
VM Failure Prediction with Log Analysis using
BERT-CNN Model

Sukhyun Nam, Jae-Hyoung Yoo, and James Won-Ki Hong

Department of Computer Science and Engineering, POSTECH, Pohang, Korea
{obiwan96, jhyoo78, jwkhong}@postech.ac.kr

Abstract—In this study, we present a failure prediction study of
VMs and VNFs in an NFV environment. For the proof of concept,
we designed a machine learning model to predict the failure with
log analysis and observed the cases where the failure-related logs
do not exist in the failed VM, but in the server, or in other VMs
operating on the same server. Therefore, in this paper, we propose
a model which analyzes the logs of all the related VMs and the
server and predicts the possibility that any of the VMs operating
on the server will fail. To reduce the huge size of the logs collected
from the server and VMs, we propose a pre-processing and
tagging method that can improve the performance of our model.
In addition, we designed a machine learning model using CNN
with BERT, which has performed SOTA in various fields of NLP,
to receive logs as input and calculate failure probabilities for the
next 30 minutes. To validate the proposed model, we collected
failure-related logs and normal logs from an OpenStack testbed,
and the experimental result shows that the proposed model can
predict the failure of VMs operating in the server with an F1
score of 0.74.

Index Terms—VNF, failure prediction, machine learning, log
analysis

I. INTRODUCTION

In the 5G era, network operators are required to provide
various advanced services according to rapidly changing strin-
gent requirements. Fortunately, technologies such as software-
defined networking (SDN) and network function virtualization
(NFV) have been adopted to 5G, allowing service providers
to respond quickly to the changes in demand for services and
reduce CAPEX/OPEX. In NFV environments, each network
function is provided in the form of virtualized network func-
tions (VNFs) running on virtual machines (VMs), so VNF and
VM management are getting more important. In particular,
when an abnormal state or failure occurs in a VM, the VNF
operating in the corresponding VM may not be operated,
and service may be disconnected, and thus, it is essential to
develop a technology that predicts and responds to this in
advance. However, it is not easy to predict and respond to
VM failures because there are so many causes and symptoms.

Failure is caused mainly by unexpected errors. Because it is
impossible to build on a complete understanding of the entire
system when designing a service, several factors (e.g., memory
leaks, hardware issues, software bugs, etc.) are often the causes
of unexpected errors. In addition, these small errors lead to
fatal failures in the process of complex error propagation,
making it difficult to pinpoint the cause and reproduce them.
Conversely, however, there is an irony that there is a possibility

that the error propagation process exists after the error so that
we can take action through related symptoms before it leads
to failure.

Traditionally, failure management of network devices has
been based on log messages that are generated unstructured
in real-time in network equipment. Logs are one of the data
that best represents the state of equipment, but most systems
output logs that are unsystematic and difficult to analyze
automatically, so experienced managers are required. For this
reason, some researches are being conducted to automatically
analyze logs of computing equipment and predict and detect
failures or abnormal conditions based on them [1]–[4], but it
remains a very difficult problem.

With the development of machine learning, various prob-
lems that were difficult to solve in the past have been solved.
We can apply machine learning, particularly the techniques
used in Natural Language Processing (NLP) in log analysis.
In our previous work [5], we used Word2Vec word embedding
[6] technique, which is a part of NLP, to convert each word
in logs to the numerical vector to use them as input for the
machine learning algorithm. In this study, we utilize Bidirec-
tional Encoder Represents from Transformers (BERT) [7], a
language model that has recently shown better performance
than word embedding in the NLP area.

In our previous work, we found many cases where the
failure-related logs of VM did not exist in the failed VM but
in other VMs operating on the same server or in the server
logs. This is because the server is a complex system, and the
error or overload of some VMs or the server may lead to bugs
or overload in other VMs. So, in a few cases, a VM failure
could not be predicted only by the corresponding VM log. In
this study, we propose a model that predicts the probability
that any VM operating on each server will fail. Our model
predicts server failure 2 ∼ 30 minutes in advance using all
logs of the VMs operating on the server and the server logs.
The occurrence of server failure means that there is a high
probability that a VM on that server will fail. In this way,
we could confirm that the prediction performance was higher
when targeting the server rather than an individual VM.

