingress port as well. Back at the monitor, link
throughputs, utilization ratios and latencies are determined,
whereby the latter are computed as difference between the
egress and ingress timestamps tracked for successive switches.
Subsequently, derived path state metrics for the last probing
window are determined using hop and link state data.

Using this local packet replication-based probing method,
each probe traverses exactly one link and two connected
switches. While the first switch acts as probing source and
the second as probing sink, both run probing transit behavior.

3) INT Monitor & Module: Besides state data tracking, the
module runs the following role-specific processing behavior:

An INT source decides on whether to apply INT-based
data collection to a packet or not, whereby only packets
that ingress on host network ports are considered. Therefore,
an INT flag is set in packet headers to indicate subsequent
INT processing. An INT duration timer wINT that defines
a recurring collection interval serves as trigger mechanism.
Thus, each time the timer expires, state data is collected for the

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

354



path or flow that a particular packet is forwarded on or belongs
to respectively. For this, the INT duration timer is individually
maintained on each egress port or observed flow. While the
first are identified by port IDs, hashes that are computed based
on a flow’s 5-tuple data are used for tracking of the latter.

An INT transit processes incoming INT packets and writes
local state data to it before forwarding the packet to a neighbor.
Thereby, ingress and egress port counters as well as packet
timestamps and experienced hop latency are recorded.

After reaching an INT sink, the regular packet is replicated
to build an INT report including collected state data that is
shared with the associated monitor while previously added INT
data is removed from the original packet before it is forwarded
to the intended destination. At the monitor, report data is used
to determine link latencies, throughputs and utilization ratios
before combined path state data metrics are derived.

V. PATH STATE-AWARE FLOW STEERING

First, the approach acts proactively, whereby maintained
path state views, i.e., trends reflected in the last collected data
snapshot, are analyzed and respected each time a flow steering
decision is required (Algorithm 1). Path determination depends
on the chosen routing target: For utilization awareness, either
the least loaded path is selected or a weighting method w.r.t.
utilization levels included in the last state snapshot is applied
(weighted ECMP). In case of considering both utilization and
latency awareness, a candidate set of paths having similar
load is determined, whereby ∆U states the permitted deviation
level w.r.t. the least loaded path, whereafter the one ensuring
smallest latency is selected from remaining candidates.
Algorithm 1 Proactive Path State-Aware Flow Steering.

1: get simple paths between source & destination switch
2: query path state views from maintained data
3: if utilization and not latency awareness then
4: select least loaded path or run weighted ECMP
5: if utilization and latency awareness then
6: obtain utilization ratio of least loaded path
7: for all path candidates do
8: if load ratio exceeds ∆U w.r.t. least loaded path then
9: filter path from candidates

10: select path with least latency from remaining candidates
11: program flow path on affected switches

On the one hand, the primary steering target respects path
utilization ratios and aims at balanced and thus efficient load
distribution across available path capacities. On the other hand,
the secondary target additionally respects latency conditions.

Second, since proactive flow steering may still result in
imbalanced load levels for alternative paths, the approach also
operates reactively in response to high path utilization ratios
(Algorithm 2). To handle these potential inefficiencies and
avoid or solve congestion scenarios, each time a state snapshot
is collected, the included data view is evaluated to reveal paths
whose load levels exceed the threshold TU .

Flow metadata is assumed to be available for analysis, which
can be accomplished by running a flow monitoring system.

Algorithm 2 Reactive Path State-Aware Flow Resteering.
1: query switch link utilization from maintained data
2: rank links w.r.t. load ratios in descending order
3: for all ranked switch links do
4: if link utilization ratio > TU then
5: query flow metadata for streams traversing the link
6: sort flows based on throughput in descending order
7: for all sorted flows do
8: get simple paths from source to destination switch
9: rank candidates based on load in ascending order

10: if least loaded path has sufficient capacity and
no overload w.r.t. TU results then

11: if utilization and not latency awareness then
12: select path with least utilization as alternative
13: if utilization and latency awareness then
14: get paths with close load w.r.t. ∆U and

able to handle shifted load w.r.t. TU

15: select path with least latency as alternative
16: program alternate flow path on affected switches
17: update load ratio for links of old and new path
18: if reduced link utilization ≤ TU then
19: continue analysis with next switch link

VI. EVALUATION

A. Experimental Environment

The network given in Figure 1 is deployed using behavioral
model version 2 (bmv2) as virtual switch. Python scripts run
the behavior of sub-monitors and a flow routing controller,
whereas switch modules are developed as P416 program1.
The topology is reconstructed as digraph used to initialize
the Topology Database implemented using NetworkX library
while a dictionary-like object serves as Flow Database.

