
Distributed Resource Autoscaling in Kubernetes
Edge Clusters

Dimitrios Spatharakis∗, Ioannis Dimolitsas∗, Eleftherios Vlahakis†, Dimitrios Dechouniotis∗

Nikolaos Athanasopoulos†, Symeon Papavassiliou∗

∗School of Electrical and Computer Engineering, National Technical University of Athens, Greece
†School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Northern Ireland, UK
{dspatharakis, jdimol, ddechou}@netmode.ntua.gr, {e.vlahakis, n.athanasopoulos}@qub.ac.uk, papavass@mail.ntua.gr

Abstract—Maximizing the performance of modern applications
requires timely resource management of the virtualized resources.
However, proactively deploying resources for meeting specific
application requirements subject to a dynamic workload profile
of incoming requests is extremely challenging. To this end,
the fundamental problems of task scheduling and resource
autoscaling must be jointly addressed. This paper presents a
scalable architecture compatible with the decentralized nature
of Kubernetes [1], to solve both. Exploiting the stability
guarantees of a novel AIMD-like task scheduling solution,
we dynamically redirect the incoming requests towards the
containerized application. To cope with dynamic workloads, a
prediction mechanism allows us to estimate the number of
incoming requests. Additionally, a Machine Learning-based (ML)
Application Profiling Modeling is introduced to address the
scaling, by co-designing the theoretically-computed service rates
obtained from the AIMD algorithm with the current performance
metrics. The proposed solution is compared with the state-of-the-
art autoscaling techniques under a realistic dataset in a small
edge infrastructure and the trade-off between resource utilization
and QoS violations are analyzed. Our solution provides better
resource utilization by reducing CPU cores by 8% with only an
acceptable increase in QoS violations.

Index Terms—Edge Computing, Resource Management,
Resource Autoscaling, Machine Learning, Kubernetes

I. INTRODUCTION

The proliferation of Internet of Things (IoT) and the
immense growth of modern applications have increased the
need for low latency to a remarkable extent. However, the
resource management of IoT applications to meet the emerging
stringent service requirements remains a major challenge.
Edge Computing [2] plays a key role in providing a solution
to the ever-expanding need for additional resources for
resource-constrained IoT devices. Hosting these applications
at the network edge alleviates the communication overhead
between end devices and computing resources. On the other
hand, optimizing resource utilization is essential, as the
edge infrastructure usually has limited resources. Moreover,
various open-source orchestration tools aim at supporting
every stage of the life-cycle of the deployed applications,
e.g., instantiation, monitoring, and scaling. Kubernetes [1]
is a state-of-the-art resource orchestration platform for
containerized applications. The Horizontal Pod Autoscaler
(HPA) [3] is widely used to implement the scaling of
resources. The HPA’s functionality mainly relies on regulating

the utilization of the deployed resources towards meeting a
target value of a single or a set of performance metrics, e.g.,
CPU utilization. Therefore, the HPA scales horizontally the
number of deployed containers to meet these targets. However,
5G applications require more sophisticated scaling techniques
to incorporate the dynamic nature of the incoming workload
and the complex operation of modern applications [4].

The aforementioned challenges are summarised in the
following two fundamental problems; (i) the scheduling of
the incoming requests and (ii) the appropriate instantiation of
resources for hosting the application. In this paper an Additive
Increase Multiplicative Decrease (AIMD) based scheme is
proposed for the task scheduling problem. Our approach is
inspired by the AIMD algorithm, a celebrated method for
congestion avoidance in the context of network management
[5]. The proposed AIMD-based algorithm has recently been
introduced in [6] and provides a simple, stabilizing and
decentralised solution for parallel task scheduling and resource
allocation of distributed computing systems.