This paper includes the following improvements compared
to our previous study [5] that used word embedding to predict
individual VM failures operating in NFV environments.

1) We use BERT instead of word embedding to reflect the
context of the log and respond to a new type of log.

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

331

2) We propose a machine learning model to predict server
failure instead of individual VM failure since the VM
failures are not always caused by the corresponding VM.

Through these two improvements, our new model could pre-
dict the failure of VMs in servers with higher accuracy.

II. RELATED WORK

A. Word Embedding and BERT

In most NLP tasks, many studies use words in a converted
state, which is called word embedding and is generally used
as input for NLP models. So, it is important to keep the
meaning of each word in conversion. Previously, pre-trained
word embeddings based on large corpus such as Word2Vec [6]
were mostly used. However, the word embedding methodology
causes biased results in the pre-training corpus because it does
not change the embedding after pre-training. To improve this,
a language model has been proposed to grasp the context in
the training stage even after pre-training and output different
embeddings even with the same word. Among them, BERT
[7] is a pre-trained language model released by Google in
2018. BERT is evaluated as the most influential language
model by recording state-of-the-art 11 NLP tasks. BERT
can achieve high performance in completely different tasks
by conducting fine-tuning, an additional training process for
parameter readjustment, according to the task to be solved.

BERT divides words into smaller sub-words, uses them as
tokens, and creates embeddings for each token. BERT uses
position embedding and special token called [CLS] to improve
performance on different tasks. Google makes public two pre-
learned BERT models, BERT-Base and BERT-Large, and in
this study, we fine-tuned the BERT-Base model with our log
data and used it. The BERT-Base model includes 12 layers
of Transformer encoders, each with a hidden layer of 768
dimensions.

B. Failure Prediction and Anomaly Detection

Ji et al. [2] predicted the occurrence of network error
messages based on preceding log messages in simulation
environments. They utilized Word2Vec to convert logs to
numeric vectors and used embedding vectors as inputs of
the Convolutional Neural Network (CNN) to predict whether
errors or failures would occur after a certain period of time.
They compared the performance by conducting three machine
learning models: Gated Recurrent Unit (GRU), Long Short-
Term Memory (LSTM), and CNN, and CNN showed the high-
est performance. Due to the limitations of the aforementioned
word embedding-based research, this study did not show high
performance (accuracy was 0.75 when gap lines between the
prediction object and the input log window are 2000).

In addition, there is also a study that detects abnormal con-
ditions based on the occurrence of log keys which are defined
with log corpus by finding specific patterns without converting
logs into vectors [4]. This study used Deep Neural Network
(DNN) to learn log patterns in normal situations, and their
model detected anomalies with the performance of F1-score
0.98 for log datasets generated with OpenStack. However,

these techniques are not preferred over word embeddings or
language model-based methodologies because of the problem
of scalability that requires analyzing new patterns and finding
log keys as the system being used changes.

Our previous study [5] proposed the CNN-based model that
predicts VM failures based on log messages and we tested
them in an OpenStack testbed. We used Word2Vec to use logs
as input. We installed a separate state-checker VM to record
the failure state of each VM in the data collection step and sent
periodic pings to each VM to check that the current network
function is not paralyzed. At the same time, we collected logs
from all VMs and make a word embedding model for log
analysis with Word2Vec. We trained a CNN model to predict
whether the VM would fail after a certain period (gap) of time
by receiving the word embedding matrix from collected logs
as input and whether each VM fails or not as output.

To improve the performance of the model, we checked
whether there was a log related to the failure before each
moment was recorded as a failure, and if there was no involved
log, we excluded that failure record from VM failure history.
In addition, since failure-related logs may exist earlier than gap
+ input window size before the failure moment, we proposed
pre-failure tagging, which tags some windows before failure as
semi-failure and label output values as between 0 and 1, so that
prevent CNN from learning them as normal state-related logs.
Our model shows an F1 score of 0.67 for failure prediction
before 5 minutes. Also, we compared our CNN-based model
with Recurrent Neural Net (RNN) and GRU, and CNN showed
the highest performance. In our new study, made changes to
the data labeling method to learn all the failure-related logs,
which will be explained in the next section.

