2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

To Embed or Not to Embed SHA
in Programmable Network Interface Cards

Diego Rossi Mafioletti*'*, Magnos Martinello*, Moisés R. N. Ribeiro*, Marco Ruffinif and Frank Slynef
*Federal University of Espirito Santo, Vitéria, Brazil, TTrinity College Dublin, Dublin, Ireland
tFederal Institute of Espirito Santo, Colatina, Brazil

Abstract—Cryptographic hash functions are widely used to
provide from digital time stamping to authenticity and digital
signatures, mapping an extensive collection of messages into
a small set of message digests and help to secure network
connection and data, consequently consuming CPU resources. P4
enables data plane customisation using a high-level programming
language to facilitate in-network computing development across
diverse hardware targets, including Network Interface Cards
(NICs). Currently, most P4 targets do not implement secure hash
functions due to a lack of hardware instructions or the absence
of formal functions to expose their native hardware-based im-
plementation. Moreover, many applications and protocols cannot
be instantiated using in-network computing due to stringent
requirements based on these hash functions. In order to empower
the security and other hash-based applications, in this paper we
propose and implement a P4 shared object library for a secure
hash algorithm 2 (SHA-2). Our goal is to enable SHA-2 to be used
as an embedded Network Function (eNF), overcoming the lack
of support in a SmartNIC architecture, in order to address the
latency and throughput requirements of Service Function Chain
(SFC) forwarding performance within the Network Function
Virtualization (NFV) paradigm. Thus, our prototype is evaluated
against kernel-level Open vSwitch (OvS) and user-space Data
Plane Development Kit (DPDK) implementations. The outcomes
demonstrate different tradeoffs over each platform, from the
randomness added by the OS to the high cost of executing the
aforesaid function using a network programmable device, leading
us to highlight the best choice for each specific application.

Index Terms—In-Network Computing, P4 programming,
Cryptographic hash functions

I. INTRODUCTION

In the area of networking, one of the most CPU-demanding
activities is the securitisation of communications using cryp-
tography. Payload data processing and specialised crypto-
graphic hash functions are commonly employed in secure and
resilient communication, avoiding unauthorised access, data
manipulation and modification. In-network processor-based
programmable network interface cards (NIC) offer a solution
for offloading network traffic, allowing hosts to process gen-
eral computations onto the programmable NIC while keeping
the support of high-level applications on them.

The advent of new programming paradigms like P4 [1] for
high-speed packet processing platforms has enabled a wide
variety of networking applications. For instance, in-network
caching [2], heavy-hitter detection [3], [4], and network load
balancing [5] enable these functions that were primarily des-
ignated for running into commodity servers to migrate to the
data plane, using hash-based data structures like bloom filters,

978-3-903176-51-5 © 2022 IFIP

count—min and hash tables to track network flows directly into
the data plane.

However, the P4 language currently only supports a few
non-cryptographic hash algorithms based on cyclic redundancy
check (CRC) or checksum computations typically used in
network protocols like TCP, IPv4 and IPv6 checksums due to
target hardware constraints. However, there is still a need for
packet-based functionalities involving basic data security and
verification. In those cases, “true” cryptographic hash func-
tions are required, for example, hash-based message authenti-
cation codes (HMAC) [6], providing message authentication,
or any other cryptographic hash functions used to increase
resilience against hash collisions for hash-based applications
cited early.

To address advanced secure applications implementation
using in-network computing and also the disaggregation of
services into different virtualised functions, we argue that com-
plex cryptographic hash functions extensively used nowadays,
like Secure Hash Algorithm 2 (SHA-2), should be ported onto
P4 targets. For this end, however, one has to deal first with
the limited computational resources, such as the ones available
at SmartNICs [7], when enabling the offloading of secure
applications to the data plane.

To the best of our knowledge, this is the first proof-of-
concept implementation of an SHA-2 variant library on a com-
modity programmable in-networking processor using the P4
language. Our strategy is to implement a shared object library
as an “extern” to overcome language-related restrictions. This
way we manage to embed a complex algorithm that includes
loop statements and other non-native features.