A CPU port link and exposed runtime APIs, i.e., thrift
and gRPC message interfaces, are leveraged as management
channels between monitors and modules. While Scapy library
is used for packet sniffing and parsing as well as construction
and sending operated at monitors, a runtime library enables
module configuration. Traffic profile generation and replay are
implemented in separate scripts with iperf being used to gen-
erate flows with constant rates respecting mean throughputs.

Besides the proof-of-concept implementation framework, a
script-based simulation approach was developed due to limited
bmv2 performance. While the testbed is sufficient to run exem-
plary experiments for the proactive and reactive flow routing
methods (Section VI-B3), the decoupled scripts allow a more
scalable evaluation for the proactive one (Section VI-B2).

B. Experiments

1) Path State and Flow Experience Tracking: Port counter
query and probing are run to monitor path load and latency
trends, wherefore intervals wPC and wPB are set to 1 s. While
a simple traffic pattern is replayed, flow hash-based ECMP
is used to distribute flows across paths P1 to P5 that have
artificially imposed delays of 100 to 500 ms. The traffic profile

1https://gitlab.cs.hs-fulda.de/flow-routing/cnsm2022/path monitoring

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

355



0 60 120 180 240 300

Elapsed Time (s)

100

300

500

L
at

en
cy

(m
s)

P1 P2 P3 P4 P5

Fig. 4: Path Latency Monitoring (Probing).

0 10 20 30 40 50 60

Elapsed Time (s)

100

300

500

L
at

en
cy

(m
s)

F1 F2 F3 F4 F5

Fig. 5: Flow Latency Monitoring (INT).

0 10 20 30 40 50 60

Elapsed Time (s)

10

30

50

R
at

e
(M

b
it

/s
) F1 F2 F3 F4 F5

Fig. 6: Flow Throughput Monitoring (INT).
specifies a constant rate of 10 flows/s for an experiment time
of 300 s, whereby duration and volume properties are sampled
from an exponential decreasing distribution with mean values
of 10 s and 10 Mbit/s. Though parameters are exemplary, they
are sufficient to prove the feasibility of sub-monitor methods.

As Figures 3 and 4 illustrate, path load and latency are
precisely tracked over time. Thus, PathMoni sub-monitors
enable an accurate data view for path state-aware analysis.

0 60 120 180 240 300

Elapsed Time (s)

0

50

100

150

200

L
o
a
d

(M
b
it

/
s)

P1 P2 P3 P4 P5 Sum Optimum

Fig. 3: Path Utilization Monitoring (Port Counter Query).
In addition, INT is run to exemplarily measure the flow

experience in terms of achieved throughput and observed
latency, whereby wINT is specified as 1 s. Therefore, 5 flows
F1 to F5 are bound to respective paths P1 to P5 using an
ECMP round robin distribution strategy. Again, delays of 100
to 500 ms are imposed on the paths. Flows are generated with
intended throughput rates of 10 to 50 Mbit/s.

Figures 5 and 6 show that PathMoni sub-monitors not
only allow to track path- but also flow-related state conditions.
Since flows with higher throughputs are affected by increased
delays, measured trends outline a more instable behavior.

Using data collection intervals of 5 and 10 s is associated
with coarser-grained trends hence impacting data granularity.
Running probing and INT to track path loads provides similar
results compared to port counter query. Likewise, running INT
for latency estimation delivers similar outcomes as probing.

2) Proactive Path State-Aware Flow Steering:
Flow Set Generation

To respect real-world traffic characteristics for flows fed as
analysis input, the following steps are performed to build a
realistic flow set: First, about 58 mio flows are extracted from
two flow datasets that were collected during capture periods of
one week at central switches in the data center of a university
campus network [11] [12]. Therefore, nearly equal shares of
flow data describing packet streams observed during day- and
nighttime (starting 2 pm and 2 am respectively) are selected
for each weekday in the capture periods and afterwards merged
to form a comprehensive and diversified flow set. Second, to
focus on multi-packet flows, those that transmit just one packet

and thus do not have a duration and average throughput rate
as well as ones individually exceeding assumed path capacity
limits of 1 Gbit/s are filtered. As a consequence, the overall
set is reduced to approximately 17 mio flow data samples.