Meeting critical QoS requirements via dynamic resource
scaling is a major challenge primarily due to a set of competing
Key Performance Indicators (KPIs), such as the utilization of
deployed resources and the response time of the underlying
application. A key enabler of scaling resources according to
the workload traffic is the identification of the maximum
number of requests that can be processed by the provisioned
resources [7]. Many recent Machine Learning (ML) based
studies investigate extensively the challenging problem of
resource management [8]. Nevertheless, the proposed ML-
based solutions typically have a very challenging training
phase and their scalability is limited [9]. Contrary to the one-
sided philosophy of the HPA that takes into account only
performance metrics, in this study, we propose a versatile
architecture for resource management in Kubernetes Edge
Clusters (KEC). We consider a scenario where users offload
their requests to a KEC for further processing. The key
contributions of our work are summarized as follows:
• A holistic scalable architecture to tackle the joint problem

of task scheduling and proactive resource management in
KEC. We exploit an AIMD-like solution for the scheduling
problem of the incoming requests. The proposed event-
triggered AIMD scheme facilitates proactive scaling of

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

163



Fig. 1: The proposed System Architecture for KEC.

resources subject to a dynamic workload profile via a
novel, intuitively conceived locally identifiable triggering
condition. This mechanism enables decentralized resource
orchestration at the network edge.

• An Application Profiling Modeling component is introduced
that leverages information from (a) the scheduling and
resource allocation solution, (b) the monitored KPIs, and (c)
the workload prediction algorithm to estimate the essential
number of replicas for meeting the workload demand. By
collecting a set of distinct resource profiles, all associated
with a resource allocation solution obtained from the AIMD
mechanism, we can optimize resource utilization without
violating the QoS requirements. Then, the scaling decision
is calculated using a simple ML technique that allows us
to also incorporate the performance metrics. The proposed
design is an easily re-configurable solution to the autoscaling
problem in KECs.

• The proposed architecture is evaluated in a small-scale
KEC using a computing-intensive application and a real
dataset of a touristic application. Our numerical results
illustrate how to efficiently trade off between allocated
resources and application performance, highlighting that
the proposed framework significantly outperforms various
configurations of well-known autoscaling solutions in terms
of the utilization of resources.
The remainder of the paper is organized as follows.

Section II, the proposed system architecture is presented.
Section III presents the AIMD-like solution for the task
scheduling problems. In Section IV, we introduce an ML-
based Application Profiling Modeling that performs the
resource scaling in the KEC. Section V presents the
experimental evaluation of the proposed work compared with
other solutions using a realistic dataset. Finally, Section VI
concludes the paper and discuss our future plans.

II. SYSTEM ARCHITECTURE

In this Section, we present the core components of the
proposed architecture deployed in the KEC. We assume that
IoT devices generate workload for a specific application
that arrives at the edge layer. We select Kubernetes as
the Resource Orchestrator of the virtualized resources.

Therefore, the architecture relies on widely used open-source
state-of-the-art software tools for resource management and
monitoring. An example application could be but is not
limited to a computationally intensive algorithm, such as
image classification. We should note that in most cases,
Kubernetes is mainly used for web applications that need
to perform rapid scaling decisions according to the ingress
traffic. The proposed architecture operates in the same layer
as the Resource Orchestrator and has three main components,
namely i) the Load and resource Controller, ii) the Application
Profiling Modeling, and iii) the Workload Estimator, as Figure
1 depicts. These components are responsible for incorporating
the decisions of the resource allocation mechanisms with the
ones of the time-varying workload. In particular, we attempt
to propose a holistic solution that simultaneously optimizes
well-defined metrics related to the infrastructure (computing
resources), and stabilizes the performance of the offloaded
application, leading to safe, predictable, and optimal behaviors.
The functionalities of each component are summarized here:
Load and Resource Controller: the objectives of this
component are (i) task scheduling and (ii) resource
autoscaling. Regarding the first objective, this component is
responsible for dynamic task scheduling of the offloaded
requests based on the output of the AIMD scheme. Secondly,
using information from the Application Profiling Modeling
component, this component dictates the resource allocation
strategy, aiming at guaranteeing the application’s performance
requirement in terms of QoS metrics and concurrently
guaranteeing various system properties.
Workload Modeling: this component is responsible for
estimating the number of incoming requests for the
containerized application leveraging a time-series forecasting
method. The output of this component is used to take
proactively scaling decisions.
Application Profiling Modeling: this component aims at
constructing representative dynamic models that can be
subsequently utilized for dynamic resource allocation of
KECs. Based on ML, various models are extracted to
sufficiently express the dynamic relationship between output
(QoS) and control variables, i.e., allocated CPU resources,
admitted workload, and active requests.

