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Abstract—In this paper, we propose a cloud-assisted dynamic
channel assignment system for WiFi mesh networks considering
both the 2.4 GHz and 5 GHz interfaces to increase the overall
performance and user experience in the WiFi network. Our
solution utilizes periodic interference level measurements by
the access points (AP) in all possible channels via conducting
clear channel assessments. These measurements are sent to and
processed by a cloud component with a forecasting module that
predicts the state of each applicable channel in the near future.
Finally, a channel change decision is sent to each AP if there is
a better channel than its operating channel in the near future.

We have conducted numerous field trials for a good selection
of the various key parameters of the system with both the
overall system’s performance and impact over time-sensitive
critical applications such as real-time applications in mind. We
have also conducted a field trial of our proposed system over a
large real-life population of fifty thousand APs and compared
its performance against the widely deployed Least Congested
Channel Search (LCCS) mechanism. Our results show that not
only our mechanism outperforms LCCS in terms of operating
channel interference level but achieves this goal with much less
number of channel changes yielding a much less disruptive user
experience.

Index Terms—WiFi, IEEE 802.11, channel assignment, cloud,
forecasting

I. INTRODUCTION

As any other wireless communication technology, WiFi has
one critical real-estate: its operational frequency range. The
commonly used frequency ranges of WiFi, the 2.4 GHz and
5 GHz bands, are licence-exempt frequencies, allowing other
telecommunication technologies besides WiFi to also operate
(i.e., Bluetooth) as well as non-telecommunication devices
(e.g., microwave ovens) to generate signals in. At any given
time, a WiFi network can only operate at a single channel
with a given channel bandwidth whose availability has a
profound performance impact over the connected users’ WiFi
experience. Therefore, finding the ideal channel to operate in
is a crucial design decision for a WiFi network.

The frequency/channel allocation problem (FAP) has been
widely studied in the general context of wireless networks
as well as in the domain of cellular network technologies
over the last couple of decades [1]. Although the key idea
is similar, operating at licence-exempt frequencies changes
the problem considerably (i.e., lack of a centralized frequency
allocation entity, allowance of other technologies to generate
signals in an uncontrolled fashion). Also, WiFi is considered
as a secondary user in 5 GHz dynamic frequency channels
(DFS), necessitating access point (APs) to conduct a long
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scan (i.e., 1 or 10 minutes) to make sure that no primary user
signals exist before starting to operate on these channels. With
these considerations, generic and cellular network specific FAP
solutions cannot be directly applied to WiFi networks.

Another key difference in WiFi networks is the existence of
wireless mesh networks (WMNs) over WiFi links to provide
ubiquitous indoor connectivity. Although there is no stan-
dardized method for forming a WMN from multiple APs, a
common technique is using one of the WiFi interfaces (usually
the 5 GHz) to form mesh links between APs. Therefore, a
channel allocation mechanism for WiFi networks should also
consider this critical constraint on the channel selection and
choose the channel of the interface used in the mesh links as
the same channel in all APs within a WMN.

In the literature, WiFi network specific solutions to FAP
are categorized in three groups: joint FAP and AP placement
solutions, solutions for centrally managed groups of APs, and
solutions for unmanaged groups of APs [2]. Solutions in the
first category follow a similar approach to cellular networks
and propose systems where the location of each AP as well
as their assigned channels are selected before the deployment
of all APs. Such solutions can be applied in industrial use-
cases (e.g., factory floors) where placement of APs is done
coupled with configuration of the APs. However, in urban WiFi
deployments, especially in residential scenarios, placement of
APs are usually conducted in an uncoordinated, distributed
fashion limiting applicability of such solutions.