III. DATA COLLECTION

In this study, we used both the data collected in our previous
study [5] and the data collected from the new testbed. Since the
two testbeds are similar in several aspects, we will explain the
commonalities and differences and explain the two datasets.

A. Testbed

Both the old testbed and the new testbed were configured
based on OpenStack. Figure 1 represents testbeds. The con-
troller node manages the network connection between each
VM of the compute node and establishes SFCs. The compute
node operates servers which include VMs. The old testbed
originally included 3 servers in the compute node, but only the
logs of two servers in the old testbed were used in this study
because one server failed during the data collection process,
and the logs were also lost. Each VM runs a single VNF or
web server. In addition, we set up the state checker VM to
check VM failure every minute with the ping protocol. The
monitoring node serves to store the logs and failure history
data. Logs were collected from each VM through rsyslogd
[8], and they include kernel logs, application logs, systemd
logs, and server application logs like Neutron logs and OVS
logs. The VM failure record was stored in the form of a yaml
file to record the time when the failure occurred.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

332

Fig. 1. Data collection testbed structure

Figure 2 represents a traffic generation scenario for data
collection in a new testbed. We constructed a 5G network
environment in a new testbed for the diversification of output
logs and realistic scenarios. We constructed the 5G network
using Open5Gs [9], an open project to configure 5G private
networks, and all virtual clients in our scenario had to set up
5G UE and RAN via UERANSIM [10] to send HTTP traffic to
the web server. In the old testbed, we allowed HTTP traffic to
be sent directly to the web server through an SFC without
the connection to 5G core systems. For the HTTP traffic
generation, we used Apache Bench [11] in the old testbed,
and Web-traffic-generator [12] in the new testbed. Through the
Web-traffic-generator software, we could make a scenario to
access the web page and then click randomly selected buttons
to move around the web homepage. To this end, we used
Vue.js to implement a simple Internet shopping mall in a
server VM. When the Web-traffic-generator software reaches
the maximum depth, it waits for a certain period (within 30
seconds) which is set randomly and sends new HTTP traffic.

In both old and new testbeds, we allowed HTTP traffic
to go through multiple VNFs configured with SFCs before
reaching the server. We flexibly organized SFC with several
VNFs, among firewall (iptable), intrusion detection system
(Suricata), monitoring application (ntopng) deep packet in-
spection (nDPI), and load balancer (HAProxy), and Figure 2
shows the one example of set SFC.

In addition, if only normal traffic is generated, VMs are
rarely failed, so we inject malicious attacks to overload and
fail the VMs. In the old testbed, we used a simple DDoS attack
using the DDoS tool hping3 [13], but in the new scenario, we
generated the latest DDoS attacks like Slowloris, RUDY, Hulk
DoS using the multi-purpose hacking tool Kali Linux [14].
These attacks overloaded the VMs operating the web server
and VNFs and caused failures. In addition, we overloaded CPU
and memory usage for each VM with Stress-ng, a resource
overload tool [15].

B. Pre-processing

We used not only the log of a single VM, but also the
logs from VMs and the server as input, so the number of
input logs became too large. In particular, OpenStack-related

Fig. 2. One of traffic generation scenarios

applications (eg. Neutron, Nova, OVS) which operated on the
server generated almost 10 lines of logs per second. Aside
from the performance of the model, it took a long time just
to read the logs, so the pre-processing to reduce the number
of logs is inevitable.

Some logs are needed to remove unnecessary information
based on rules. For example, the kernel log periodically
outputs the addresses of major registers, so we removed
this information by rule-base. This analysis can be easily
performed even if there is a new type of log because it is a
simple process to find unnecessary patterns in the log without
background knowledge.