Kubernetes is used in this work as a resource orchestration
platform. In this ecosystem, (i) a pod is the smallest
deployment unit of computing resources for a containerized
application, (ii) a service is an abstract way to declare
applications as a network service, and (iii) deployment is a
declarative way for the instantiation, configuration, and scaling
of the pods that serve an application. Typically, multiple
containers co-exist in the same application pod, managed as
the same entity. Without loss of generality, we assume that
each pod hosts exactly one container. Next, we define the
application Resource Profiles:

Definition 1. An application Resource Profile φi is the
relationship between the allocated resources of a pod and the
maximum request rate of incoming requests that the pod serves

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

164



while keeping a certain QoS level.

For example, we assume that one container allocated with
one vCPU and 1 GB of RAM, can serve on average two
requests per second without having QoS violations. We let m
be the number of the different resource profiles for a specific
application. Therefore, a Kubernetes service and deployment
are realized for all resource profiles; φi, i = 1, . . . ,m. We
define the App Deployment as the abstract way to refer to
the network and the computing resources of each resource
profile. Then, each App Deployment has different available
resource limits for the deployed pods. In the context of
Kubernetes, the resource limits are used to enforce that the
instantiated containers of the pod will operate in predefined
regions in terms of CPU and memory. Moreover, for each App
Deployment, ri denotes the number of identical pod replicas
that are running. The upper replica limit is considered the same
for all deployments and expressed as rmax. To identify the
resource profiles, extensive offline experimentation has been
carried out involving three different configurations regarding
(i) the incoming request rate, (ii) the resource limits, and (iii)
the number of replicas. The aim was to empirically compute
the maximum request rate before QoS violations occur for
different sets of resource limits and replicas. Concerning the
monitoring system, we rely on Prometheus [10] for collecting
(i) the workload-, (ii) performance- and (iii) application-,
related metrics. The metrics are updated at each time slot.
Moreover, we utilized the Custom Pod Autoscaler (CPA) [11]
as the controller that scales the App Deployments. For each
resource profile, a CPA instance is realized to scale in/out
the number of replicas, which varies from zero to rmax.
Contrary to CPA, HPA does not support zero replicas. Hence,
CPA enforces the scaling decision of the Load and Resource
Controller, checking for changes in the desired number of
replicas at each time slot.

The core intelligence of the proposed framework is provided
by the Load and Resource Controller. The incoming requests
are load-balanced between the App Deployments according
to the output of the scheduling algorithm, which is deployed
on this component. The Workload Estimator takes input from
Prometheus to predict the incoming workload. At each time
slot, given this prediction, the performance metrics, and the
output of the scheduling algorithm, the Application Profiling
Modeling component computes the desired number of replicas
for each App Deployment using an ML model. Then, the Load
and Resource Controller exposes the scaling decision for each
App Deployment, via the Custom Metrics Adapter to be fed
to the CPA’s Controller unit. The complete architecture of the
proposed solution is illustrated in Figure 1. In the following
Sections, the above three components are analyzed in detail.

III. LOAD AND RESOURCE CONTROLLER

This Section describes the functionalities of the Load
and Resource Controller. An overview of the AIMD-like
task scheduling algorithm is described. Then, the actual
implementation of the algorithm for a KEC is presented.

