
Performability Assessment of Containerized
Multi-Tenant IMS through Multidimensional UGF

Luigi De Simone⇤, Mario Di Mauro†, Maurizio Longo†, Roberto Natella⇤, Fabio Postiglione†

⇤University of Napoli Federico II, Italy, {luigi.desimone,roberto.natella}@unina.it
†University of Salerno, Italy, {mdimauro,longo,fpostiglione}@unisa.it

Abstract—We advance a performability assessment of a multi-

tenant containerized IP Multimedia Subsystem (cIMS), i.e.: one

and the same infrastructure is shared among different providers

(or tenants). Specifically, we: i) model each cIMS node (a.k.a.

Containerized Network Function - CNF) through the Multi-

State System (MSS) formalism to capture the dimensionality

of the multi-tenant arrangement, and characterize each tenant

through queueing theory attributes to catch latency-dependent

performance aspects; ii) afford an availability analysis of cIMS

by means of an extended version of the Universal Generat-

ing Function (UGF) technique, dubbed Multidimensional UGF

(MUGF); iii) solve an optimization problem to retrieve the

cIMS deployment minimizing costs while guaranteeing high

availability requirements. The whole assessment is supported

by an experiment based on the containerized IMS platform

Clearwater which we deploy to derive some realistic system

parameters by means of fault injection techniques.

Index Terms—IP Multimedia Subsystem, Performability, Uni-

versal Generating Function, Redundancy Optimization.

I. INTRODUCTION

Nowadays, network softwarization represents one of the
most interesting paradigms allowing telco operators to im-
prove flexibility and management efficiency [1]. Through the
softwarization process, for example, it is possible to compose
new services by means of service function chains (SFCs)
[2], [3], where the interconnected elements are implemented
in software by exploiting virtualization and containerization
technologies. In particular, containers represent a lightweight
solution to host network functionalities since they do not run
any dedicated operating system. From a network management
point of view, dealing with softwarized structures leads to care-
fully consider crucial metrics including: performance [4]–[7],
namely the ability of guaranteeing a given service level, and
availability [8]–[12], namely the probability of being operative
at a given time). When combined, performance and availability
give rise to the performability [13]. Accordingly, in this work
we afford a performability assessment of a containerized IP
Multimedia Subsystem (cIMS), that can be considered a par-
ticular kind of SFC and that is involved in multimedia contents
management across mobile networks. Within the cIMS, each
node is containerized and referred to as Containerized Network
Function (CNF). Moreover, a CNF can be shared among

different tenants (namely, different network providers) aimed
at distributing management costs. Performances are captured
through the Call Setup Delay (CSD), namely the average
latency introduced across the whole cIMS infrastructure [14],
whereas each tenant is modeled with an M/G/k queueing
system. Intuitively, the presence of redundant CNFs results in
an overall CSD reduction since the load can be distributed
among nodes. On the other hand, the CNF redundancy entails
a steady-state availability analysis aimed at evaluating the
probability that the cIMS is functioning in long runs. The
availability target is typically expressed in terms of the number
of nines: for example, five nines means that the cIMS has
a steady-state availability of 0.99999, thus it can tolerate a
maximum yearly downtime of 5 minutes and 5 seconds [15].

The following main findings stand out: i) We propose a
Multi-State System (MSS) representation of a CNF shared
among different tenants, where each state is described by a
latency performance vector; ii) We employ the novel Multi-
dimensional Universal Generating Function (MUGF) method
which allows to find the MSS performance distribution of a
multi-tenant cIMS by means of manageable algebraic proce-
dures; iii) We sustain an availability assessment of a multi-
tenant cIMS, by solving an optimization problem coupled with
MUGF, to single out the optimal cIMS setting satisfying high
availability requirements at a minimal cost; iv) We perform a
large set of experiments (exploiting the Clearwater platform)
to estimate values for model parameters, such as mean times
to repair and mean service times.

A. Problem overview

Before delving into technical details, we offer an ampler
overview of the addressed topic, by highlighting some key
points pertaining both to technological and methodological
aspects. On one hand, we move into the realm of network soft-
warization, where each network element can be decomposed
into different layers resulting in a decoupling of hardware
and software. Precisely, by adhering to the modern container-
ized paradigm, the software layer is further decomposed in
containers (lightweight software facilities aimed at providing
a specific service) and Docker layer (the software facilities
manager). In accordance with such a model, we consider a

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM)

145

containerized version of IP Multimedia Subsystem, a frame-
work widely adopted within 4G and 5G to handle a number
of multimedia services such as HD Voice/Video, presence
information, multiparty gaming, content sharing and many
others. The marriage between the container-based technology
and the IMS framework opens new perspectives for providers
(or tenants) which can share a common underlying service
infrastructure (Hardware and Docker) to optimize costs, re-
sulting in a multi-tenant infrastructure. On the other hand, the
multi-tenant cIMS raises new intriguing challenges in terms
of performability issues that we face by: i) adopting a Multi-
State System representation useful to capture the complex
dependencies among tenants states; ii) introducing the MUGF,
a polynomial-like function designed to efficiently embody the
relations among the said states, and that we exploit to solve the
optimization problem aimed at finding the cIMS configuration
which best satisfies the availability/costs trade off. Compared
to classic Continuous-Time Markov Chains (CTMCs), the
MUGF approach exhibits a reduced complexity, since it allows
to express the overall cIMS performance distribution through a
combination of single nodes performance distribution, in the
spirit of a divide et impera principle. Moreover, by starting
from a queueing model of IMS requests at each tenant, we
achieve a good estimate of the mean Call Setup Delay (CSD),
a key performance indicator in multimedia frameworks (such
as IMS), that we use as performance metric in the MUGF.

II. RELATED RESEARCH

This work belongs to the broader field of joint performance
and reliability analysis of computer systems (performability).
Previous research addressed these aspects in many context,
ranging from fault-tolerant safety-critical systems, to multi-
tier web applications and IT networks [16]–[19].

With respect to affine literature dealing with availability
aspects of softwarized networks, we can pinpoint more than
one single element of difference and/or novelty.