The second category of solutions consider groups of APs
managed by a single central entity which is responsible from
the channel assignment of the APs. An early and very-
known method in this category is the DSATUR where the
neighboring information of APs is considered as a graph
and a graph-coloring based solution is applied to find ideal
colors (i.e., channels) for each AP [3]. Lima et al. propose
a more relaxed approach where neighboring APs can be
assigned the same (i.e., interfering) channel based on their
interference to each other [4]. They formalize the problem as
an optimization problem and propose two heuristics: a Ge-
netic Algorithm-based and a Differential Evolution algorithm-
based. A similar approach tries to find “bad neighbors”, APs
generate considerable interference, and conduct the channel
assignment with a higher emphasis to these neighbors [5].
In [6] a deep reinforced learning based method have been
proposed focusing on maximizing the overall thoughput of the
APs within the area. lacoboaiea et al. propose another deep
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reinforced learning based solution that also adds the selection
of the channel bandwidth (i.e., channel bonding) to the channel
assignment problem [7]. Although more applicable to urban
scenarios, the complexity of this category of solutions make
them hard to implement, maintain, and operate. Moreover,
these solutions usually give a fixed channel assignment without
a framework for adapting to the ever-changing nature of the
WiFi environment, further reducing their applicability.

The final category of solutions focus on unmanaged groups
of APs where each AP decides for its channel assignment
on its own. Least Congested Channel Search (LCCS) is the
most well-known as well as the most widely-deployed solution
in this category [8]-[10]. In LCCS, in case the operational
channel’s interference level exceeds a certain threshold, the
AP conducts scans in all other channels and switches to the
channel with the least amount of interference. The definition of
interference differs between implementations. LCCS takes an
action based on an immediate set of channel scans. Therefore,
it is susceptible to sudden changes in WiFi channels leading
to instability and sub-optimal performance.

A similar method, proposed in [11] keeps track of selection
probabilities for each channel and in case the current operating
channel’s quality drops below a certain threshold, a random
channel is selected based on the channel probabilities. Then,
if the newly selected channel does not give a satisfactory
performance its probability is reduced and the mechanism
selects another channel. Similar to LCCS, this method is also
easy to implement, but it requires too many iterations and takes
long to converge.

Athanasiou et al. propose a method that utilizes the load of
a given channel to evaluate a channel’s quality [12]. Here the
load of a channel is calculated based on the airtime metric from
IEEE 802.11s which requires input from WiFi stations (STAs)
connected to the AP. Kulkarni et al. propose a similar load-
based channel quality estimation by adding a load information
to the beacon frames sent by APs [13]. Although, these
methods yield more precise information regarding channel
quality, their reliance on STAs assistance or change in beacon
frame format limits their applicability in real deployment
scenarios.

Kajita et al. propose utilizing more refined metrics to eval-
uate the quality of a channel [14]. The authors use regression
methods to generate a channel score by combining estimated
delay, observed throughput, received signal strength, as well as
the volumes of the traffic sources. Then, the channel selection
is done based on these channel scores. Although the authors
have conducted exhaustive simulations to find ideal scoring
functions, utilizing such complicated scoring functions in a
realistic environments shall be very complex limiting the
methods practicality.

These methods, although easy to implement and very
suitable to urban WiFi network scenarios, utilize a reactive
approach: upon detection of a performance degradation (e.g.,
high interference) they start investigating on a better channel
and make a decision. In our previous paper, we had laid out
design considerations for a pro-active, cloud-based channel
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Fig. 1: Components of the proposed CACS architecture

selection mechanism, that is based on conducting periodic
measurements on each applicable channel, predict each chan-
nel’s performance via several forecasting techniques, and act
upon these predicted values before the channel degrades [15].

In this paper, we expand upon our previous work and
propose a complete pro-active dynamic channel assignment
(DCA) solution named cloud assisted channel selection
(CACS) that operates over a WMN with periodic channel
scanning capabilities and utilizes forecasting techniques to
determine the ideal operating channel of each AP within a
WMN, both for the 2.4 GHz and 5 GHz interfaces.