∑
ui(t)λ(t)

δ(t)

γ1(t)
u1(t)

w1(t)

γ2(t)
u2(t)

w2(t)

γn(t)
un(t)

wn(t)

Fig. 2: A multi-queue system with AIMD policy.

A. AIMD-like Task Scheduling Algorithm

As Figure 2 shows, a central task queue δ(t) is an
aggregation point at which requests enter a multi-queue system
with an arrival rate λ(t) and, then, are dispatched to processing
nodes in a First Come First Served policy. An event is
generated whenever this queue vanishes, which is guaranteed
to happen since the admission rates ui(t) are piecewise
increasing functions of time as shown in Eq. (1). At the
time of the empty queue event, the admission rates drop
instantaneously. Each request is processed via a multi-queue
system with multiple processing nodes. Each processing node
i = 1, . . . , n has a service rate γi(t) and the queued requests
at each node are denoted by wi(t).

The proposed algorithm has two phases, namely, (a) the
Additive Increase (AI) phase and (b) the Multiplicative
Decrease (MD) phase. During the first phase, the admission
rates towards the processing units increase linearly with time
aiming to admit all of the queued requests and drain the
central queue. Inevitably, an empty queue event is triggered,
i.e., δ(tk) = 0, where k is the number of events. At this instant,
the scheduling algorithm enters the MD phase, which enforces
a rapid decrease in the admission rates, and then switches back
to the AI phase immediately. The admission rate towards the
ith processing node is defined as:

ui(t) = βiui(tk) + ai(t− tk), i = 1, . . . , n, (1)

where t is the current time, tk is the time of the kth empty
queue event and αi > 0, 0 < βi < 1, i = 1, . . . , n are tuning
AIMD parameters. Specifically, αi is the growth rate of the
admission rate of node i and βi is the multiplicative decrease
factor of the admission rate when an event is generated. Thus,
a request arriving at the aggregation point is held at the central
task queue until it is redirected to a processing node. The total
rate of redirecting requests from the central task queue to the
processing nodes at each time is

∑n
i ui(t). It is easy to show

that the inter-event period between two empty queue events is
defined as:

T (k) = max(0,
λ(k)−

∑n
i=1 βiui(k)∑n

i=1
1
2ai

), (2)

where ui(k) denotes the admission rate towards the ith node at
time t = tk. Under the scheduling solution (1)-(2), results from

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

165



Fig. 3: AIMD integration with Kubernetes.

[6] indicate that if we consider the following decentralized
resource allocation policy for the service rate of each node at
the kth event:

γi(tk) = βiui(tk) +
√
2aiwi(tk), (3)

then, the overall system is stable, in the sense that performance
metrics, such as, execution and response times, are bounded as
more requests are added to the system. QoS requirements can
be attained via an efficient tuning of the AIMD parameters,
see e.g., [12]. Moreover, individual service rates are adjusted
only when an empty queue event occurs via the decentralised
feedback rule (3) which requires only local information,
namely, the local admission rate ui and queue length wi.
To sum up, requests arriving at the first queue are not
served instantaneously by a processing node having a slight
increase in the total response time, however, they are placed
subsequently in local queues in a way guaranteeing the
stability of the overall system. We should note that the AIMD
parameters can be selected individually for each processing
node and remain constant. Thus, Eq. (3) is a decentralized
resource allocation feedback controller, scalable and locally
configurable. Moreover, in [6] it is shown that T (k) also
converges after a few steps of the algorithm. For the interested
reader, a thorough overview of AIMD-like algorithms can be
found in [13].