For instance, we note that a part of literature focuses on
availability problems where the models often account only
for failures but not for repairs. It is the case of [20], where
the authors face an availability issue concerning the optimal
deployment of an SFC infrastructure. Precisely, they estimate
the minimum number of backup VNFs satisfying a given
availability level. Likewise, a heuristic algorithm to maximize
the availability of an SFC through an optimal distribution of
VNFs has been advanced in [21]. Authors in [22] tackle the
virtual machine redundancy problem in a multi-tenant envi-
ronment through optimal primary/backup logic. We highlight
that, differently from such works, in our proposal we consider
a complete failure/repair model of nodes under analysis.

Indeed, with respect to the model exploited to characterize
the failure/repair life-cycle, another part of literature adopts
compact formalisms having the benefit of avoiding errors
during the model designing stage. It is the case of [23],

where the Stochastic Reward Networks (SRNs) have been
employed to face an availability assessment of some container-
ized infrastructures. SNRs have been adopted in [24] yet, to
characterize some availability aspects of an Infrastructure-as-
a-Service framework. Likewise, an availability analysis based
on Stochastic Petri Networks (SPNs) has been carried out
in [25], with applications in cloud-based arrangements. One
drawback of such compact formalisms is the lack of a punctual
characterization of system dynamics which makes it difficult
to embed a performance metric. In contrast, the combination of
the MUGF technique with the MSS formalism proposed in our
work allows to jointly manage performance and availability
metrics, having the complete access to each system state.

Remarkably, we also note that the UGF technique has been
profitably adopted in the field of network management to
characterize availability aspects. It is the case of [26], where
the UGF has been adopted to calculate the expected service
rewards in cloud environments; or [27], where a UGF-based
technique has been employed to describe physical and virtual
system failures. Such studies focus on single-tenant structures,
with no need of a multidimensional form of UGF that we
endorse in our work.

Finally, with respect to our previous work where MUGF
[28] has been first conceived, here we present a restructured
version thereof, useful to account for the novel latency-based
metric and to quickly compute the performance distribution
of the MSS. Moreover, in this new version, each tenant is
characterized through the M/G/k queueing formalism which
allows to treat analytically the latency metric. Finally, an
extensive experimental campaign (lacking in [28]) has been
carried on a realistic cIMS deployment based on Clearwater
platform, allowing us to estimate crucial quantities such as
repair rates and mean service times.

III. CONTAINERIZED IMS
In this section, we provide a quick description of a cIMS

deployment realized through Clearwater [29], constituting the
baseline architecture for our experimental analysis.

Each IMS node is developed as a container managed by a
container engine (we use Docker in our deployment), which
is installed on a physical machine. Figure 1 shows a sketch of
Clearwater, where each containerized node is realized through
a three-layer structure referred to as Containerized Network
Function (CNF), whose details are presented in the next
section. The following containerized nodes compose the cIMS
infrastructure: Bono, which represents the P-CSCF (Proxy-
Call Session Control Function) node and acts as contact
point for users accessing IMS through Session Initiation
Protocol (SIP); Sprout, which concurrently acts as S-CSCF
(Serving-CSCF) for SIP registrations management, and as I-
CSCF (Interrogating-CSCF) for users associations manage-
ment; Homestead which represents the HSS (Home Subscriber
Server) database for the users authentication procedures. The

2022 18th International Conference on Network and Service Management (CNSM)

146

Fig. 1. Containerized IMS deployment through Clearwater.

architecture in Fig. 1 also includes an external node equipped
with SIPp, a workload generator that we use to stress cIMS
with SIP-based service requests. Through such service requests
we are able to estimate the Call Setup Delay (CSD), namely
the time interval between a SIP Invite message sent from
the caller and the corresponding Ringing message received
from the callee [30]. Remarkably, CSD has been elected as
a critical Key Performance Indicator (KPI) [31]–[33] being
strongly related to the end-user experience.

A. Containerized Network Functions (CNFs)

According to a decoupling logic offered by container tech-
nology [34]), a single CNF can be represented as a three-layer
structure which includes: Containerized Instances, namely the
upper layer which provides software instances (containers)
representing specific IMS functionalities (e.g., Proxy, Interro-
gating, etc.); Docker layer, namely the intermediary between
containers and physical layer; Infrastructure, namely the lower
layer embodying both operating system (OS) and physical
equipment (e.g., power supply, CPU, etc.).

As highlighted in Fig. 2, more tenants can share the same
CNF. Precisely, tenant i (i = 1, . . . ,K) separately manages a
maximum number of containerized instances (say ni) within
the containerized layer, but all tenants share the underlying
layers (Docker and Infrastructure). In turn, a containerized
instance is supposed to manage, at the same time, � service
requests which play the role of serving capacity. Such a
quantity is crucial when designing the tenant queueing model
presented in Sect. IV-A.

IV. AVAILABILITY MODEL OF CNF

From an availability perspective, each CNF layer admits
a two-state model: active or failed. As regards the upper
layer, for example, a containerized instance has a serving
capacity amounting to � when active, and to 0 when failed.

Tenant 1

…

CNF Model

Docker Layer

. . .

Containerized Instances

Infrastructure Layer (OS + HW)

…

!
"η1

⍺$

…
…

⍺%

Tenant K

!

!

!

!

!

"ηK

Containerized Layer

Fig. 2. A CNF which hosts K tenants. Each tenant is represented through a
M/G/�⌘i queueing model managing a set of containerized instances. Arrival
and service rates are denoted by ↵i and �, respectively.

Accordingly, the representation in Fig. 2 can be turned into
the Multi-State System model depicted in Fig. 3 where:

• Each state is a K-dimensional vector ⌘ = (⌘1, ..., ⌘K)
2
Q

K

i=1{0, . . . , ni}, where ⌘i 2 {0, 1, ..., ni} represents
the number of working container instances belonging to
tenant i. The initial state vector (n1, ..., nK) pertains to
a completely functioning system characterized by the
maximum number of available working containerized
instances per tenant. For instance, the vector (n1, ..., ni�
1, ..., nK) indicates a state where one of the containerized
instances pertaining to tenant i is failed. Failure and
repair processes of containerized instances are supposed
to be Homogeneous Poisson Processes (HPPs), whose
parameters (rates) are �Ci

and µCi
, respectively.