In this work, the main contributions are as follows:

o First, we present an architecture for a pro-active DCA-
based channel selection solution for WiFi networks con-
sidering both the 2.4 GHz and 5 GHz operating bands.
Next, we present our analysis over several key system
parameters of our solution using lab trials to tune the
system for balancing measurement quality and its impact
OVer user experience.

We build a forecasting package consisting of several
forecasting techniques that predicts the channel quality
in terms of clear channel assessment (CCA) values and
evaluate the accuracy of this package with lab trials.
Finally, we evaluate the performance of the proposed
CACS solution over a field trial consisting of fifty
thousand real home environments in terms of operating
channel quality as well as number of channel changes.

The remainder of the paper is organized as follows. In Sec-
tion II, the overall architecture of our proposed channel assign-
ment system is given. Section III and Section IV describe the
responsibilities of WiFi access points and the cloud network
controller respectively to the overall system. In Section V,
results of a field trial of the proposed system consisting of
fifty thousand real home environments is presented. Finally,
Section VI concludes the paper.

II. CACS ARCHITECTURE

The overall architecture of our proposed CACS system is
composed of two main components: a WMN with multiple
APs and the Cloud Network Controller (CNC) (Fig 1). While
the APs within the WMN are responsible from taking rep-
resentative interference measurements from the channel, and
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Fig. 2: CACS periodic timeline, decision period, dwell window and CCA dwells details.

acting based on the advices sent from the CNC, the CNC is
responsible from utilizing the measurements provided by the
APs and deciding if a channel change is needed. If so, the
CNC also offers information to which channel this change
should be towards.

Since CACS is a DCA solution, it works on a periodic basis
we call decision periods (Fig. 2). During each decision period,
the APs collect measurements and report these measurements
to the CNC. At the end of each decision period, called the
decision time, the CNC makes a prediction for each channel
for the next decision period, and if needed generates a channel
change advice. Decision periods can take any value on a
minutely basis and we use a 60-minute decision periods as
the default value. In the following two sections, the details of
the AP requirements and CNC requirements are explained.

III. AcCESS POINT (AP) RESPONSIBILITIES

On the firmware part of the CACS system, APs have three
responsibilities: taking representative interference measure-
ments from each channel, synchronizing 5 GHz measurements,
and acting based on the advices sent by the CNC.

The key design decision for the first responsibility is the
selection of the interference measurement metric. As part of
their routine operation, each WiFi device periodically measure
the availability of the operating channel and represent it in
a scale of 0-255, where 0 means the medium is completely
available and 255 means the medium has no availability at all.
This metric, called the Clear Channel Assessment (CCA), is
used by the CSMA/CA mechanism of WiFi to determine if
the device can access the medium or not [16]. Since CCA is
already a well-established metric and part of the core WiFi
channel access mechanism, it has been chosen as the key
metric in the interference measurement part of our proposed
CACS mechanism.

As stated in Section I, a common technique in forming WiFi
WMNs is utilizing 5 GHz interfaces of each AP within the
WMN. In such WMN:s, since all APs within the WMN are
required to choose the same 5 GHz channel to operate in, they
must coordinate their 5 GHz operating channel measurements
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among themselves to avoid measuring the mesh traffic as
background interference.

As the third responsibility, the APs must be able to receive
channel change advices from the CNC and act accordingly.
However, changing the operating channel is generally a dis-
ruptive operation that can lead to drops in STA connectivity.
Therefore, an AP should consider such potential disruptions
and decide in case of a channel change advice to either act
immediately, postpone it for a while, or completely disregard
it depending on its operational status.

A. Taking Measurements

The two key aspects of CCA measurements are timeliness
and completeness. In order to be timely, the measurements
should be periodically repeated and to be complete all possible
channels must be measured. We consider periodic dwell win-
dows where a measurement is collected from each applicable
channel (Fig. 2). Each dwell window is composed of three
parts: CCA dwells where the off-channel measurements are
collected; MON dwell where the in-channel measurement is
collected; and the CSA dwell where the advices sent by the
CNC are handled. In each CCA dwell, the AP switches to
the target channel (i.e., channel switch time), collect measure-
ments in terms of CCA levels; switches back to its operating
channel; and operates normally on its own channel (i.e., home
channel time) before the next CCA dwell starts.