B. Integration with Kubernetes

In this section, we provide information about the integration
in Kubernetes of the Load and Resource Controller component
that exploits the AIMD-like task scheduling policy and
resource allocation. To develop the AIMD algorithm several
open-source software tools and technologies are used. In what
follows we briefly explain the functionalities, as we believe it
is important for understanding the remainder of the paper. The
main components are presented in Figure 3. The ingress traffic
for a specific application hits the exposed service of a Flask
Rest API. This API is the aggregation point that also performs
the task scheduling policy. To implement the dynamic task
scheduling policy of the AIMD algorithm, we selected Python
Celery, which is a software that suits well with Flask with its
main functionality being the creation of workers to implement
asynchronous tasks. The workers communicate via redis, a
messaging broker, monitoring several events, e.g., the arrival

of a request, completion of a task, etc. The Queue Worker
implements the central task queue δ(t). Celery can implement
a rate limit for each worker, thus, the Queue Worker redirects
tasks with a rate of

∑n
i ui(t) at each time slot. Moreover,

the Beat Worker is triggered every time slot to update the
admission rates and enforce the new rate limit to the Queue
Worker. Hence, the requests may be held in the aggregation
point before being redirected to the processing nodes due to
the rate limit. We should note that the rate limit is a common
practice at the production level to enforce billing policies
for the incoming traffic. The dynamic task scheduling policy
serves as a stabilizer for the processing nodes giving them
time to process the requests and instantiate new resources
accordingly. The configuration and monitoring of all of these
procedures are stored in a Postgresql relational database.

As mentioned above, we consider m distinct resource
profiles, φm, i = 1, . . . ,m, with different processing
capabilities as the processing nodes. For each resource profile,
a separate Celery Worker is created to redirect the HTTP traffic
from the Queue Worker to the corresponding Application Pod
that serves the virtualized instance of the application. We
consider that if a request is redirected by a Celery Worker
towards the ith application pod then it belongs to the wi queue.
Subsequently, we dynamically load balance the incoming
workload on the instantiated pods. The proposed architecture
operates in a distributed manner since, for each computing
node, no knowledge of the state of other nodes is needed.
We should also mention that it is possible to have multiple
aggregation points for the incoming workload of multiple
applications. However, a missing capability is to interpret and
subsequently enforce the computed theoretical service rates to
each processing node, namely, the number of replicas for each
resource profile φi to guarantee at least a service rate of γi(k).
In the next Section, we provide a solution to this challenging
problem.

IV. WORKLOAD ESTIMATOR AND APPLICATION
PROFILING MODELING

In this Section we present the last two components of the
proposed system architecture i.e., (a) the Workload Estimator,
and (b) the Application Profiling Modeling.

A. Workload Estimator

To timely adjust the service rate of the deployed resources,
it is important to predict the admission rates. As the AIMD
algorithm dynamically changes the admitted workload ui(t)
towards the pods, the Workload Estimator tries to estimate the
number of requests that will be admitted until the next empty
queue event under the dynamic workload. This is important as
continuously applying different service rates to the pods, i.e.,
scaling out/in the number of replicas may lead to performance
deterioration. Hence, we deploy an autoregressive integrated
moving average (ARIMA) model [14]. Such predictive
techniques are very common for time-series forecasting. The
model is trained using offline information and retrains online
as the workload varies. This information is then used from

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

166



TABLE I: Dataset’s Features Specifications.

Feature Component Specification
γi AIMD Algorithm The service rate of each node.
wi AIMD Algorithm The queued requests at each node.
ui AIMD Algorithm The admission rate to each node.

ureal
i Performance Metric The actual admission rate to each

node during a time window.

upred
i Predicted Metric The admission rate predicted by the

Workload Estimator for each node.

arti Performance Metric The average response time obtained
by each node.

ri Performance Metric The number of replicas for the
underlying resource profile φi.

the Application Profiling Modeling component to deploy the
desirable number of replicas for each resource profile.

B. Application Profiling Modeling

The Application Profiling Modeling is based on a machine
learning (ML) technique, which essentially involves the
classification of distinct combinations of computing resources
concerning the application’s service rate, as in [15]. The
classification calculates the number of replicas ri for each
resource profile φi, leveraging various metrics retrieved from
the core components of the proposed framework. Then, the
scaling decision is fed to Load and Resource Controller.
Subsequently, the training process of distinct models demands
separate data that characterize the respective resource profile
φi.