• The state vector (0, 0, ..., 0) pertains to a state with no
working containerized instance holds, regardless of the
Infrastructure layer and the Docker conditions.

• The state Docker Layer Failure (DLF) indicates the
Docker failure condition which, in turn, causes the failure
of all the containerized instances. Failure and repair pro-
cesses of Docker are supposed to be HPPs whose rates are
�D (dotted arrows from working states to DLF) and µD,
respectively. Moreover, we assume that restoration of the
Docker layer implies the restoration of all containerized
instances, as remarked by the transition from DLF state
to the initial state with rate µD.

• The state Infrastructure Layer Failure (ILF) is associated
with a crash of HW/OS part provoking a failure of the
entire system. Likewise, failure and repair events of the
Infrastructure layer are modeled as HPPs, where �I and
µI are the corresponding rates. Similar to the previous
case, the ILF brings down containerized instances and
Docker layer (see dotted arrows towards ILF with the
rate �I), whereas, a recovery of the Infrastructure layer
is concluded with a complete system restoration (Docker
and containerized instances layers) with the rate µI .

In case docker or infrastructure layers fail, no user request
can be served, thus, the system is in practice unusable, a condi-

2022 18th International Conference on Network and Service Management (CNSM)

147

(n1, n2,…, nK) (n1, n2 - 1,…, nK) (0, 0,…, 0)

n1!"#
$"#

$"%

$"#
$"& 2$"&

!(!(

DLF
!(

$(

!(!(

ILF
!)

$)

!) !)

!) !)

. . .

(n1, n2,…, nK - 1) (n1,…, nK – 1 -1, nK - 1)

(nK-1)!"*+#

$"*+#
. . .

. . .nK!"%

n2!"& (n2 - 1)!"&

(n1 - 1, n2,…, nK) (n1 - 1, n2 - 1,…, nK)

(n2 - 1)!"&

$"&

n1!"#

. . .

Fig. 3. Multi-State System (MSS) model of a CNF. In each state is reported
the number of working containerized instances for all K tenants.

tion which is rarely met in modern cloud environments where
infrastructure layers are extremely reliable. In contrast, when
a containerized instance fails, only the part of user requests
assigned to that instance will experience a malfunction.

Accordingly, we define the capacity level gi,⌘ associated to
tenant i in state ⌘ the quantity:

gi,⌘ = � · ⌘i. (1)

Since CNF behavior varies over time (due to the presence of
failures), the capacity level is time-varying itself and reflects
the current condition.

The set which embeds all possible capacity levels g⌘ =
(g1,⌘, ..., gK,⌘) for each CNF is given by

G =

(
� · ⌘

����� ⌘ 2
KY

i=1

{0, . . . , ni}
)
[{(0, . . . , 0)D, (0, . . . , 0)I},

(2)
where (0, . . . , 0)D and (0, . . . , 0)I are the capacity levels of
the DLF and ILF states, respectively. Again, the total number
of states pertaining to the MSS of Fig. 3 amounts to:

N =
KY

i=1

(ni + 1) + 2. (3)

As a result, the CNF capacity level at time t � 0 can be
expressed in terms of the vector stochastic process

G(t) = (G1(t), ..., GK(t)) 2 G, (4)

with (state) probability vector p(t) at time t gathering all the
state probabilities p⌘(t), being p⌘(t) = Pr{G(t) = g⌘}.

Given an initial probability vector at time t = 0, p(t) can
be derived at t � 0 by solving the following system [35]:

dp(t)

dt
= p(t)Q, (5)

along with the normalization condition
P

⌘ p⌘(t) = 1. The
symbol Q represents the infinitesimal generator matrix of the
MSS shown in Fig. 3.

Remarkably, p is a vector which collects the steady-state
probability p⌘ for each state ⌘, given by:

p⌘ = lim
t!1

p⌘(t) = lim
t!1

Pr{G(t) = g⌘}. (6)

Thus, the random vector G = (G1, ..., GK) represents the
asymptotic behavior of G(t) (t ! 1) with values in the set
(2) and with probabilities (6). In summary, the set of pairs
{p⌘, g⌘} determines the steady-state behavior of a CNF in
terms of serving capacity.

A. CNF Queueing modeling
From a modeling point of view, the most crucial part of

the whole CNF infrastructure is the containerized layer for
two reasons. The first one is that, differently from docker and
infrastructure layers, the containerized layer admits a non-
trivial system state model where, as shown in Fig. 3, we
consider each combination of states of containerized instances.
The second reason is that, being involved in real-time session
management, requests can be queued waiting to be served,
implying the design of a queueing strategy. Across the tech-
nical literature, it is common the adoption of M/M/1 or
M/M/k systems to model the queueing aspects of multimedia
(in particular, SIP-based) servers (see [36]–[38]). Unluckily,
such models rely on an exponential service time assumption
which is often unrealistic in the network field.

In contrast, we model each tenant as an M/G/k queue-
ing system, having the possibility to estimate generic
(non-exponential) probability distributions of service times
through our realistic testbed. More precisely, we propose
an M/G/Gi(t) model which accounts for the time-varying
number of servers subject to failure/repair actions. At this aim,
we highlight that, since the order of magnitude of arrival and
service rates is much greater than failure and repair rates for
all layers, it is possible to assume that the M/G/Gi(t) model
is equivalent to a M/G/gi = M/G/�⌘i for a certain state
[39]. Pragmatically, given a state ⌘, tenant queues reach their
steady-states very quickly compared to the fault occurrences.

We also remark that the mean CSD can be approximated by
the average time that user requests spend in the containerized
IMS, due to the processing time needed by each CNF to man-
age such requests. Thus, we evaluate the mean CSD per CNF
(indicated by CSD(m), with m 2{P-CSCF, S-CSCF, I-CSCF,
HSS}), where call setup requests are distributed according
a Poisson process with parameter ↵i. Before evaluating the
mean CSD per CNF, we start to evaluate the average number
of sessions ⌫i,⌘ for an equivalent M/M/�⌘i queueing model
which describes tenant i in state ⌘ [35], namely

E[⌫i,⌘] = �⌘i · ⇢i,⌘ + ⇢i,⌘
(�⌘i · ⇢i,⌘)�⌘i

�⌘i!