To reduce the number of logs further, we decided to find
words that usually appear a lot before errors occur, and based
on them, we would leave only logs containing those words.
To this end, we collected logs within 30 minutes before the
failure occurred, listed the output frequency of each word in
high order, and we removed general words that did not seem
to be related to the errors, leaving words related to the error.
For example, words such as ’user’ and ’system’ were excluded
because they also appeared in general logs, and ’timeout’ and
’out’ appeared frequently, but we left only ’timeout’ as an
error-related word. Also, we left abbreviations such as oom
(out-of-memory) and err (error). As a result, the following 13
words remained error-related words. And we leave the logs
only if they include error-related words. Since these words
are common words that occur regardless of the system, they
can be applied equally to the log of the new system.

• reset, fail, not, failure, timeout, kill, err, oom, stop, exit,
restart, long, warn

After the number of logs decreased with error-related
words, we applied some additional pre-processing processes.
We extracted time and application information from the log
and removed all numbers and symbols and changed capital
letters to lowercase letters. In addition, we used the extracted
time information by sorting all logs in the input window
in chronological order. Furthermore, we had to prevent the
same log from being present in the input window during the
experiment. Therefore, when using the input window as an
input to the model, we checked the first five words for each
sentence, and if there is another sentence that has the same
first five words, we removed it from the input window.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

333

Fig. 3. Basic concept of labeling method

Fig. 4. Labeling method for server failure prediction

C. Data labeling

For supervised learning, inputs and corresponding outputs
are required. In our model, we use sliding input windows to
get input sequences and label each window to denote whether
related to a failure or a normal state. Figure 3 shows the basic
concept of the labeling method. Both log and failure record
data collected from the testbed have time records. A window
with a size of ’input window size’ slides the log data and
generates input windows. In this case, the amount of input
sequence may be adjusted by adjusting the sliding window
size. In this study, we used 10 minutes as input window size
and 5 minutes as sliding size. Logs within the input window
become input data. Each input log is labeled as a failure if the
failure history shows failure after the ’gap’ period from the
end time of the input window and is labeled as normal if it is
normal after the gap.

In the meantime, as mentioned before, there were cases
where the failure-related logs occurred on the server log or
other VMs, not the failed VM. In particular, 14 of the 53
failures collected in our testbed have related logs in the server
or other VMs, not failed VM. In these cases, the input window
which is labeled as a failure does not contain the log sequence
related to the failure, and the input window which includes
the log related to the failure is labeled as normal, so the
model is not learned properly, so we targeted to predict the
server failure. We used logs from multiple VMs and the server

Fig. 5. The problem of labeling method in [5]

together, and if any of the VMs operating on the server fail,
we labeled the input log window as a failure (Figure 4).

Also, in this study, we changed the input window size only
for the windows that are labeled as a failure. In our previous
study, there was a problem that as the gap and window size
were changed, only some of the total failure data was used. For
example, in Figure 5, if we train a model that predicts a failure
after 5 minutes by receiving a 10 minutes log window as input,
all windows containing 4:33 are labeled as normal because
4:38 through 4:47 is normal. The failure occurred at 4:59
which is 26 minutes after the failure-related log. Conversely,
failure-related logs could occur just before a failure. Gap (5
min) after the failure-related log in 12:16, is 12:21, and the
failure history of that time is normal, so the model can not
learn properly for failure occurred at 12:19. Among the actual
collected data, there were 11 cases where the gap between the
failure and the failure-related log was more than 20 minutes,
and 13 cases where the gap was less than 3 minutes.

In order to label both of these cases normally, there is no
choice but to significantly increase the input window size and
reduce the gap. But if we make the input window size large
for all windows, then the size of the input sequence becomes
large and learning becomes difficult. So we used some tricks
here. We set the input window size of the normal window as
10 minutes as before, and change only the failure window to
have an input window size of 28 minutes. So that all logs from
30 minutes to 2 minutes before the failure occurred time were
used as input. We determined that a minimum time interval
with the failure prediction point was necessary to take action
after the failure prediction, and decided not to include cases
where the gap was less than 2 minutes. In most cases, the gap
was less than 30 minutes, so we set the maximum value as
30 minutes. Accordingly, our model was trained to calculate
the probability that the failure occurs within 30 minutes, after
2 minutes from the last log. With the changed method, both
cases in Figure 5 are included in the failure-indicating input
log window.