A testbed is also created for a benchmark study on finding
out whether SHA-2 embedding as Network Function (NF)
is worth not considering throughput and latency features.
Those metrics are key for providing SHA along with Service
Function Chaining (SFC) in a Network Function Virtualiza-
tion (NFV) modern infrastructures. The SmartNIC embed-
ded Network Function (eNF) prototype implementation is
checked against other two software data plane implementa-
tions, namely, Open vSwitch software switch (OvS) and Intel
Data Plane Development Kit (DPDK), both ported with the
same SHA-2 library.

The remainder of this paper is organised as follows: First,
we review related work in Section II. We argue for the
inclusion of cryptographic hash function in programmable
network cards in Section III. In Section IV we discuss our

324

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

approaches for checking three different virtualisation tech-
niques with the functionality to calculate cryptographic hashes.
We then conduct an extensive evaluation of our prototype
implementation focusing on performance metrics in Section
IV. Section V closes the work and gives the future directions.

II. BACKGROUND AND RELATED WORK

We start this section by giving an overview of cryptographic
and non-cryptographic hash functions, showing the main as-
pects of both. We also describe the related works using the
P4 data plane for implementing these algorithms in different
approaches and purposes. We survey from simple implemen-
tations that made use of hash functions for classifying network
flows, to more complex use-cases, such as layer 2 or layer 3
data encryption using intricate algorithms for assuring security
into the programmable data plane.

A. Cryptographic hash functions

Cryptographic hash functions are one of the most important
tools in the field of cryptography and are used to achieve a
number of security goals like authenticity, digital signatures,
pseudo number generation, digital time stamping and others.

Hash functions map a large collection of messages into
a small set of message digests and can be used for error
detection, by appending the digest to the message during
the transmission. The error will be detected if the digest
of the received message, on the receiving end, is not equal
to the received message digest. With the advent of public
key cryptography and digital signature schemes, cryptographic
hash functions gained much more prominence. Using hash
functions, it is possible to produce a fixed-length digital
signature that depends on the whole message and ensures the
authenticity of the message. To produce a digital signature for
a message M, the digest of M, given by H (M), is calculated
and then encrypted with the secret key of the sender [8].

In order to provide security services, cryptographic hash
algorithms need to guarantee some properties which are not
necessarily guaranteed by general-purpose hash functions. The
one-way or preimage resistance property of cryptographic
hash functions implies that it is computationally infeasible
to compute the message M given its hash DM (M). The
second preimage resistance property means that, given a
hash value DM (M), it is computationally infeasible to find a
different message M’ # M that yields the same hash value.
The pseudo-randomness property means that the hash value
of a message must expose statistical randomness. Finally, the
collision resistance property means that it is computationally
infeasible to find a pair of messages M1 and M2 which
produce the same hash value [9].

The Secure Hash Algorithm (SHA) is a family of cryp-
tographic hash functions defined by the National Institute of
Standards and Technology (NIST) and published as the Fed-
eral Information Processing Standard (FIPS) 180, Secure Hash
Standard (SHS). The algorithm is an iterative, one-way hash
function that can process a variable-size message to produce
a fixed-size condensed representation called a message digest.

This algorithm enables message integrity verification, i.e., any
change to the message will, with a very high probability, result
in a different message digest. This property is useful in the
generation and verification of digital signatures and message
authentication codes, and in the generation of random numbers
or bits [10]. The SHA-2 family of cryptographic hash functions
was first announced in 2001 and includes SHA-224, SHA-256,
SHA-384 and SHA-512, named according to the length of the
message digest created by each one, suppressing the previous
SHA-1 implementation due to security improvements.

As cryptographic hash functions are compute-intensive ap-
plications, which begs the question of extending P4 and its
hardware platforms into cryptographic algorithms. This would
enable offloading secure applications/tasks to the data plane.
The expected benefits are twofold: i) saving CPU resources
for other applications running at the hypervisor and their
tenants, and ii) reducing latency and increasing the number
of processed packets per time unit. The latter benefit will
come from avoiding the operating system stack in between
the network and the SHA application.