The rate of flows that are generated each second follows a
Poisson distribution, whereby the considered mean is set to
4 000 flows/s. While this is the approximate average number
of exported flow data records per second observed during peak
times at daytime on most weekdays in the aforementioned
university network [11], it allows to estimate the arising flows
per second in a practical network environment. At nighttime,
this rate drops to about 500 such that a mix of both relates
to ≈2 250 flows/s. Having the flow count to be replayed each
second, the starting times of individual flows are evenly dis-
tributed within the interval of 1 s. Flow 5-tuple data, duration
and volume as well as derived average throughput properties
are sampled from the above flow set. Because an experiment
lasts 600 s, about 2.4 mio flows are taken from the overall set.
Since an experiment is run 10 times, 10 diversified subsets are
extracted based on individual randomization seeds. Although
these sets may have a particular proportion of common flows
included, their order of occurrence regarding assigned starting
times varies and thus preserves decent diversity.

Flow Set Distribution
Obtained flow sets are replayed and distributed across 5 non-
overlapping paths. Besides selecting the least loaded path and
running weighted ECMP w.r.t. utilization trends observed in
gathered path state data snapshots, flow hash-based ECMP
is run as reference for comparison. During analysis, the
data collection interval is varied between 1, 5 and 10 s to
evaluate different granularity levels for utilization-aware path
determination. Outcomes from 10 experiment iterations with
separate flow sets are averaged, hence providing aggregated
and smoothed results. To enable comparison, the minimum and
maximum path load levels over time are determined and their
derived differences illustrated as trend in Figure 7 for each
considered flow distribution strategy separately. In addition,
Table II summarizes mean, median and standard deviation
scores for the measured differences over time.

Compared to ECMP results, taking past utilization with a
data collection granularity of 1 s into account for flow-based
path determination helps to significantly balance load levels on
average over time and to reduce the occurence of congestion.
While closer path saturation is ensured, choosing the least
loaded path and leveraging the utilization-aware weighting
method achieve quite similar trends. As a consequence, re-
specting tracked utilization during path determination enables
to distribute arising flow loads more evenly and efficiently.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

356



0 120 240 360 480 600

Elapsed Time (s)

0.00

0.25

0.50

0.75

1.00

L
oa

d
(R

a
ti

o)

Average Load
ECMP

Least Path Load
Weighted Path Load

(a) Data Collection Granularity: 1 s.

0 120 240 360 480 600

Elapsed Time (s)

0.00

0.25

0.50

0.75

1.00

L
oa

d
(R

at
io

)

Average Load
ECMP

Least Path Load
Weighted Path Load

(b) Data Collection Granularity: 5 s.

0 120 240 360 480 600

Elapsed Time (s)

0.00

0.25

0.50

0.75

1.00

L
oa

d
(R

at
io

)

Average Load
ECMP

Least Path Load
Weighted Path Load

(c) Data Collection Granularity: 10 s.
Fig. 7: Minimum & Maximum Path Load Ratio Differences Over Time.

First, for weighted path determination, increasing the time
frame between obtained state data snapshots to 5 or 10 s
shows quite stable outcomes with slight variations compared to
utilizing an interval of 1 s. Second, for selecting least loaded
paths, increased windows provide more instable and hence
imbalanced path load trends. This is due to the fact that the
higher the interval, the higher the burstiness w.r.t. putting high
load on a single path because only one path is considered for
all decisions until the next snapshot becomes available.
TABLE II: Minimum & Maximum Path Load Differences (%).

Score ECMP Least Path Load Weighted Path Load
1s 5s 10s 1s 5s 10s

Mean 28.34 15.01 23.03 33.80 15.80 16.80 18.24
Median 26.54 14.35 21.29 29.75 14.55 15.94 17.37
Std Dev 12.33 6.04 11.02 17.25 6.80 6.55 7.13

Although the considered flow rate and the mixed data
proportions from both day- and nighttime correspond to the
more challenging scenario, running above experiments for both
times of day separately using respective data and individually
related flow rates provides similar result trends though with
varying dimension. The same applies to running the experi-
ments not for data from multiple but single capture days.

3) Reactive Path State-Aware Flow Resteering: State data
collection is run at periodic intervals of 10 s and subsequently
triggers utilization snapshot analysis. Whereas path capacities
are intentionally limited to 100 Mbit/s, an individual set of
4 flows is generated after 10 and 30 s likewise to cause
exemplary aggregated traffic levels (Figure 8). In the first
batch, flows F1 to F4 having constant throughputs of 30, 10,
40 as well as 10 Mbit/s are distributed and bound to paths P1
to P4 respectively. The resulting load ratios remain below the
considered threshold TU = 0.9. Once the second batch with
flows F5 to F8 having intended rates of 70, 10, 60 as well as
10 Mbit/s is started and again distributed across P1 to P4, P1
and P3 experience high load since capacity is entirely filled.