In this time structure, the dwell duration value is a key
system parameter. Since an off-channel measurement requires
the device to pause its normal operation and temporarily
operate at the measured channel; on one hand, the longer the
device operates in the measured channel, the accuracy of the
measurements increase and on the other hand, the AP cannot
serve its STAs, causing QoE degradation especially in their
real-time applications (RTAs).

We evaluate the quality of an off-channel measurement by
the deviation percentage from the in-channel measurement in
the same environment under different interfering traffic rates
(in terms of Mbps) both in the 2.4 GHz band and the 5 GHz
band. As seen in Fig. 3, in both bands measurements collected
with 70 and 50 ms dwell duration have a slight deviation of
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Fig. 3: Deviations of off-channel measurements based on interfering traffic rate and dwell duration

TABLE I: DF results with dwell window values

 Duell Nodwell | 10 | 20 | 30 | 40 50
window (ms)
Delay
Factor (DF) 3.01 26.89 | 36.7 | 47.05 | 56.12 | 67.08

3 - 4%. A shorter duration of 30 ms gives a higher margin
of error with a maximum deviation of 11%. Finally, a much
shorter duration of 10 ms gives a much higher error rate with
18 - 35% maximum deviation.

As for the impact on RTAs, we investigate the maximum
latency of teleconference applications and the delay factor
(DF)! of video-on-demand (VOD) applications when our
proposed periodic off-channel scan mechanism is enabled. As
one might expect when there is an off-channel measurement,
teleconference applications operate with a maximum latency
equal to 10 ms more than the selected dwell duration value.
When compared to the ITU-T standard for teleconference
application delay bounds of 150 ms, delays of each considered
dwell duration values are below the recommended value [17].
As for the DF values of VOD applications, we compare the
results against the suggested upper bound of 50 ms (Table I)
[18]. 50 and 40 ms dwells both exceed this limit while 30 and
10 ms dwells are below the suggested limit.

Based on the above investigation, we choose the dwell
duration as 30 ms which does not violate QoE requirements
of RTAs while the measurement quality has a upper bound
of 11% deviation which only happens when the channel is
extremely congested.

Following the 60-minute decision period selection, we
choose a 1-minute dwell window duration to balance between
keeping the overall home channel time high (95% of overall
operation time) while getting as many samples as possible in

IDF is a time value indicating how many milliseconds’ worth of data the
buffers must be able to contain in order to eliminate jitter. It is computed as
the maximum difference in buffer size divided by the stream rate at regular
intervals (typically one second).
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each decision period?®. In these 1-minute dwell windows, there
is a single CCA dwell for each applicable 20 MHz channel

based on each region’s own regulations?.

B. Measurement Synchronization

In a WMN where the backbone mesh traffic is carried over
the 5 GHz interfaces, the 5 GHz in-channel measurements
should be collected synchronous among the APs of the WMN
to avoid considering mesh traffic as interference.

Considering dwell durations being in milliseconds, the
needed synchronization resolution for this task is very high
(i.e., accuracy around 1-2 ms). The well-known time syn-
chronization methods like Network Time Protocol (NTP) have
synchronization accuracy of 5 - 100 ms which is not sensitive
enough for this use-case [19]. To fulfill this requirement we
develop a specific mechanism called “Airclock” utilizing the
“Timestamp Function (TSF)” field of beacon frames. This field
stores the time elapsed after the boot of the AP in terms of
milliseconds. Although, TSF is enough to synchronize APs
that start operating at the same time, often times APs within
a WMN do not start at the same time.