B. P4 data plane for hashing algorithms

Programmable data plane based on P4 programming lan-
guage is a widespread technology that has been recently
redesigning the networking programmability, allowing to re-
define the behaviour of network devices (e.g., SmartNICs
and programmable switches) and enabling the offloading of
applications to the data plane, reducing latency and increasing
the overall throughput. Regardless of the data plane pro-
grammability, certain classes of applications (mainly security-
related network functions) may require specific hashing and
securing functions to be offloaded to the data plane.

However, most current SmartNIC architectures [7] are not
equipped with a specific encryption processor accelerator or
simply do not expose an API or method for accessing it using
the P4 language, supporting only simple arithmetic operations
and limited lookup actions. Thus, it is not a trivial task to
implement a cryptographic hash function or an encryption
algorithm using P4 language on that target hardware.

Related works [4] and [3] present the use of hash functions
available in P4 for optimised flow routing. However, these
papers are limited to exploiting binary classification of flows
(elephant/mice) employing preexisting algorithms on the target
platform (e.g. checksum, CRC16, CRC32). The linear depen-
dency between hash input and hash value makes such native
algorithms vulnerable to bias and security attacks [11], [12].

In [13], the authors propose an extension of the P4 Portable
Switch Architecture for cryptographic hashes over three dif-
ferent P4 target platforms for security, including a Netronome
SmartNIC card. Nevertheless, it does not address the use of
complex algorithms — such as SHA-2 — in that specific target,
arguing that the application may be too big to fit in the
generated firmware image, discouraging the implementation of
such a secure hash algorithm version, focusing the evaluation
of existing functions on the platform.

325

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

1. Monolithic . .
network b2 k-related and

CrC)
s

-> Fud. Table

L2/L3
Forwarder

yeg g Yes >
~
No —

: Parse L2 header L3 header L4 header

i lheaders ! 2 F{casai

H i
SHA-256 > v -

Payload

T T
cassification | >~ _—
—

SHA-256

L2/L3 Forwarder

Hypervisor

iface1

. " Multi-level
: ¥ Forwarding

SmartNIC switch

(2)

(b)

Fig. 1: Decomposition for deployment and offloading: a) Illustrative example of decomposition using a set of network
applications. b) Multi-level forwarding using Intercepting and Forwarding (PIIF) element.

Other related works go beyond and propose data plane
secure data transmission using encryption algorithms [14],
[15], aiming for layer 2 and layer 3 security, respectively,
employing Advanced Encryption Standard (AES) ported as
a P4 extern function on BMv2 software switch. The missing
hardware version of the proposal is justified in both works.
The authors found severe limitations imposed by the absence
of variable-length payload parsing and limited packet data
exchange between the P4 processing pipeline and extern.

Our work focuses on an implementation using a variant of
the SHA-2 algorithm — the SHA-256 version based on 256-
bit hash size — ported as a cryptographic library to a P4 data
plane based on a Netronome SmartNIC via an extern written
in a C-like language, enabling the generation of this kind of
hashes using in-network computing and P4 language. To check
the potential advantages of running such a hash function into
a programmable network device, we have implemented the
same hash function using the same library onto two software-
based data planes: Open vSwitch switch [16] and Intel DPDK
L2FWD application [17], in order to compare the overall
performance and, consequently, the latency introduced by the
hash function when forwarding network packets using an L2
packet forwarder.

III. AN ARCHITECTURE FOR IN-NETWORK SHA

In order to address the early-mentioned challenges, we
design a simple architecture based on the following enablers:
1) functional decomposition for deployment and ii) multi-level
forwarding between hardware and software, which will be
explained below.

A. Functional decomposition for deployment

Most network functions are deployed as a monolith appli-
cation, whereby all components are bundled together into a
single piece of code. This can lead to maintenance challenges,
as well as slow down the trailing of new technologies. Decom-
position is therefore a significant step towards evolving VNFs
to be cloud-native and much more agile and scalable. And
decomposing must be undertaken for the majority of the data
plane, control and signalling VNFs. In this context, we define
decomposition as breaking a monolithic network function into
a set of small applications, or “micro-applications”.

Decomposition also allows for common functions to be
stripped away from the core logic of the applications. This
enables the applications themselves to be lighter — which
makes them easier and quicker to develop, manage, and
deploy into programmable network hardware. In addition, it
centralises core functions and operates in an ‘“‘as-a-service”
model. We also want to be able to reuse common function-
alities, but not have to pay for them multiple times. The
process of decomposition also gives micro-applications owners
the opportunity to remove redundant functionality from the
application logic [18].