0 20 40 60 80 100 120

Elapsed Time (s)

0.00

0.25

0.50

0.75

1.00

L
o
ad

(R
at

io
)

P1 P2 P3 P4 P5 Threshold

Fig. 8: Path Load Ratios for Reactive Flow Resteering Scenario.
After utilization analysis is run at 40 s, arising congestion

on both paths is discovered. Hence, flows F5 and F7 are placed
on alternative paths P5 (that is entirely unused) and P4 (that
is less utilized) able to carry the new flow load.

As a result, the evaluation of obtained path state data
snapshots and downstream reactive flow resteering allow to
reveal paths experiencing high utilization and partly shift
observed traffic loads to alternatives if possible. This enables
to balance load differences and to avoid or resolve congestion
conditions, which in turn is also associated with improved flow
experiences w.r.t. forwarded packet streams.

VII. DISCUSSION

PathMoni is an intent-driven approach for centralized
path state monitoring. The inclusion of different sub-monitors
allows to track various state metrics at switch and link level
that are combined to form path level metrics. In addition,
flow-based state conditions that apply as packet streams are
forwarded along topology paths can be measured to evaluate
the observed flow experience. During data acquisition, state
metrics are collected with regard to monitoring intents that
focus on a specific state context like utilization or latency
awareness. While an intent enables state-aware analysis for
particular network management tasks, the corresponding data
basis serves as decision input. Since, besides a modular
monitor architecture, programmable switch platforms are used
as operational basis to support centralized controller operation,
a flexible state monitoring protocol is ensured. This way, the
set of tracked state data can be dynamically adapted to respect
further monitoring intents like packet loss or drop awareness.

As PathMoni runs state data tracking based on maintained
counter objects, packet processing is slightly delayed.

Because metrics are gathered at regular intervals, the used
window length affects data granularity available for subsequent
snapshot analysis. Experiments for different switch and topol-
ogy sizes, i.e., port and device counts, confirm that timely data
collection at second scale is possible for both path and flow
level tracking while running PathMoni sub-monitors.
PathMoni leverages direct and raw packet exchange be-

tween a monitor and switch module for data collection. While
this is a lightweight and portable solution, i.e., decoupled
from any particular runtime API, reliable operation depends on
efficient packet sniffing and processing behavior at controller
level. Whereas probing and INT are based on this data retrieval
method inherently, for port counter query, compared to using
runtime APIs, this pure packet sharing reduces the number of
exchanged messages on the control path and provides stable
query times for increased switch port counts. For network
probing, compared to traversing a Eulerian path, the included
local probe replication-based strategy enables stable query
times for increased switch counts. At the same time, the

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

357



number of individual probing packets that have to be injected
and subsequently processed at the monitor rises. This again
requires scalable processing capabilities at the monitor to
ensure reliable operation and thus consistent state data views.

The centralized path state-aware flow steering approach
outlines a clear network management use-case that is based
on collected state data views. Evaluation experiments confirm
the individual benefit of the proactive and reactive behavior:

First, leveraging collected path state data snapshots for
utilization-aware path determination enables more sophisti-
cated steering decisions that allow to balance arising traf-
fic loads more efficiently across available path capacities.
Thereby, the granularity of obtained state data trends affects
the distribution quality w.r.t. resulting path utilization ratios.
As a consequence, the data collection interval has to be
specified as low as possible to ensure stable and balanced
path load levels. At the same time, running centralized path
selection and programming is associated with additional delay.
Whereas initial packet redirection and intermediate processing
at the controller contribute to this, the latter can be optimized
by efficient control flow implementation. However, streams
may be subject to slight proportions of initial packet drops
until a forwarding path is available.

Second, the reactive operation in response to high path
load allows to resolve or avoid congestion and to rebalance
inefficient traffic load distributions that still may stem from
initially derived proactive decisions. Shifted path loads also
contribute to increased flow experiences for packet streams
that are forwarded along intensively utilized paths. One chal-
lenge of leveraging flow data to identify streams that offer
potential for efficient resteering is that available data views
may be distorted in case of congestion, hence moving flows
might lead to overload on alternative paths as well. Also,
shifting particular flows enables others that were previously
slowed down due to high utilization to increase their rate which
may again cause congestion. This calls for an early analysis
of potential overload conditions, which can be achieved by
specifying the load ratio threshold accordingly.