⇡i,⌘

(1� ⇢i,⌘)2
, (7)

where ⇢i,⌘ = ↵i/�⌘i is the utilization factor, and

⇡i,⌘ =

"
�⌘i�1X

h=0

(�⌘i · ⇢i,⌘)h

h!
+

(�⌘i · ⇢i,⌘)�⌘i

�⌘i!

1

1� ⇢i,⌘

#�1

.

2022 18th International Conference on Network and Service Management (CNSM)

148

Applying Little’s law, the mean CSD(m) is:

E[di,⌘] =
E[⌫i,⌘]

↵i

. (8)

Moreover, by exploiting the Kingman’s law [40], we derive
the mean CSD(m) for the considered M/G/�⌘i model, rep-
resenting the performance level of tenant i in state ⌘, viz.

�i,⌘ ⇡ E[di,⌘] ·
1 + CV 2

s

2
, (9)

where CVs = �(S)/E[S] is the coefficient of variation of the
empirical service time. Let now be

�(t) = (�1(t), ...,�K(t)) , (10)

the vector stochastic process gathering all tenants mean delays
introduced by a single CNF. With a similar reasoning adopted
before to derive the random vector G, �(t) can be expressed
in terms of the random vector � = (�1, . . . ,�K) as t ! 1.

Interestingly, eq. (8) trivially suggests that mean CSD(m)

is directly proportional to the average number of sessions.
Thus, the increase of mean CSD(m) can be countered by:
i) increasing the number of containerized instances gi,⌘ per
each CNF, ii) introducing some redundant parallel CNFs, so
that, sessions could be dispatched among a huger number
of containerized instances belonging to those parallel CNFs
(a.k.a. flow dispersion hypothesis). This latter option is, obvi-
ously, preferable when we have to cope with availability issues
related to common layer failures, for instance, due to Docker
and/or Infrastructure layers.

V. AVAILABILITY OF CIMS CHAIN

Toward building the availability model for a cIMS chain we
consider, first, that the entire cIMS is working when each CNF
is working (series connection), and, second, that redundant
CNFs have to be introduced to satisfy any availability require-
ment (parallel connection). The resulting availability model
for a multi-tenant cIMS system is depicted in Fig. 4, where
a series/parallel arrangement can be recognized. Specifically,
CNF(m,`), which handles K tenants, represents the parallel
CNF ` (` = 1, . . . , Lm) associated to a specific m, m 2{P, S,
I, H}, where P, S, I, H, indicate for brevity P-CSCF, S-CSCF,
I-CSCF, HSS, respectively.

Let �(m)(t) =
⇣
�(m)

1 (t), ...,�(m)
K

(t)
⌘

and �c(t) =

(�c

1(t), ...,�
c

K
(t)) be the vector stochastic processes contain-

ing all mean CSDs(m) introduced, respectively, by node m and
by the entire cIMS (namely, the series connection of nodes)
at time t. Since the call flow has to traverse the whole cIMS
chain, the overall delay is the sum of delays introduced by each
single node and all the propagation delays. By neglecting the
latters, for each tenant i, �c

i
(t) =

P
m
�(m)

i
(t).

Accordingly, the set of pairs
n
p(m)
⌘ , �(m)

⌘

o
represents the

steady-state mean CSD distribution of CNF m, where: �(m)
⌘ =⇣

�(m)
1,⌘ , ..., �(m)

K,⌘

⌘
is the mean delays vector of CNF m in state

P-CSCF S-CSCF I-CSCF HSS

Containerized IMS Infrastructure

. . .

. . .

. . .

. . .

CNF(P,1)

CNF(P,2)

CNF(P,LP)

CNF(S,1)

CNF(S,2)

CNF(S,LS)

CNF(I,1)

CNF(I,2)

CNF(I,LI)

CNF(H,1)

CNF(H,2)

CNF(H,LH)

Fig. 4. Multi-tenant cIMS system where parallel CNFs are introduced for
redundancy purposes. CNF(m,`) refers to parallel CNF ` (` = 1, . . . , Lm)
of node m, with m 2{P-CSCF, S-CSCF, I-CSCF, HSS}.

⌘, and p(m)
⌘ = limt!1 Pr{�(m)(t) = �(m)

⌘ } the correspond-
ing limiting probability. Similarly,

�
pc⌘, �

c

⌘

represents the

steady-state mean CSD distribution of the entire cIMS.
We consider the multi-tenant cIMS as available when every

tenant is able to guarantee a mean CSD less than a (maximum)
threshold value for its customers.

Thus, denoting with W c(t) = (W c

1 (t), ...,W
c

K
(t)) the

K-dimensional vector containing the maximum delay levels
per tenant i at time t, the cIMS instantaneous availability
Ac [t,W c(t)] is defined (see [41], [42]) as the probability that
mean CSD of cIMS for each tenant i (at t > 0) is not greater
than W c

i
(t), i = 1, ...,K, namely

Ac [t,W c(t)] = Pr{�c

i
(t)�W c

i
(t)  0, 8i = 1, ...,K}.

(11)
Given constant maximum delay levels W c(t) = wc =
(wc

1, ..., w
c

K
), the steady-state availability Ac (wc) can be

derived from (11) for t ! 1, as

Ac(wc) =
X

⌘2Jc

pc⌘ · 1
�
�c
i,⌘  wc

i
, 8i = 1, ...,K

�
, (12)

where 1(·) os 1 if condition holds true and 0 otherwise. The
number of states Jc in (12) amounts to:

Jc =
Y

m2{P,S,I,H}

J (m), (13)

where J (m) =
Q

Lm

`=1 N
(m,`) represents the number of states

of node m, and N (m,`) is given by (3) for each parallel CNF
` when n(m,`)

i
containerized instances are taken into account

for tenant i.
An efficient method to evaluate the steady-state availability

in (12) is provided by MUGF, a hierarchical technique origi-
nally introduced in [28] as a multidimensional generalization
of the UGF methodology [43]. Such a technique relies on
a hierarchical approach which circumvents the problem of
managing the huge state-space model of the whole cIMS, and
allows to compute

�
pc⌘, �

c

⌘

, by easily combining the steady-

state distributions
n
p(m)
⌘ , �(m)

⌘

o
of single CNFs.