The challenge in realising any micro-application-based soft-
ware using decomposition is to identify the set of func-
tionalities, and this is difficult because it requires domain-
specific knowledge. One way to approach decomposition is to
leverage domain expertise (e.g., by consulting with domain-
specific developers) or to study existing open-source network
applications, identifying smaller functional units. As a key
for employing functional decomposition, PIaFFE Framework
[19] defines a roadmap towards creating an embedded network
function (eNF) using an approach based on the application
network-related characteristics (e.g., packet parsing, classify-
ing, processing and forwarding), re-architecting the network
programming ecosystem.

Using for reference two monolithic network applications,
the first one based on a L2/L3 packet forwarder and the
second one based on SHA-256 algorithm, we can outline
the steps for decomposing these two applications into a new
micro-application, as shown in Figure la. The first step for
decomposing multiple applications is to identify the network-
related characteristics of each one, starting by the L2/L3
Forwarder.In the same way, we enumerate the characteristics
of the next application, in this case, SHA-256 algorithm:
here, we use the same colour (blue) to highlight the over-
lapped characteristics and another colour (green) for specific
functions. We also have used a specific colour (orange) to
emphasise the main logic behind both applications. Based
on the colour map, we can merge the “duplicated” functions
of the applications into the micro-application realisation,
using a single structure representing the two main applications,
enabling the portability to a programmable network device.

326

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

B. Multi-level forwarding between hardware and software

In order to switch traffic between hardware and software
implementations, we employ the Intercepting and Forwarding
element (PIIF) from PIaFFE, steering network traffic through
the embedded Network Function or sending it up to the appli-
cation at the virtualisation layer, using a bottom-up approach
as shown in Figure 1b: as soon as a packet arrives at the
SmartNIC, it is either intercepted and forwarded to the “OS
level”, or kept into the “hardware level”, being processed using
the SmartNIC network hardware.

In Listing 1, it is presented a fragment of the P4 source
code illustrating the PIIF element utilised in this work. This
code defines a basic (key, value) data structure. Whenever an
incoming packet hits a table’s entry (defined by its source IPv4
and UDP port), then it is steered to the software, otherwise, it
is sent to the eNF pipeline that applies a specific hash function.
@name(” . piif_table™)
table piif {

key = {

standard_metadata.ingress_port:

hdr.ipv4 .srcAddr: exact;
hdr.udp.srcPort: exact;

exact;

actions = {
NoAction;

size = 512;

default_action = NoAction;

}
apply {
if (piif.apply().hit) {
sw_forward . apply () ;

} else {
do_sha256 () ;
hw_forward . apply () ;

}
}

Listing 1: Pseudo code of the PIIF

C. Hash algorithm implementation

Our implementation is focusing on porting SHA-256 to a
P4 programmable device for evaluating the performance of the
basic cryptographic hash operations, which could be applied
for a range of use cases further, such as HMAC calculations,
hash-based networking applications and others.

P4 language lacks a loop control flow statement, and this
limits the possibilities for implementing complex applications,
such as SHA-256 which requires that for stages like shuffling
and compressing data. To overcome this limitation, we have
created an extern based on micro-C language (a variant of C
language), as shown in the fragment of code in 2, which can
be called from the P4 program as a “function”, interacting
with the P4 pipeline and its data/metadata.

The target hardware used for the implementation of our
architecture (i.e., Netronome SmartNIC), has limited resources
for hosting large applications. Thus, the firmware and NIC
“storage” memory capacity must be properly used, otherwise,

the image can no longer be loaded onto the SmartNIC. To
tackle this constraint, we have developed a slim P4 code for
L2/L3 packet forwarder based on static table entries.