We add a new element named Time Advertisement In-
formation Element (TAIE) to beacon frames and we call
the summation of the TSF and TAIE values the Airclock
value (i.e., Airclock; = TSF; + TAIE;). At boot, each
AP sets its TAIE value to 0. Then, each AP (AF;), upon
reception of a beacon frame from another AP (e.g., AP;)
within the WMN, compares Airclock; against Airclock;, if
Airclock; > Airclock;, AP; updates its TAIE value as

TAIE; = TSF; + TAIE; — TSF; (1)

to be synchronized with the rest of the WMN. These Airclock
values are sent to the CNC coupled with the 5 GHz in-channel

2In modern WiFi RFICs, a channel change does not lead to a real switching
operation. Instead, the bit sequence given to the voltage-controlled oscillator
is changed which in turn produces the local oscillator signal. Therefore, there
is no significant energy consumption in a channel change operation.

3For example in North America in the 2.4 GHz frequency band, applicable
20 MHz channels are channels 1 - 11.
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measurements to check the synchronization between the APs
of the WMN.

C. Channel Change Advice Handling

The incoming channel change advices are handled in the
CSA dwells. An advice is composed of channel switch flags,
one for each interface, and predicted score values for each
applicable channel whose calculations are as explained in
Section IV. If the 2.4 GHz channel switch flag has a “true”
value, the 2.4 GHz channel with the highest score is selected
as the new target channel. Then, the AP checks if there is
considerable ongoing traffic over its 2.4 GHz interface (i.e.,
traffic exceeding a thryqrfic value). If so, the advice is
postponed until the next CSA dwell with a maximum number
of retryCount times. If not, it triggers a channel change to the
target channel. These controls aim to avoid service disruption
to users due to a channel change when there is considerable
ongoing traffic.

If the 5 GHz channel switch flag has a “true” value, only the
master node within the WMN takes an action similar to the 2.4
GHz case. If it decides to instigate a channel change, it relays
this change via a channel switch announcement message to all
other APs within the WMN so that the whole WMN switches
to the new 5 GHz channel together.

IV. CLOUD NETWORK CONTROLLER (CNC)
REQUIREMENTS

The cloud side of the CACS system, CNC also has three
responsibilities: aggregating interference measurements, con-
ducting a time series analysis to predict the quality of each
channel in the next decision period, and deciding on a channel
change action based on the predicted values.

A. Data Processing and Aggregation

As described in Section III.A, each AP measures each ap-
plicable channel periodically in terms of CCA values and send
these information to the CNC to be processed. CNC aggregates
these measurements collected within the last decision period
and generate a decision period representative CCA value to be
used in the subsequent prediction process. This aggregation
uses a simple arithmetic mean to eliminate the short-term
fading effects and smooth out the measurement data.

In contrast to the aggregation of the 2.4 GHz measurements
where the simple arithmetic mean is used, the aggregation of
the 5 GHz measurements is done on a WMN basis consid-
ering the 5 GHz measurements of all APs within the WMN.
First, for each channel and each dwell window, the highest
CCA value reported by the APs of the WMN is selected.
These values are called the WMN-wide measurement vector.
Then, the arithmetic mean is calculated over these WMN-
wide measurement vector and WMN-wide decision period
representative CCA values are found. As for the special case
of the 5 GHz in-channel measurements, while forming the
WMN-wide measurement vector, the Airclock values are also
checked. If there are more than 2ms of discrepancy between
the Airclock values of the measurements belonging to the
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same dwell window, these measurements are considered as
unreliable and discarded.

B. Channel Prediction

After aggregating the last decision period’s measurement
data into a single representative value, we employ a prediction
mechanism over the past representative CCA values to forecast
the CCA level of all applicable channels in the next decision
period.