Although performed evaluation experiments for proactive
and reactive flow steering just consider the primary routing
objective of utilization awareness, a combined approach that
also takes latency awareness as secondary one into account is
enabled. Therefore, PathMoni provides the data basis that
allows to respect both metrics and corresponding conditions
during path determination and subsequent programming.

In addition, the centralized flow steering approach can be
combined with distributed schemes to form a hybrid solution:
On the one hand, header criteria- or hash-based filtering can
be applied at switch level to selectively request proactive
routing decision support for application types that are subject
to a particular monitoring intent. This differentiated behavior
enables to ensure packet forwarding over a certain path while
respecting best possible flow conditions and tracking their
compliance. On the other hand, continuous state evaluation
and reactive traffic resteering can help to balance occurring
inefficiencies like incompliance with flow requirements.

VIII. CONCLUSION AND FUTURE WORK

PathMoni enables an intent-driven monitoring approach
to collect path-based state data views. While state metrics are
collected as periodic data snapshots, gathered data trends serve
a particular monitoring intent considered as decision input for
subsequent state-aware data analysis. Therefore, a controller
architecture combining the data acquisition strategies of port
counter query, network probing and in-band network telemetry
is introduced. Centralized sub-monitors run a flexible data
tracking and collection protocol in conjunction with distributed
modules deployed in a switch’s data plane. While granular
monitoring is ensured, data sharing is based on raw and
direct packet exchange. Besides path level, state conditions
for packet streams at flow level can be tracked and evaluated.

For example, obtained state data can be leveraged for cen-
tralized path state-aware flow steering: First, proactive path de-
termination based on past state trends to distribute arising traf-
fic load across available path capacities efficiently is enabled,
i.e., by selecting the least loaded path or applying a utilization-
aware weighting method. Second, reactive resteering in case of
experiencing high load or congestion on particular paths helps
to rebalance or resolve these inefficiencies. Similar state-aware
analysis is possible while respecting not only utilization but
also latency measures in a combined manner.
PathMoni is planned to be ported onto hardware switches

run in a real-world network to analyze operational behavior.
REFERENCES

[1] J. Geng, J. Yan, Y. Ren, and Y. Zhang, “Design and Implementation
of Network Monitoring and Scheduling Architecture Based on P4”,
ACM International Conference on Computer Science and Application
Engineering, 2018.

[2] J. Hyun and J. W. K. Hong, “Knowledge-Defined Networking using
In-band Network Telemetry”, Asia-Pacific Network Operations and
Management Symposium, 2017.

[3] Z. Liu, J. Bi, Y. Zhou, Y. Wang, and Y. Lin, “NetVision: Towards
Network Telemetry as a Service”, IEEE International Conference on
Network Protocols, 2018.

[4] Y. Lin, Y. Zhou, Z. Liu, K. Liu, Y. Wang, M. Xu, J. Bi, Y. Liu, and J. Wu,
“NetView: Towards On-Demand Network-Wide Telemetry in the Data
Center”, IEEE International Conference on Communications, 2020.

[5] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A Better NetFlow for
Data Centers”, USENIX Symposium on Networked Systems Design and
Implementation, 2016.

[6] L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho, “FlowStalker:
Comprehensive Traffic Flow Monitoring on the Data Plane using P4”,
IEEE International Conference on Communications, 2019.

[7] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable Load Balancing Using Programmable Data Planes”, ACM
Symposium on SDN Research, 2016.

[8] J.-L. Ye, C. Chen, and Y. Huang Chu, “A Weighted ECMP Load Balanc-
ing Scheme for Data Centers Using P4 Switches”, IEEE International
Conference on Cloud Networking, 2018.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks”, USENIX
Symposium on Networked Systems Design and Implementation, 2010.

[10] O. M. Mon and M. T. Mon, “Flow based Traffic Scheduling in Soft-
ware Defined Network”, IEEE International Conference on Advanced
Information Technologies, 2020.

[11] C. Hardegen, B. Pfülb, S. Rieger, A. Gepperth, and S. Reißmann,
“Flow-based Throughput Prediction using Deep Learning and Real-
World Network Traffic”, IEEE International Conference on Network
and Service Management, 2019.

[12] C. Hardegen, B. Pfülb, S. Rieger, and A. Gepperth, “Predicting Network
Flow Characteristics using Deep Learning and Real-World Network
Traffic”, IEEE Transactions on Network and Service Management, 2020.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

358


	46