As mentioned before, the micro-C code fragment 2 starts
by exposing the headers and match data from the P4 program,
which can be accessed and modified inside the extern, includ-
ing the packet payload, which is represented by a “payload
header” split into blocks of 512-bit size, due to header size
restrictions imposed by the used target hardware. The SHA-
256 function is called in three steps, in order to accomplish
all stages of the algorithm, namely, padding process, shuffling
and compression. In the end, the hash is added to a specific
header field previously defined in the P4 program. Here is
defined by the sha256_field variable, being transmitted with
the original network packet. In this phase of the processing,
we are also using this approach in order to measure the time
to generate and insert hashes using in-network computing,
however, the functionality can be extended to accomplish with
more elaborated scenarios in future implementations.

One may even think of a combination of an optimised
integration with native dedicated hardware acceleration com-
ponents. However, crypto security accelerators are not usually
accessible nor documented when using P4 language shipped
with the NIC’s SDKs. Thus, this integration is beyond the
scope of this paper.

#include “pif_plugin.h”

#include ”plugin.h”

int pif_plugin_do_sha256(
EXTRACTED_HEADERS_T #ext_hdrs ,
MATCH_DATA_T xmatch_data)

PIF_PLUGIN_payload_T =*payload;

BYTE buf[SHA256_BLOCK_SIZE];

SHA256_CTX ctx;

/+ Grab a pointer to the payload ’header’ =/
payload=pif_plugin_hdr_get_payload (ext_hdrs);
BYTE text[] = payload—>blockO;

/+ begin sha256 calculation =/
sha256_init(&ctx);
sha256_update(&ctx , text,
sha256_final(&ctx , buf);
/+ end sha256 calculation =/

/+ storing hash into the specific
payload—>sha256_field = buf;
return PIF_PLUGIN_RETURN_FORWARD;

}

Listing 2: A fragment of micro-C extern SHA-256 function.

strlen (text));

field =/

IV. EVALUATION

The performance of the secure hash function, in terms
of latency and processing time (processing plus forwarding
packets), is critical for high-performance applications. Thus,
our evaluation aims to answer the following key question for
NFV applications: i) Compared with host-side execution, what
are the expected latency savings of forwarding and processing
network traffic through an in-network device? ii) What are
the latency statistics when running such micro-applications on

327

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

[=]
1

(a) (b)

(©) (d)

Fig. 2: Testbed specification and virtualisation techniques: a) Prototype implementation and testbed. b) Using hardware
timestamp to measure the time to process/deliver a packet. ¢) Open vSwitch software switch d) Intel DPDK L2 forwarder

application e) P4-enabled hardware

different platforms? iii) How close can we get to the maximum
possible throughput in terms of packets per second (PPS)?

A. Benchmarking the virtualisation techniques

As far as test scenarios are concerned, we are comparing the
in-networking computing capability with network forwarding
technologies used on the Linux OS doing the same operation,
as follows:

1) Open vSwitch switch: modified OvS software switch
executed at kernel-mode as a layer 2 network forwarder
with a selectable SHA-256 application (Figure 2c).

2) Intel DPDK: application acting as a layer 2 forwarder
and SHA-256 algorithm which can be turned on/off
according to the traffic, as same as previous OvS ap-
plication (Figure 2d).

3) P4-enabled hardware: a Netronome SmartNIC with a
layer 2 forwarder eNF, also running a ported SHA-256
application dynamically enabled (Figure 2e).

In all virtualisation techniques, the topology and network
functionality are the same in each level (software and hardware
levels): packets are generated in one host, being forwarded
through the SmartNIC hardware in another host running Linux
OS and network drivers in three different modes, respectively:
1) Linux netdev mode, 2) Intel DPDK mode or 3) P4 mode.
All details about the testbed will be discussed below.

B. Experimentation Setup

For the benchmark tests, we used the environment described
in IIT and illustrated in Figure 2a, using the technique ex-
plained in Figure 2b.

The test consists of generating traffic that goes through each
virtualisation technique specified before, measuring latency
performance to forward-only and forward-calculate using each
specific case. As a proof-of-concept, the Secure Hash Al-
gorithm 256 (SHA-256) library was used. This algorithm is
public and open-source, portable for most platforms. We built
a library using our previous work, allowing us to check the
feasibility of the development and deployment of complex ap-
plications using the framework to deliver a micro-application
onto a programmable network device.