Several features can be taken into account to characterize
the performance of a pod, the pod’s resource utilization,
and the service and admission rates occurred by the
task scheduling solution. To acquire the data that contain
the necessary metrics regarding the scaling decision, we
conducted offline experiments, utilizing the components of
the proposed architecture for isolated resource profiles. In
detail, per experiment, only one resource profile is used
for the corresponding application. Different configuration
schemes of (i) the incoming request rate, (ii) the resource
limits, and (iii) the number of replicas were applied to
identify settings that meet the QoS constraints for the
underlying application. Subsequently, the collection of data is
categorized in the components of the architecture as depicted
in Table I. The collected data from the aforementioned
experiments are raw and therefore not suitable for training
machine learning models. So, we use several ML data pre-
processing techniques to prepare the dataset for training our
Application Profile Model in order to achieve faster training
and improved classification accuracy. Indicatively, feature
scaling via normalization is initially performed, followed by
dataset balancing, aiming at equal occurrence of data from
each class of the dataset, and, finally, feature importance that
reflect more information regarding our classification problem
while reducing the dataset’s dimensions.

The Application Profiling Modeling component is
responsible for providing the CPA with the value of ri at
each event, leveraging the aforementioned selected features,

Fig. 4: Workload Trace used for training and experimentation.

i.e., ureal
i , γi, wi, and upred

i . We selected the k-Nearest
Neighbors (kNN) [16] algorithm as it is an instance-based
learning algorithm with fast training phase, and it involves
only storing feature vectors and class labels of the training
samples. Also, it suits multi-class problems like ours, with
its non-parametric nature being appropriate for small datasets
since no assumptions on the data distribution are required.
As Table II shows, three different resource profiles are
used. For each resource profile, we generate a training
and an evaluation dataset. Based on the aforementioned
pre-processing techniques, dataset preparation is performed,
prior to the training phase. The ratio between training and
test sample points is 70% to 30% of the initial dataset. The
proposed scaling decision runs in the order of ms, so the
overall performance does not decline. More details on kNN
hyperparameter configuration are given in Section V.

V. EXPERIMENTAL EVALUATION

This Section presents the experiment setup and the
experimental evaluation of the proposed architecture with
other autoscaling schemes for KECs. We consider three
different resource profiles, m = 3, namely small, medium,
and large, following the production standards, see, e.g.,
Azure1. The maximum number of replicas is rmax = 4.
The resource limits and AIMD parameters for each resource
profile are presented in Table II. Also, the maximum request
rate that a pod can serve before noticing QoS violations is
presented in the same Table. The application is a simple image
classification application that uses OpenCV. We assume that if
a request takes three times more than expected to be processed
then we have a QoS violation, and the request is rejected by
enforcing a connection timeout. We scrape the Prometheus
metrics at each time slot of 0.1 sec with the Beat Worker
operating at the same rate. For the training of the ML-based
Application Profiles, we used a workload trace acquired from
Ferryhopper website2, which provides ferry booking services
around Europe. Figure 4 presents the per-minute distribution
of HTTP request rate spanning six days. The data of the first
four days were used for the ARIMA model and the ML-based

1https://azure.microsoft.com/en-us/pricing/calculator/
2https://www.ferryhopper.com/

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

167



Fig. 5: The performance of the proposed DRA method.

TABLE II: Resource Profile Setting.

Resource Profiles Small (i=1) Medium (i=2) Large (i=3)
CPU cores 1 2 4
RAM (GB) 2 4 8
[αi, βi] [0.4,0.5] [1,0.5] [2.4,0.5]

Max Req Rate (req/s) 1.5 3.6 7.8

Application Profiles, while the data of the last day is used
for the evaluation part. The ARIMA model was trained using
the autoarima package, which yielded a model of order (3,1,1).
Datasets for each resource profile and information for the kNN
hypermaters are available in this public repository3.