2022 18th International Conference on Network and Service Management (CNSM)

149

0 100 200 300 400 500 600
time [s]

0

20

40

60

80

100

120

SI
P

ev
en

ts

(a) Containerized layer fault.

0 100 200 300 400 500 600
time [s]

0

20

40

60

80

100

120

SI
P

ev
en

ts
(b) Docker layer fault.

0 100 200 300 400 500 600 700 800 900
time [s]

0

20

40

60

80

100

120

SI
P

ev
en

ts

(c) Infrastructure layer fault.

Fig. 5. Sprout I-CSCF under fault injection. Blue: Fault Free execution. Orange: Faulty execution. Dashed Orange: Recovery window.

A. Insights of MUGF method

Being the MUGF a special case of probability generating
function of a multivariate random variable, the steady-state
distribution of an MSS can be expressed through a polynomial-
shape form. Precisely, by considering our cIMS setup in the
multi-tenant case, the MUGF of the steady-state mean CSD(m)

distribution pertaining to CNF m is

u(m)(z) =
X

⌘2Jc

p(m)
⌘

KY

i=1

z
�
(m)
i,⌘

i
, (14)

a function of the vector indeterminate z = (z1, . . . , zK).
According to the generating functions theory, the sum

of multivariate random variables has a generating function
represented by the product of the generating functions of single
variables. Thus, since the mean CSD of cIMS is the sum
of mean CSDs(m), MUGF uc(z) of cIMS is the product of
MUGFs of single CNFs computed by (14), namely.

uc(z) =
Y

m

2

4
X

⌘2Jc

p(m)
⌘

KY

i=1

z
�
(m)
i,⌘

i

3

5 , (15)

being uc(z) a polynomial-shape function in z1, . . . , zK inde-
terminates. Finally, (12) provides the steady-state availability
Ac(wc) of the multi-tenant cIMS architecture.

B. A redundancy optimization problem

A problem of practical interest is to identify those cIMS
settings which minimize the number of redundant elements
for each cIMS functionality.

We define by vector S a particular setting of multi-tenant
cIMS, where each CNF m has its own redundant element
` (`=1,. . . ,Lm). Moreover, we denote by C(m,`) the cost of
parallel CNF ` belonging to CNF m. Thus, the cost of the
setting S of the multi-tenant cIMS is

Cc(S) =
X

m

LmX

`=1

C(m,`). (16)

Let us denoting by dmax the maximum tolerated delay intro-
duced by the whole cIMS (typically provided by international
standards) for each tenant, namely wc = (dmax, . . . , dmax).
Accordingly, the steady-state availability of the configuration
S in terms of mean CSD is derived by (12), namely

Ac(wc,S) =
X

⌘2Jc

pc⌘ · 1
�
�c
i,⌘  dmax, 8i = 1, ...,K

�
. (17)

If we consider an availability constraint A⇤ (for istance,
A⇤ = 0.99999 commonly known as “five nines” availability),
it is possible to define the set of feasible cIMS settings which
satisfy such a constraint as Lc = {S : Ac(dmax,S) � A⇤}.

Consequently, the cIMS settings with minimum cost which
satisfy the availability constraint A⇤ can be derived as solution
of the following optimization problem:

S⇤ = argmin
S2Lc

Cc(S). (18)

VI. EXPERIMENTAL RESULTS

The testbed we have deployed to perform experiments relies
on Clearwater (release 130), where each node (namely, each
CNF) as appears in Fig. 1 is equipped with: an operating
system based on Linux kernel 4.4.0, a Docker engine (ver.
19.03.5) running on 16-Core 1.80GHz Intel Xeon CPU, and
with 64GB of RAM. It is useful to separate the experimental
part into two sub-parts: in the first part we estimate repair
times (namely, µC , µD, µI); in the second part we derive a
number of feasible cIMS settings (including the optimal one)
by exploiting the MUGF method.

A. Parameters Estimate

We estimate the repair times µC , µD, µI , by applying
fault injection techniques [44], [45]. Such techniques consist
in deliberately introducing faults/errors at different levels of
the target software systems to trigger failures. This approach
aims at accelerating failure occurrence to assess the existing
fault-tolerance mechanisms and estimate the failure recovery
effectiveness of the system under test.

2022 18th International Conference on Network and Service Management (CNSM)

150

Precisely, we inject three fault types: i) Containerized
layer faults, including abrupt terminations of containers and
other software faults [47] such as resource exhaustion, I/O
exceptions, race condition bugs; ii) Docker layer faults con-
sisting in forcing the stop of the dockerd process which, in
turn, provokes the termination of all managed containers; iii)
Infrastructure layer faults consisting in causing an intentional
crash of the physical machine, which translates in Docker and
containers crash.

The fault injection experiments have been automated
through custom routines developed to perform specific actions
(start/stop fault injection, managing containers recovery, col-
lecting SNMP metrics). Through such routines we perform
30 fault injection experiments per CNF and per fault type,
resulting in 360 experiments.

We have measured about 10 minutes in trials involving
Containerized and Docker layers, and about 15 minutes in
those involving the Infrastructure layer. Moreover, before
injecting faults, we wait for an extra-time (about 400 seconds)
to let the underlying software processes reach a regime and to
fully restore steady-state performance due to caching effects
and queuing delays.

This fault injection experiment represents a substantial
advancement w.r.t. most previous model-based availability
studies that make simplistic assumptions about the time-to-
recovery for container-based scenarios by only considering the
time to perform a restart action for a container (in the order
of tens of seconds). In contrast, our experiment allows us to
estimate more precisely the container recovery times, which
can be in the order of minutes.

For the sake of simplicity, we just report the condition of
Sprout I-CSCF under fault injection in Fig. 5 for: Container-
ized layer fault (panel 5a), Docker layer fault (panel 5b), and
Infrastructure layer fault (panel 5c).