Hence, UDP packets are generated using pktgen-dpdk
through the 7T'X interface and received using the same ap-
plication in RX. These packets are diverted according to the

purpose of each experiment: selecting either the SmartNIC
hardware only or software level using a virtual machine.
This virtual machine runs a forwarder application with the
SHA-256 algorithm inside, that can be enabled or disabled
dynamically during the experiments using a different UDP
source port in 7'X, permitting the measurement for each
virtualisation technique.

Testbed description: Our testbed consists of two machines
connected back-to-back without any switching element in
between, as shown in Fig. 2a. One of them hosts the traf-
fic generator, while the other bears the prototype and the
Netronome SmartNIC NFP-4000 2x10G. Each machine is
equipped with a 1x6-core Intel Xeon E5-2620 v3 2.4Ghz CPU
and 2 threads per core (hyper-threading enabled), 8GB mem-
ory, and a DPDK compatible Intel X710-2 2x10G Ethernet
NIC on the traffic generator side.

To collect the latency results, we use the SmartNIC’s
internal hardware clock to calculate the timestamps of each
packet before it goes out of the SmartNIC to an application
and inserts another timestamp when it comes back to the
SmartNIC. This gives us more precision to calculate the total
cost to run an application inside and outside of the SmartNIC,
using a nanosecond scale, as shown in Figure 2b. To collect the
throughput (and consequently, the processing capacity) of the
target, we employ a Lua script! to automatise the experiment
and to collect packet data into a comma-separated value (CSV)
file, to later be processed and generated the results.

Traffic generator and DUT: Physical Server I runs Intel
pktgen-dpdk? version 20.04 traffic generator, while Physical
Server 2 acts as a Device Under Test (DUT), using applications
developed and deployed into a network device, processing
packets using in-network processor or a traditional application
running on a gemu-kvm hypervisor, like in Figure 2a. The
application runs on their respective gemu-kvm virtual machine
and has a dedicated embedded network function from Smart-
NIC, provided by SR-IOV pass-through on the hypervisor,
with 8GB RAM and 2 CPU cores unpinned, in order to create
a more realistic environment as possible. The physical servers
run Ubuntu Linux Server 20.04, with kernel version 4.15.0-60,
as same as the OS running on virtual machines.

Uhttps://www.lua.org
Zhttp://git.dpdk.org/apps/pktgen-dpdk

328

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

Cumulative Distribution Fu

nction using SHA-256 algorithm

= Forward

- SHA256

— enf

n
dpdk
ovs

0 100 300 400

1e7 _ Throughput/Processi

14
12
L0

£os

&

06
04

02

T T T
64 128 25 512 1024 1280 1500
Packet size, in bytes

(©)

0.0

128 256

(C)

512
Packet size, in byt

||
1280

||
1280

1024 1500 128 256 512 1024 1500

Packet size, in bytes

(e)

Fig. 3: Latency (processing and forwarding) for software and hardware micro-applications running SHA-256 algorithm and
network forwarding: a) Total latency using different types of forwarding/calculation virtualisation techniques; and b) Cumulative
Distribution Function (CDF) probability for SHA-256 calculation and forwarding. Packet processing capacity comparison
between software and hardware micro-applications running SHA-256 algorithm, using different packet sizes and virtualisation

techniques: ¢) Open vSwitch (OVS) software switch, d) DPDK

C. Results

As we can see, in Figure 3a, the Open vSwitch software
switch, despite running on kernel-mode, presents the worst
latency level: ~197 usec to forward only and ~216 us to
calculate the SHA-256 function (+9.89 %). DPDK implemen-
tation improves it significantly down to around 67 us in both
cases (with and without SHA-256 function), showing that, as
might be expected, the Linux kernel bypass method used by
DPDK is a key technology for such applications. And finally,
using an eNF, we can achieve the best result in terms of
latency, reaching 834 nanoseconds to forward a packet (not
visible in the chart, due to its small value), but this value
increases to ~40.8 ps when we run the SHA-256 function
on the hardware, rising at least 40x the time to process and
forward a network packet. This highlights the cost of running
such a complex application on a resource-limited network
programmable device. However, the latency values stay below
the best software use-case (DPDK), showing that the network
device could be used for offloading the calculation of SHA-
256, alleviating the host-side processing.