We compare the proposed architecture, hereinafter
Distributed Resource Autoscaling (DRA), with four different
setups, namely (i) modified HPA (m-HPA), (ii) S-HPA (iii)
M-HPA, and (iv) L-HPA. The m-HPA, on the one hand,
utilizes the three resource profiles by load balancing the
incoming requests with a constant ratio. On the other hand,
the resource scaling decision is dictated by an HPA instance
for each resource profile by targeting 70% of CPU utilization.
The last three setups deploy only one resource profile at
each time, i.e., only small (S-HPA), only medium (M-HPA),
or solely large (L-HPA) resource profiles, respectively. The
scaling is, again, performed by HPA by targeting 70% of
CPU utilization for the deployed replicas. These setups are all
evaluated against a seventy-minutes workload taken from the
test data of the Ferryhopper trace. All HPA instances operate
every 1sec. The experiments were conducted ten times for
each method, and all the results are averaged.

In Figure 5, we illustrate the performance of the proposed

3https://github.com/Dspatharakis/datasets.git

DRA method. The first diagram at the top shows the incoming
request rate λ(t) and the admission rates ureal

i (t), i =
1, 2, 3, towards the small, medium, and large resource profile,
respectively. at each time slot. As expected, λ(t) is distributed
according to the AIMD-based scheduling solution (1), while
the workload share of each resource profile depends on the
ratio αi∑n

i=1 αi
. In particular, the average admission rates of

the small, medium and large resource profile, respectively, for
the entire experiment, are calculated as 12%, 31% and 57%,
which are consistent with the ratio αi∑3

i=1 αi
. The lengths of

individual queues of the application pods denoted by wi(t) are
depicted in the second diagram. Evidently, when the workload
is peaked, individual queues grow reasonably indicating an
increase in local backlog. The AIMD-based service rates γi(k)
for each resource profile, as obtained from Eq. (3), are shown
in the third diagram from the top. Recall that γi(k) is a strictly
increasing function of wi(t) as shown in Eq. (3). This coupling
is clearly demonstrated in the second and third diagrams. The
ML-based scaling decision is shown at the bottom diagram.
The number of deployed CPU cores for each resource profile,
is illustrated at each time slot, and the scaling decision takes
into account the behavior of all previously shown metrics. The
rest features of the ML-based profiles are omitted as they do
not add any value to the discussion of the results.

The utilized CPU cores needed to serve the incoming
requests at each time slot are illustrated for all methods in
Figure 6. The HPA-based solutions, i.e., S-HPA, M-HPA,
and L-HPA utilize on average 14.8, 14.6, and 14.1 CPU
cores respectively, throughout the experiment. The M-HPA
and L-HPA provide negligible QoS violations, namely, 0.2%
and 0.9%, respectively. However, both need at least 28 CPU
cores to operate at the peak of the workload. This occurs

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

168



Fig. 6: The Total CPU cores utilized for each method
throughout the experiment.

TABLE III: Results for the five experiments.