The repair time coincides with the unavailability period of
a CNF, beginning at a given fault injection time and ending
when the metric raises up to its regime value after repair is
completed. Each metric is evaluated at the output of a five-
sample moving average filter, introduced to smooth fluctu-
ations occurring during recovery. We consider the recovery
procedure as completed when the metric overcomes a given
threshold set to 90% of the fault-free metric level [46]. The
variability of experiments is responsible of the difference
among curves in Fig. 5. The estimated repair times, along
with other parameters (some of which derived from technical
literature) are shown in Table I.

B. Deriving feasible cIMS settings through MUGF

In this second experimental part, we perform an availability
assessment aimed at pinpointing the optimal cIMS setting S⇤

which satisfies (18). Along such an optimal setting, we also
derive additional settings to make useful comparisons. Prag-
matically, we consider a cIMS configuration with 2 tenants

TABLE I
INPUT PARAMETERS

Parameter Description Value

1/�C mean time for container failure† 1258 hours
1/�D mean time for docker failure† 2516 hours
1/�I mean time for infrastructure failure† 60000 hours
1/µC mean time for container repair‡ 30 s
1/µD mean time for docker repair‡ 60 s
1/µI mean time for infrastructure repair‡ 5 min
↵1 IMS request arrival rate at tenant 1‡ 100 s�1

↵2 IMS request arrival rate at tenant 2‡ 200 s�1

1/�P P-CSCF empirical mean service time per request‡ 1.1 · 10�3 s
1/�S S-CSCF empirical mean service time per request‡ 7.2 · 10�3 s
1/�I I-CSCF empirical mean service time per request‡ 4.1 · 10�2 s
1/�H HSS empirical mean service time per request‡ 4.6 · 10�3 s
dmax Maximum tolerated CSD 50 ms

† From scientific literature
‡ From experiments

(K = 2), where the first tenant manages n1 = 2 containerized
instances and the second tenant manages n2 = 3 containerized
instances. The resulting MSS model is depicted in Fig. 6,
where the number of states amounts to N = (n1+1)(n2+1)+
2 = 14 according to (3). A routine written in Mathematica®

allows to: i) compute the MUGF; ii) evaluate the steady-
state availability in (12); iii) solve the optimization problem
(18) with A⇤ = 1 � 10�5 (five nines). The routine produces
in output all the feasible cIMS configurations, including the
optimal one.

From such an output we extract five exemplary settings
whose results are reported in Fig. 7. For a better readability,
on the y-axis we report the unavailability 1 � Ac(wc). Two
dashed lines at 10�5 and 10�6 represent the unavailability
thresholds corresponding to five nines (high availability) and
six nines, respectively. For instance, S1 achieves five nines
(the corresponding bar lies below the 10�5 line) but not six
nines (the corresponding bar lies above the 10�6 line). Within
the legend in Fig. 7 we report the composition of each setting
by using the following formalism: CNF(m) = k means that
the m-th CNF admits k parallel CNFs of the same type (or
replicas). For example, CNF(P) = 3 means that the Proxy
CNF is made of 3 P-CSCF replicas. By assuming that each
CNF has a unitary cost, within each bar we report the cost
for each setting. Thus, for the setting S1 the cost amounts to
3 + 3 + 3 + 1 = 10.

Some interesting considerations can be drawn by analyzing
the considered settings. First, it is easy to recognize setting S⇤

as the one with the best availability/cost trade-off (five nines
with a cost of 8). Interestingly, we can see that S2 exhibits
the same cost of S⇤ but it is not able to achieve the five nines.
In practice, S⇤ and S2 have the same number of replicas but
differently allocated. In S2 we have a perfect balancing of
replicas across all nodes (2 replicas per node), but this strategy
seems to be not effective in achieving the desired availability
target. In contrast, an unbalanced CNF replicas allocation

2022 18th International Conference on Network and Service Management (CNSM)

151

(2,3)

!"#
$"#

!"% $"%

$& $'

!& !&

!& !&

(1,3)

(0,3)

!"#

$"#

(2,2)

(2,1)

!"% $"%

(0,2)

(0,1)

(1,2) (1,1)

!"%
$"%

!"% $"%

$"%
!"%

!"#
$"#

(2,0)

!"%
$"%

(1,0)

!"#

$"#

!"%

$"% !"#

$"#

!"%
$"%

(0,0)

!"#

$"#

!"%

$"%

(0,0)
DLF

!' !'

!' !'

(0,0)
ILF

!"# $"#

!& !'

!"#
$"#

Fig. 6. Transition-state diagram of a CNF with two tenants (14 states).

strategy has been adopted for S1, where no redundancy at
all for HSS has been envisaged. This notwithstanding, S1

achieves five nines availability but at a higher cost (amounting
to 10) with respect to S⇤. We also note that, unexpectedly,
S3 is not able to reach the high availability condition despite
its high cost which amounts to 11. Such an apparently weird
behavior is due to the fact that I-CSCF is the most critical
node since its service time is particularly high (see Table I) if
compared with service times of remaining nodes (P-CSCF, S-
CSCF, HSS). Such a criticality directly impacts the availability
result which embeds the delay performance metric that, in
turn, is related to service time via (9). Finally, it is interesting
to note that, with a relatively low cost (amounting to 9), we
are able to obtain a setting which meets the challenging six
nines requirement, namely S4. Pragmatically, such a setting
is obtained from S⇤ by adding a CNF replica to S-CSCF.

In summary, through the MUGF method we are able to
derive availability results of feasible cIMS settings, by easily
embodying the performance metric (namely, the mean CSD).
Then, the solution of the optimization problem (18) allows to
derive the optimal setting S⇤ but also to save some additional
settings which meet different criteria such as: perfect balance
of CNF replica allocation or satisfying higher availability
requirements (e.g., six nines). We want to remark that the
originality of obtained results is largely due to the presence
of containerized layer which admits a challenging charac-
terization: first, the containerized instances queueing model
allows to obtain a realistic estimate of the CSD, and, then, the
application of MUGF allows to elegantly formulate a steady-
state availability problem.