As far as Cumulative Distribution Function (CDF) is con-
cerned, Figure 3b allows us to see that the eNF has a small
variability (almost a deterministic behaviour) when compared
with other implementations (Open vSwitch and DPDK) based
in software. This is due to the randomness added by the stacks
in the OS used to forward the packet from the NIC to the
software and then back to the NIC. The DPDK-based appli-
cation, that enables a shortcut to the user-level applications,
the CDF resembles a well-behaved uniform distribute function
but with enlarged variability when compared to the OvS
implementation. This is important in NFV because latency
higher-order moments are important for real-time applications.

application and e) eNF with P4 in NIC

There may be a trade-off between end-to-end latency and jitter
that may work against choosing the DPDK solution.

Figures 3c, 3d and 3e depict the capacity of each vir-
tualisation technique for processing packets using SHA-256
algorithm. In addition, a theoretical line showing the maximum
packets per second (PPS) throughput according to the packet
size using 10 Gbit/s speed, following the Ethernet frame MTU
(64-bytes and 1500-bytes packets) of the experiment in order
to check on the maximum and sustained processing rates when
forwarding packets through each virtualisation technique.

It is important to highlight that the SmartNIC is not able
to achieve line-rate speeds with small packets (<512 bytes),
as confirmed in a set of benchmarks available on the man-
ufacturer’s document library®. However, the validity of our
comparative results was not affected by this limitation once
all experiments were performed using the same setup.

Starting by Open vSwitch switch, we noted that the software
switch cannot process and forward small to large packets (Fig.
3c) alike, keeping the packets per second rate below a figure
of 800K, possibly due to the kernel/user modes and the OS
stack, being unable to forward nor process packets close to
10 Gbit/s. Meanwhile, DPDK has a more consistent result,
showing that the polling mode and CPU resource reservation
makes a difference for packet processing/forwarding actions.
The eNF results are practically the same as those of the DPDK
application, showing that despite the fact that packets are being
processed in the network hardware, and consequently avoiding
the OS stack and interrupts, the hardware is stressed when
calculating and forwarding small packets at near line rate. A
tradeoff between cost and performance may lean the choice of
the platform toward DPDK solutions when PPS is concerned.

3https://www.netronome.com/document-library

329

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

Based on the results and low-latency application require-
ments in need of cryptographic hash functions, we can con-
clude that Open vSwitch, which is a well-known software
switch intensively used by hypervisors, had an unsuitable
performance to use as an enabler for low latency applications.
It takes more than 210 us to compute the SHA-256 algorithm
and forward a packet. Thus, the time to send the network
packets from the “hardware plane” to the “software plane” is
quite high using the Open vSwitch switch. It can be reduced
when using the DPDK application. Considering that the time
to forward a packet on SmartNIC hardware is lower than
1 ws, all values exposed previously basically correspond to
the time to switch the context from hardware to software
levels. Moreover, comparing each approach, the eNF is the
best option to forward a packet, in the same way, to compute
a small work on its hardware. In fact, the eNF can complete
the SHA-256 hash function, and in sequence forward a packet,
using ~ 60% of the time needed by the best VNF case (DPDK)
and ~19 % of the time needed by the worst case (OvS).

V. CONCLUSION AND FUTURE WORKS

Cryptographic hash functions are essential for assuring the
security and privacy of network communication obliterating
data from malicious entities, avoiding attacks and establishing
mutual or multi-party trust relationships. This paper inves-
tigated alternatives for offloading the processing of crypto-
graphic hash algorithms from application-level hosts into in-
network computing for SFC in NFV infrastructures.

We described an architecture and prototype implementations
integrating secure hashing algorithm 2 (SHA-2) in different
virtualisation techniques to benchmark the P4 hardware target
platform. Our design of a P4 data plane is able to run a secure
hash algorithm using a mechanism for steering traffic between
software and hardware levels, enabling the use of complex
applications for generating hashes.

Results obtained for hashing using in-network computing
demonstrate that it is feasible, and in some cases better than
the traditional virtualisation techniques, including DPDK. Ap-
plications running on general-purpose CPU can do offloading
of its processing to the network device, freeing resources for
tenants and improving latency and throughput.