Setup Total
QoS Violations

Average CPU
cores

DRA 1.17% 13.1
m-HPA 0.52% 16.2
S-HPA 3.64% 14.8
M-HPA 0.93% 14.7
L-HPA 0.20% 14.2

because of the lack of a task scheduling algorithm that leads
to instantiating under-utilized cores. Nevertheless, for the S-
HPA solution, which intuitively could be the most fine-grained
scaling solution, we notice that it has on average the same
performance in terms of CPU cores, however, leading to a
significant increase in lost requests, namely, 3.64% of the total.
This is reasonable as the small resource profile can serve only
2.5 requests per second as shown in Table II. For the m-HPA,
we can assume that under the assistance of the task scheduling
policy, the total QoS violations are minimized, however, the
average CPU cores are maximized, leading to 16.1 CPU cores.
As one can notice, our method outperforms all other setups by
utilizing, on average, 12.6 CPU cores to handle the incoming
varying workload, having only 1.8% total QoS violations
with more than 8% fewer CPU cores utilized throughout the
experiment. It is evident, that the task scheduling mechanism
is key to handle the time-varying workload and optimize the
utilization of the deployed resources. Table III summarizes the
results.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an architecture for resource
management in KEC. The proposed method provides a
solution to the task scheduling problem. Also, based on the
theoretical results from the proposed AIMD like algorithm
and various performance metrics, we introduce an ML-based
Application Profiling Modeling that decides the number of
replicas for the different resource profiles to proactively and

in a decentralized manner, scale the deployed resources to
serve the incoming workload. Our framework outperforms
other commonly used solutions for autoscaling, as the average
CPU resources are at least 7% less, having only a slight
increase in QoS violations. Regarding our future plans, we
will concentrate on power optimization by minimizing the
number of active servers in a KEC with a specific capacity
guaranteeing the QoS level using the proposed architecture.

VII. ACKNOWLEDGMENT

This research was supported by the CHIST-ERA-18-
SDCDN-003 (DRUID-NET), and has been co- funded by
the European Union (European Regional Development Fund
-ERDF) and Greek national funds through the Operational
Program ”Competitiveness, Entrepreneurship and Innovation
2014-2020” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: DRUID-NET (eDge
computing ResoUrce allocatIon for Dynamic NETworks), MIS
5070466. We would like to also thank the Ferryhopper team
for providing us a realistic workload trace.

REFERENCES

[1] Kubernetes. https://kubernetes.io/, Last Accessed on 2022-07-01.
[2] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton,

R. Jungers, and S. Papavassiliou, “Edge computing resource allocation
for dynamic networks: The DRUID-NET vision and perspective,”
Sensors, vol. 20, no. 8, p. 2191, 2020.

[3] Horizontal-Pod-Autoscaling. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/, Last Accessed on 2022-07-01.

[4] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: a survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[5] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[6] E. Vlahakis, N. Athanasopoulos, and S. McLoone, “Aimd scheduling
and resource allocation in distributed computing systems,” in 2021 60th
IEEE Conference on Decision and Control (CDC), pp. 4642–4647, 2021.

[7] A. Shahidinejad, M. Ghobaei-Arani, and M. Masdari, “Resource
provisioning using workload clustering in cloud computing environment:
a hybrid approach,” Cluster Computing, vol. 24, no. 1, pp. 319–342,
2021.

[8] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource
management approaches in fog computing: a comprehensive review,”
Journal of Grid Computing, vol. 18, no. 1, pp. 1–42, 2020.

[9] S. Verma and A. Bala, “Auto-scaling techniques for iot-based cloud
applications: a review,” Cluster Computing, vol. 24, no. 3, pp. 2425–
2459, 2021.

[10] Prometheus. https://prometheus.io/, Last Accessed on 2022-07-01.
[11] Custom-Pod-Autoscaler. https://custom-pod-autoscaler.readthedocs.io,

Last Accessed on 2022-07-01.
[12] W. Ren, E. Vlahakis, N. Athanasopoulos, and R. Jungers, “Optimal

resource scheduling and allocation in distributed computing systems,”
arXiv preprint arXiv:2112.00708, 2021.

[13] M. Corless, C. King, R. Shorten, and F. Wirth, AIMD dynamics and
distributed resource allocation. SIAM, 2016.

[14] R. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications’ qos,”
IEEE Transactions on Cloud Computing, vol. 3, no. 4, pp. 449–458,
2014.

[15] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[16] K. Taunk, S. De, S. Verma, and A. Swetapadma, “A brief review of
nearest neighbor algorithm for learning and classification,” in 2019
International Conference on Intelligent Computing and Control Systems
(ICCS), pp. 1255–1260, 2019.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

169


	19