Finally, from a complexity point of view, we want to
highlight that the application of MUGF is beneficial with re-
spect to some monolithic approaches such as the Continuous-
Time Markov Chains (CTMCs). At this aim, we highlight
that, by exploiting CTMCs, the cIMS state space amounts
to Jc = 14

P
m2{P,S,I,H} Lm (by virtue of (13)). In our

Settings

C
(S

*)
=8

C
(S

1)
=1

0

C
(S

2)
=8

C
(S

3)
=1

1

C
(S

4)
=9

S*à CNF(P)=2, CNF(S)=1, CNF(I)=3, CNF(H)=2
S1 à CNF(P)=3, CNF(S)=3, CNF(I)=3, CNF(H)=1
S2 à CNF(P)=2, CNF(S)=2, CNF(I)=2, CNF(H)=2
S3 à CNF(P)=3, CNF(S)=3, CNF(I)=2, CNF(H)=3
S4 à CNF(P)=2, CNF(S)=2, CNF(I)=3, CNF(H)=2

Fig. 7. Five exemplary settings (including the optimal one S⇤) derived via
MUGF. On the y-axis is reported the unavailability 1�Ac(wc). Within each
bar is reported the cost associated to each setting.

numerical setting, this is tantamount to solve a system with
142+1+3+2 = 148 equations to obtain the optimal config-
uration S⇤ = (2, 1, 3, 2). In contrast, through the MUGF
approach we compute the steady-state distribution of the mean
CSD per CNF, where a system of 14 equations has to be solved
(being 14 the number of states of the MSS model per CNF
- see Fig. 6). Then, exploiting the MUGF operators, we are
able to combine the CNF distributions to get the mean CSD
probability distribution of the whole cIMS, along with the
corresponding steady-state availability obtained by applying
(12). The MUGF computation to retrieve the cIMS optimal
configuration requires about 360 s (PC with Intel Quad-Core
Xeon E5 CPU@3.7GHz.)

VII. CONCLUDING REMARKS

We have employed a multidimensional version of UGF
(MUGF) to perform a joint analysis (performance and avail-
ability, a.k.a. performability) of a cIMS infrastructure shared
by different tenants and represented by a series/parallel ar-
rangement. In particular, the performance metric (the mean
Call Setup Delay) has been derived through the application of
a M/G/k queueing model of a cIMS node (or CNF). Then,
such a performance metric has been embedded into the MUGF
structure to evaluate the cIMS steady-state availability with
the mean CSD as a constraint. From an experimental point
of view, we have deployed a testbed based on Clearwater, an
opensource implementation of cIMS, allowing us to estimate
some critical parameters (e.g., the mean repair times) via fault
injection techniques. A natural evolution of such a work would
be to extend the proposed method to assess the performability
of other service chains, where the series/parallel arrangements
may assume more complex and tangled forms.

2022 18th International Conference on Network and Service Management (CNSM)

152

REFERENCES

[1] W. Cerroni, A. Galis, K. Shiomoto, and M. F. Zhani, “Telecom Soft-
ware, Network Virtualization, and Software Defined Networks,” IEEE
Communications Magazine, vol. 58, no. 7, pp. 42–43, 2020.

[2] G. Davoli, W. Cerroni, C. Contoli, F. Foresta, and F. Callegati, “Imple-
mentation of service function chaining control plane through OpenFlow,”
in Proc. IEEE NFV-SDN, pp. 1–4, 2017.

[3] D. Borsatti, G. Davoli, W. Cerroni, and F. Callegati, “Service function
chaining leveraging segment routing for 5G network slicing,” in Proc.
IEEE CNSM, pp. 1–6, 2019.

[4] D. Borsatti, G. Davoli, W. Cerroni, C. Contoli, and F. Callegati,
“Performance of service function chaining on the OpenStack cloud
platform,” in Proc. IEEE CNSM, pp. 432–437, 2018.

[5] T. Wen, H. Yu, and X. Du, “Performance guarantee aware orchestration
for service function chains with elastic demands,” in Proc. IEEE NFV-
SDN, pp. 1–4, 2017.

[6] L. Cao, P. Sharma, S. Fahmi, and V. Saxena, “NFV-VITAL: A framework
for characterizing the performance of virtual network functions,” in Proc.
IEEE NFV-SDN, pp. 93–99, 2015.

[7] M. G. Khan et al., “A Performance modelling approach for SLA-aware
resource recommendation in cloud native network functions,” in Proc.
IEEE NetSoft, pp. 292–300, 2020.

[8] B. Tola, G. Nencioni, and B. E. Helvik, “Network-aware availability
modeling of an end-to-end NFV-enabled service,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 4, pp. 1389–1403, 2019.

[9] R. d. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and K. S.
Trivedi, “Sensitivity analysis of server virtualized system availability,”
IEEE Trans. Rel., vol. 61, no. 4, pp. 994–1006, 2012.

[10] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tambasco,
“HASFC: A MANO-compliant framework for availability management
of service chains,” IEEE Commun. Mag., vol. 59, no. 6, pp. 52–58, 2021.

[11] P. C. Rangarajan, F. Khendek, and M. Toeroe, “Managing the availability
of VNFs with the availability management framework,” in Proc. IEEE
CNSM, pp. 1–4, 2017.

[12] R. Nakamura, and N. Kamiyama, “Analysis of content availability
at network failure in information-centric networking,” in Proc. IEEE
CNSM, pp. 1–7, 2020.

[13] B.R. Haverkort, R. Marie, G. Rubino, and K.S. Trivedi, Performability
modelling techniques and tools. Chichester(UK), John Wiley and Sons,
Ltd., 2001.

[14] ETSI, “TS 101-563,” [Online]. https://www.etsi.org/deliver/etsi ts/
101500 101599/101563/01.03.01 60/ts 101563v010301p.pdf.

[15] M. Di Mauro, M. Longo, F. Postiglione, G. Carullo, and M. Tambasco,
“Service function chaining deployed in an NFV environment: An
availability modeling,” in Proc. IEEE CSCN, pp. 42–47, 2017.

[16] J.F. Meyer, “On evaluating the performability of degradable computing
systems,”, in IEEE Trans. Computers, vol. 8, pp. 720–731, 1980.