However, since we set the input window size to 10 minutes,

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

334

Fig. 6. Proposed BERT-CNN model

there is a problem that the window size of the normal window
and the failure window is different, and if the window size
is different, the amount of input log is different. But CNN
learns to extract only important data from large amounts of
data. Since we used the max-pooling layer as CNN’s pooling
layer, if the CNN model is learned normally, it can only find
messages related to failures regardless of the amount of input
data. So the size change of the input data is irrelevant, and this
labeling method could improve the performance of the model
and we verified it.

IV. MODEL DESIGN AND IMPLEMENTATION

Our proposed BERT-CNN based server failure prediction
model gets logs from VMs operating VNFs and servers in an
NFV environment and utilizes them for failure prediction. For
failure prediction, we use the CNN model to learn whether or
not the failure exists within a certain period by receiving the
output embedding of the BERT model as input.

The detailed structure of the entire model is shown in Figure
6. Only the colored elements in the figure are factors that
change parameters through learning. First, the BERT tokenizer
tokenizes the words in each sentence into sub-words. We use
the pre-trained and opened to public BERT model named
BERT-Base model, which contains 768 hidden layers, thus out-
putting 768-dimensional vectors for each token. BERT could
be fine-tuned with backpropagation in the training process, and
the overall hyperparameters of BERT are modified to be more
suitable for log analysis. BERT creates a matrix of the 768
× number of tokens within the log, which is used as input to
CNN.

The output embedding of the BERT model is received as
input to the CNN model to predict whether a failure occurs
within a certain period (2-30 min). In the convolutional layer,
the kernel moves the embedding matrix and performs the
convolutional operation. We used the kernels with certain
kernel sizes, and each kernel strides by the vector size (768)
so that the kernel does not move within a single token. We
used kernel sizes 3, 4, 5, and 6 and 50 kernels of the same size
were used each. In the convolutional layer, we used a Rectified
Linear unit (ReLU) as an activation function. As a result of
the convolutional layer, as many vectors as the number of
kernels are generated, and the max-pooling layer leaves only

a maximum value through each vector. After going through the
pooling layer, a vector with the size of the number of kernels
(we used 200 kernels, so 200-dim) is generated.

The result of the pooling layer goes through the drop-out
layer with 0.2 of drop-out rate and is put into a fully-connected
layer. The fully connected layer uses Sigmoid as an activation
function to output a single value. The generated value is a
value between 0 and 1, and the closer to 1, the higher the
probability of failure, and if the value is over the threshold of
0.5, then the decision of the model will be a failure. To learn
this, log data tagged with 1 in the failure state and 0 in the
normal state are used in the learning process. We used binary
cross-entropy loss (BCE loss) as a loss function, which uses to
learn how close we are to the prediction target in classification
problems. We used Pytorch’s BCEWithLogitLoss function,
which combines Sigmoid and BCEloss, for computational
advantage.

In the learning process, we confirmed that the model
was very sensitive to the learning rate. Therefore, we
did not use a static learning rate in the learning pro-
cess, but changed the learning rate through the learning
rate scheduler and used it for learning. We used Pytorch’s
get cosine schedule with warmup scheduler, which linearly
increases the learning rate from 0 to the initial learning rate
of the optimizer during the warmup step, and decreases with
the cosine function. Through this, when the loss value reaches
a certain minimum, it is not allowed to deviate again.

In the experimental stage, we experimented with the
Word2Vec-based model proposed in the previous study to
compare the performance of our proposed model.

V. EXPERIMENTS AND EVALUATION

We observed 39 failure situations in the old testbed for 2
months. In the new testbed, we observed 11 failure situations
for 2 months. We could not find why the new testbed had fewer
failures, even though we generated overload to two testbeds
similarly, but we analyze it as the cause of the failure situation
is various and it is difficult to reproduce the failure. Of these, 8
failure situations were not used in actual experiments because
there was no log associated with the failure, or the failure-
related logs were outside the period we set (30 minutes to
2 minutes before the failure). Because these failures are not
subject to our prediction and require analysis of other data
(resource usage, etc) than logs, predicting them remains as a
future study.