We have collected representative CCA level time-series
data from a variety of homes with different WiFi usage
patterns to investigate their patterns. Since the CCA value is
a bounded value between 0-255, there cannot be any trend.
As for seasonality and cyclicity, different APs have different
behaviors. Some APs exhibit seasonal behaviour in terms of
hours (e.g., all evening data have similar behavior whereas all
morning data also have a similar behavior) others in terms of
days of the week. Another group of APs lack any seasonality
in their CCA data but exhibit cyclic patterns (e.g., when there
are guests in a neighboring home, channels used by that
neighbor have a similar pattern for several hours). As such,
finding one ideal forecasting technique that is applicable to
all possible scenarios is not very practical. Instead, in each
decision period for each AP and for each channel, we em-
ploy several forecasting techniques with different parameters,
compare the forecasting qualities of each technique/parameter
pair in terms of mean square error (MSE) and choose the
technique/parameter with the smallest MSE values.

In our previous work, we consider exponential smoothing
and moving average techniques [15]. In this work, we also
investigate bi-directional exponential smoothing, ARIMA, as
well as LSTM techniques.

1) Exponential Smoothing: Exponential smoothing is one
of the simplest and well-known yet powerful forecasting
techniques. It has a single parameter: the smoothing factor
o. In exponential smoothing, if Xf’j represents the actual
measured CCA value of channel ¢ for AP j during decision
period ¢, and 5f ; represents the predicted value for the same
channel, AP, and decision period. The predicted value at the
next decision period can be found as:

2)

where o can take any values between [0-1]. A low « value
puts much more focus on the one previous actual measurement
whereas a high « value puts more focus on the historical
predicted values.

2) Moving Average: Another well-known forecasting tech-
nique, the moving average also has a single parameter, the
window size wnd. Following the same notation as above,
the predicted value at the next decision period is defined as
follows:

t+1 _ st t
5,L-7j = 0461-7]- +(1- a)Xi’j

t
52;1 = ( Z Xi';)/wnd

n=t—wnd+1

3)

where wnd can take any positive integer value.
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3) Bi-directional Exponential Smoothing: A variant of the
exponential smoothing, the bi-directional exponential smooth-
ing is basically conducting the exponential smoothing both in
forward and backward directions (i.e., backcasting), and then
taking the average of the two results.

4) ARIMA: ARIMA is one of the most general techniques
in the forecasting literature. It requires higher computational
complexity than the first three methods, and has to be tuned
depending on the given time-series. The standard notation for
ARIMA is Arima(p,d, q) where p,d,q are lag order, degree of
differencing, and the size of the moving average respectively.
For a given problem, the ideal p and ¢ values are generally
found with grid search. As for the d value it can be inferred
following a KPSS test. For stationary time series, d is fixed
as 0. For non-stationary time series following operations are
done for time series ¢; to find the ideal d value.

Algorithm 1 Selection of d for ARIMA

for all ¢; do
. inder,d =0
threshold = 0.05
Puvalue = kpsstest (tz)
while p,que # threshold do
DPvalue = kpsstest (tz)
t; = t;.diff(index)
d=d+1
index = index + 1
10:  end while
11: end for

1:
2
3
4:
S:
6
7
8
9

5) LSTM: Long short term memory (LSTM) is an artificial
neural network-based deep learning method, also used in the
forecasting solutions. Unlike the previous techniques, LSTM
has functions (e.g., activation functions), number and behavior
of layers to be selected as well as too many parameters to
be optimized for a given problem. We have investigated sev-
eral well-known LSTM layer designs namely stacked LSTM,
vanilla LSTM, and bi-directional LSTM with different acti-
vation functions. We have trained LSTM with a training set
composed of 40 CCA time series collected among different
APs and devices. Among the investigated LSTM designs,
the single layer bi-directional LSTM with ‘relu’ activation
function yielded the best results.