[17] W.H. Sanders, J.F. Meyer, “A unified approach for specifying measures
of performance, dependability and performability,” in Proc. Dependable
Comp. Crit. App., Springer, Vienna, 1991.

[18] R.A. Sahner, K. Trivedi, A. Puliafito, “Performance and reliability
analysis of computer systems: an example-based approach using the
SHARPE software package,” Springer Science & Business Media, 2012.

[19] A. Bondavalli, S. Chiaradonna, D. Cotroneo, L. Romano, “Effective fault
treatment for improving the dependability of COTS and legacy-based
applications,” IEEE Trans. Dep. Sec. Comp., vol. 1, no. 4, pp. 223-237,
2004

[20] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping of
service function chains,” in Proc. IEEE INFOCOM, pp. 1–9, 2017.

[21] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T. Ikeuchi,
and J. P. Jue, “Guaranteed-availability network function virtualization
with network protection and VNF replication,” in Proc. IEEE GLOBE-
COM, pp. 1–6, 2017.

[22] H. A. Alameddine, S. Ayoubi, and C. Assi, “An efficient survivable
design with bandwidth guarantees for multi-tenant cloud networks,”
IEEE Trans. Netw. Service Manag., vol. 14, no. 2, pp. 357–372, 2017.

[23] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analysis
approach for deployment configurations of containers,” IEEE Trans.
Services Comput., vol. 14, no. 1, pp. 16–29, 2021.

[24] D. Bruneo, “A stochastic model to investigate data center performance
and QoS in IaaS cloud computing systems, ” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 560–569, 2014.

[25] E. Sousa, F. Lins, E. Tavares, P. Cunha, and P. Maciel, “A modeling
approach for cloud infrastructure planning considering dependability and
cost requirements,” IEEE Trans. Syst., Man, Cybern., vol. 45, no. 4,
pp. 549–558, 2015.

[26] S. Yu, H. Chen, and Y. Xiang, “Maximal service profit in MAS-based
cloud computing considering service security,” in Lecture Notes in
Electrical Engineering, vol 355. Springer, 2015.

[27] P. Sun, D. Wu, X. Qiu, L. Luo, and H. Li, “Performance analysis of
cloud service considering reliability,” in Proc. IEEE QRS-C, pp. 339–
343, 2016.

[28] M. Di Mauro, M. Longo, and F. Postiglione, “Availability evaluation
of multi-tenant service function chaining infrastructures by Multidimen-
sional Universal Generating Function,” IEEE Trans. Services Comput.,
vol. 14, no. 5, pp. 1320-1332, 2021.

[29] Clearwater Project, 2018 [Online]. http://www.projectclearwater.org/.
[30] K. Al-Begain, and A. Ali, Multimedia services and applications in

mission critical communication systems. Hershey (PA), IGI Global,
2017.

[31] A. Elnashar, M.A. El-Saidny, and M. Mahmoud, “Practical performance
analyses of circuit-switched fallback and Voice Over LTE,” IEEE Trans.
Veh. Technol., vol. 66, no. 2, pp. 1748–1759, 2017.

[32] J. E. Vargas Bautista, S. Sawhney, M. Shukair, I. Singh, V. K. Govin-
daraju, and S. Sarkar, “Performance of CS fallback from LTE to UMTS,”
IEEE Commun. Mag., vol. 51, no. 9, pp. 136–143, 2013.

[33] H. Nemati, A. Singhvi, N. Kara, and M. E. Barachi, “Adaptive SLA-
based elasticity management algorithms for a virtualized IP multimedia
subsystem,” in Proc. IEEE Globecom, pp. 7-11, 2014.

[34] Docker Inc., Docker Platform. [Online]
https://www.docker.com/resources/what-container.

[35] L. Kleinrock, Queueing systems, vol.2: computer applications. New
York, John Wiley & Sons, 1976.

[36] H. Shulzrinne, S. Narayanan, J. L. Doyle, “SIPstone - benchmarking
SIP server performance”, Tech. Rep., 2002.

[37] S. V. Subramanian, R. Dutta, “Comparative study of M/M/1 and M/D/1
models of a SIP proxy server ,” in Proc. IEEE ATNAC, 2008, pp. 397-
402.

[38] S. V. Subramanian, R. Dutta, “Performance and scalability of M/M/c
based queuing model of the SIP Proxy Server - a practical approach”,
in Proc. IEEE ATNAC, 2009, pp. 1-6.

[39] W. Whitt,“The queueing network analyzer,” in Bell Syst. Techn. J.,
vol. 62, pp. 2779–2815, 1983.

[40] T. Kimura, “Approximations for multi-server queues: System interpola-
tions,” in Queueing Systems, vol. 17, no. 3, pp. 347–382, 1984.

[41] G. Levitin and A. Lisnianski, Multi-state system reliability: assessment,
optimization and applications. Singapore: World Scientific, 2003.

[42] G. Levitin, “A Universal Generating Function in the analysis of multi-
state systems,” in: A Universal Generating Function in the Analysis of
Multi-state Systems, M. K. Misra Eds. Springer London, 2008, pp.
447–464, ISBN: 978-1-84800-131-2.

[43] I. A. Ushakov, “A Universal Generating Function,” Soviet Journal of
Computer Systems Science, vol. 24, no. 5, pp. 37–49, 1986.

[44] D. Cotroneo, L. De Simone, and R. Natella, “NFV-Bench: A depend-
ability benchmark for network function virtualization systems,” IEEE
Trans. Netw. Service Manag., vol. 14, no. 4, pp. 934–948, 2017.

[45] D. Cotroneo, A.K. Iannillo, R. Natella, and S. Rosiello, “Dependability
assessment of the Android OS through fault injection,” IEEE Trans. Rel.,
vol. 70, no. 1, pp. 346–361, 2021.

[46] K. Kanoun and L. Spainhower, Dependability benchmarking for com-
puter systems. Wiley Online Library, 2008, vol. 72.

[47] D. Cotroneo, L. De Simone, R. Natella, “Run-Time detection of protocol
bugs in storage I/O device drivers,” IEEE Trans. Rel., vol. 67, no. 3,
pp. 1–16, 2019.

2022 18th International Conference on Network and Service Management (CNSM)

153

	17