Table I represents the data used in this study. There is a total
of four servers subject to failure prediction, with two in the
old testbed and two in the new testbed. We will refer to old-1,
old-2, new-1, and new-2 servers, respectively. Among them,
the new-2 server includes a VM that operates 5GC and a VM
that operates a Vue.js-based web server, and these applications
have not been run on other servers. In addition, three of the
six failures that occurred in the new-2 server occurred in
that applications, and a failure-related log was found in those
applications logs, so these logs are different from other failure-
related logs. Therefore, if we include new-2 server data in test

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

335

data, we could determine whether our proposed model can
detect failures that have never been learned types. Therefore,
we made data from old-1, 2 servers as training data, and data
from new-1, 2 servers as test data. And we added normal logs
of applications driven by new-1, 2 servers during 2 days in
training data so that the model was learned for normal logs
from Vue.js and 5GC.

We first conducted an individual VM failure prediction
experiment, and then do a server failure prediction experiment,
to see if our proposed server and VMs-based VM failure
prediction method is better suited for the VM failure prediction
task. In addition, for the performance comparison between the
word embedding-based model and the BERT-based model, we
also trained a model proposed in a previous study [5], that
converts each word in the input logs to word embedding using
Word2Vec word embedding and use them as input of CNN.
We used the same data for the Word2Vec-based model and the
BERT-based model. We did not use a public Word2Vec model
but used a custom word embedding model which is generated
using one month of log data among the data we collected, so
is more suitable for log analysis.

A. Individual VM Failure Prediction

As mentioned in section III, when conducting a failure
prediction experiment for individual VMs, some failure sit-
uations cannot be included in the data because the failure-
related logs exist on other VMs or servers. Therefore, 24
failure situations were included in the training data, and 5
failure situations were included in the test data. The normal
situations were too many compared to the failure situations, so
we undersampled the normal data to 1/10. As a result, 3,817
normal data were included in the training data, and 468 normal
data were included in the test data.

Figure 7 shows the experiment results for the individual
VM prediction task. We trained our model for 200 epochs. As
can be seen from the graph, the loss value of the Word2Vec-
based model decreased faster than the BERT-based model at
the beginning, but thereafter, the loss value decreased poorly,
and eventually showed much lower performance than the
BERT-based model. In terms of performance, the model using
Word2Vec showed lower performance with an F1 score of 0.59
and the model using BERT showed a performance of an F1
score of 0.65. In our previous work [5], the Word2Vec-based
model performed failure prediction with an F1 score of 0.65
on the old data, but the same model performed much lower on

TABLE I
DATA USED IN EXPERIMENTS

Fig. 7. Experiment results for individual VM failure prediction

Fig. 8. Experiment results for server failure prediction

our new data because it includes new types of application in
test data, but our BERT-based new model performs prediction
with still high performance for new data.

B. Server Failure Prediction

We trained our model for 200 epochs for server failure
prediction experiment. Figure 8 shows the experiment results.
The results show that the loss value fluctuates much more
than the failure prediction experiment for individual VM. This
is analyzed because the number of data was significantly
reduced due to a memory shortage problem. However, the
final performance is much higher. The model using Word2Vec
showed performance with an F1 score of 0.64 and the model
using BERT showed a performance with an F1 score of 0.74,
which is much higher than results in individual VM failure
prediction. This shows that it is correct to predict VM failures
based on all VMs and the server, not only individual VM logs.

We also compared our proposed BERT-CNN model with
another simple machine learning model to determine if the
CNN is suitable for log analysis. Figure 9 represents the
Receiver Operating Characteristic curve (ROC curve) of a
model using the BERT model and the GRU model together, a
model using Word2Vec and CNN together, and our proposed
model. We implemented a BERT-GRU model in the form
of GRU receiving the output of BERT as input, and we
implemented a simple form of GRU with one hidden layer

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

336

Fig. 9. ROC curves of several models

with a hidden dimension of 20. Like before, we trained the
BERT-GRU model for 200 epochs, and draw the ROC curve
using the prediction result at the best performance at the test
data. Since all three ROC curves were made with only 10
failure data in the test data set, they are somewhat bent. When
comparing the Area Under Curve (AUC), it can be seen that
our proposed model is the best learned. In particular, the
BERT-CNN model has an AUC of nearly 1, which means
that further lowering the threshold value can result in a much
higher F1 score. We confirmed that setting the threshold to
0.4 can increase to F1 score to 0.86.