As part of future work, we can cite the use of the SHA-
256 algorithm applied with a securitisation solution, such as
hash-based message authentication code (HMAC), running on
SmartNIC hardware for offloading these applications using the
P4 language. Combining the dedicated cryptographic hardware
capabilities of the target to P4 applications using externs
may overcome the limitations imposed by the programming
language and improve the portability of other cryptographic
hash functions at line-rate speed.

ACKNOWLEDGEMENT
Financial support from Science Foundation Ireland grants
14/1A/2527 and 13/RC/2077 is gratefully acknowledged. This

study is also supported in part by the following Brazilian agen-
cies: CNPq, RNP, CAPES (Finance Code 001), FAPESP/M-

CTI/CGLbr (PORVIR-5G #20/05182-3, SAWI #20/05174-
0, and SFI, #18/23097-3), FAPES (#94/2017, #281/2019,
#515/2021, and #284/2021). CNPq fellows Dr. Martinello
#306225/2020-4 and Dr. Ribeiro #315463/2020-1.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87-95, Jul. 2014.

[2] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP *17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 121-136. [Online]. Available:
https://doi.org/10.1145/3132747.3132764

[3] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
164—-176. [Online]. Available: https://doi.org/10.1145/3050220.3063772

[4] M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville,
“Ideafix: Identifying elephant flows in p4-based ixp networks,” in 2018
IEEE Global Communications Conference (GLOBECOM). 1EEE, 2018,
pp. 1-6.

[5] G. Grigoryan, Y. Liu, and M. Kwon, “Iload: In-network load
balancing with programmable data plane,” in Proceedings of the
15th International Conference on Emerging Networking EXperiments
and Technologies, ser. CONEXT ’19 Companion. New York, NY,
USA: Association for Computing Machinery, 2019, p. 17-19. [Online].
Available: https://doi.org/10.1145/3360468.3366774

[6] J. M. Turner, “The keyed-hash message authentication code (hmac),”
Federal Information Processing Standards Publication, vol. 198, no. 1,
2008.

[71 NETRONOME, “Netronome Agilio
netronome.com/products/agilio-cx/, 2019.

[8] R. Sobti and G. Geetha, “Cryptographic hash functions: a review,”
International Journal of Computer Science Issues (IJCSI), vol. 9, no. 2,
p. 461, 2012.

[9] R. Martino and A. Cilardo, “SHA-2 Acceleration Meeting the Needs of
Emerging Applications: A Comparative Survey,” IEEE Access, vol. 8,
pp. 28415-28 436, 2020.

[10] Q. H. Dang et al., “Secure hash standard (shs), standard fips 180-4,”
National Institute of Standards and Technology, 2015.

[11] M. Molina, S. Niccolini, and N. Duffield, “A comparative experimental
study of hash functions applied to packet sampling,” in Proc. of
International Teletraffic Congress (ITC), 2005.

[12] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of hash
functions for multipoint measurements,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, pp. 39-50, 2008.

[13] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmiiller, H. Stubbe, T. Wild,
A. Herkersdorf, and G. Carle, “Cryptographic hashing in p4 data planes,”
in 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2019, pp. 1-6.

[14] E. Hauser, M. Schmidt, M. Hiberle, and M. Menth, “P4-macsec:
Dynamic topology monitoring and data layer protection with macsec
in p4-based sdn,” IEEE Access, vol. 8, pp. 58 845-58 858, 2020.

[15] F. Hauser, M. Héberle, M. Schmidt, and M. Menth, “P4-ipsec: Site-
to-site and host-to-site vpn with ipsec in p4-based sdn,” IEEE Access,
vol. 8, pp. 139567-139 586, 2020.

[16] B. Pfaff, J. Pettit, and T. e. a. Koponen, “The design and implementation
of open vswitch,” in Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI'15. USA:
USENIX Association, 2015, p. 117-130.

[17] L. Foundation, “Data plane development kit (DPDK),” 2015. [Online].
Available: http://www.dpdk.org

[18] C. Richardson, Microservices patterns: with examples in Java.
and Schuster, 2018.

[19] D.R. Mafioletti et al., “Piaffe: A place-as-you-go in-network framework
for flexible embedding of vnfs,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1-6.

SmartNIC,” https://www.

Simon

330

	42