There is also a disadvantage of the BERT-based model,
which, unlike the Word2Vec-based model, takes a much longer
time to train because the BERT model also learns during the
training process. On average, the Word2Vec-based model took
48 seconds per epoch, while the BERT-based model took 1
minute and 56 seconds on average, requiring more than double
the time in the training step. For this reason, we judge that
a Word2Vec-based model, rather than a BERT-based model,
would be suitable in cases that require fast training than high
performance.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a machine learning-based model
that predicts the failure of VMs operating VNFs in an NFV
environment. In the process of collecting fault and log data,
we have observed some cases where failure-related logs exist
in other VMs or servers, so we proposed a server failure
prediction model that calculates the probability of VMs failure
by inputting the log data from whole VMs in server and server
log data. In the proposed model, we used the BERT model
that achieves SOTA in various fields in NLP to improve the
performance of log analysis and used CNN to use the output
of BERT and predict the failure between 2 and 30 minutes
from the input log. Experimental results showed that our model
predicts server failures with the performance of an F1 score
of 0.74 for test data including failure data that are unobserved
in training data and demonstrates the superiority of this model
by comparing it with other models. Thus, our model can be
easily applied to real-world networks.

As future work, we are planning to improve the prediction
performance of our model by utilizing a Generative Adver-
sarial Network (GAN) that learns together the generator that
generates fake data to address the shortage of training data
that the model can utilize.

ACKNOWLEDGMENT

This work was supported by Korea Evaluation Institute Of
Industrial Technology (KEIT) grant funded by the Korea Gov-
ernment(MOTIE) [(No.2009633) Development of AI network
traffic controlling system based on SDN for ultra-low latency
network service].

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (2018-0-
00749, Development of Virtual Network Management Tech-
nology based on Artificial Intelligence).

REFERENCES

[1] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience
report: System log analysis for anomaly detection. In 2016 IEEE 27th
international symposium on software reliability engineering (ISSRE),
pages 207–218. IEEE, 2016.

[2] Weiliang Ji, Shihui Duan, Renai Chen, Song Wang, and Qiang Ling. A
cnn-based network failure prediction method with logs. In 2018 Chinese
Control And Decision Conference (CCDC), pages 4087–4090. IEEE,
2018.

[3] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo.
Failure prediction in ibm bluegene/l event logs. In Seventh IEEE
International Conference on Data Mining (ICDM 2007), pages 583–
588. IEEE, 2007.

[4] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing. In Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pages 1285–1298, 2017.

[5] Sukhyun Nam, Jibum Hong, Jae-Hyoung Yoo, and James Won-Ki Hong.
Virtual machine failure prediction using log analysis. In 2021 22nd Asia-
Pacific Network Operations and Management Symposium (APNOMS),
pages 279–284, 2021.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[8] Adiscon GmbH. The rocket-fast Syslog Server. https://www.rsyslog.
com/. [Online; accessed 04-July-2022].

[9] Inc. NextEPC. Open5GS. https://github.com/open5gs/open5gs. [Online;
accessed 04-July-2022].

[10] ALİ GÜNGÖR. UERANSIM. https://github.com/aligungr/UERANSIM.
[Online; accessed 04-July-2022].

[11] The Apache Software Foundation. Apache Bench. https://httpd.apache.
org/docs/2.4/en/programs/ab.html. [Online; accessed 04-July-2022].

[12] web-traffic-generator. https://github.com/ReconInfoSec/
web-traffic-generator. [Online; accessed 04-July-2022].

[13] 2006 Salvatore Sanfilippo. hping3. http://www.hping.org/. [Online;
accessed 04-July-2022].

[14] OffSec Services Limited. Kali Linux. https://www.kali.org/. [Online;
accessed 04-July-2022].

[15] Stress-ng. https://wiki.ubuntu.com/Kernel/Reference/stress-ng. [Online;
accessed 04-July-2022].

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

337

	43