The first three methods have fairly low computational com-
plexity and the range of their method specific parameters are
also pretty limited. In contrast, ARIMA and LSTM requires
much more computational complexity as well as numerous
parameters required to be optimized. Moreover, as a deep-
learning based technique, LSTM requires huge amount of
data for its training set to yield a good prediction accuracy.
Therefore, we design two forecasting packages combining the
three low complexity solutions with a set of parameters as:
exponential smoothing with o € [0.2 : 0.2 : 1], moving
average with wnd € [2 : 2 : 16], and bi-directional exponential
smoothing where o € [0.2 : 0.2 : 1]. We also add a simi-
lar package without the bi-directional exponential smoothing
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TABLE II: Error values of different forecasting methods

MAE MSE RMSE

CACS 7.353 107.069 | 10.347

CACS w/o bi-direct. 7.593 108.124 | 10.398
ARIMA 6.984 95.529 9.774
LSTM 11.294 | 220.751 | 14.858

—— Real value

—— ARIMA

—— CACS w/Bi-directional
—— CACS

100 120 120 160

(a) AP/channel pair where the channel quality is generally within a
certain range

—— Real value

—— ARIMA

—— CACS w/Bi-directional
—— CACS

o 20 80

Time Index

160

(b) AP/channel pair where the channel quality have occasional sharp
changes

Fig. 4: CCA Time-series representations of different forecasts
with the actual data

method included to investigate the additional benefit of this
third method. Then, we compare the accuracy of these two
packages with parameter optimized results of ARIMA and
LSTM with data sets of 80 different AP/channel pairs over
a period of 1 week of forecasting.

Table II shows the accuracy of the four investigated fore-
casting methods: the two proposed CACS packages, ARIMA,
and LSTM. As examples, Fig. 4 present the detailed time-
series representation of the four methods’ forecasts compared
against the real CCA values in two AP/channel pairs among
the 80 investigated AP/channel pairs. Among these methods,
ARIMA gives the lowest error followed by the two proposed
CACS packages while LSTM gives the worst performance
in all three error metrics. Although ARIMA yields the best
performance, its improvement over the CACS packages is not
high. Among the two proposed packages, the package with
bi-directional exponential smoothing yields a slightly better
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performance. LSTM gives by far the worst performance which
can be attributed to the limited data set used for its training.
As seen in Fig. 4, LSTM captures the long-term pattern quite
well however it misses out quite a lot regarding the short time
fluctuations reducing its accuracy.

When we look at these accuracy results combined with the
required computational complexity for each method, we select
the most comprehensive CACS forecasting package to be used
in the channel prediction component of our system. Due to its
huge data requirement, investigating for a much more accurate
LSTM model is left as a future work.

C. Channel Change Advice Generation

After the quality of each applicable channel during the next
decision period has been predicted, CNC decides on whether
to instigate a channel change for a given interface or not based
on these predicted values.

First, all predicted channel CCA values are converted into
channel scores between 0-100 by a linear transformation as
below for ease of use

“4)

Then, each score is converted into a weighted score based
on a weight (w;) for each channel as below:

Scorel[t = ((255 — 6;%")/255) - 100.

WScoreE;rl — w (5)

100 + maz(w;)
jec
where C represents the set of applicable channels. These
weights can be used for favoring a particular channel over
other channels for non-interference related reasons such as
maximum transmission power of a channel or a channel
being a DFS channel or not. Note that DFS channels have a
longer channel switch time requirement causing longer service
disruptions.

Finally, the weighted score of the current operating channel
is compared against the weighted score of the best channel in
terms of weighted scores. If the improvement is higher than an
improvement threshold (th7;,pr), then the CNC sends a “true”
advice to the AP. Otherwise, no channel change advice is sent;
either due to the current channel being the best channel or the
improvement is not deemed to be too much for the disruption
of a channel change.

V. FIELD TRIAL RESULTS

We have conducted a field trial of our proposed CACS
system over a population of 50 thousand real home APs. The
trial base is composed of WMNSs of sizes between 1-3. We
have utilized our system in both the 2.4 GHz and 5 GHz
interfaces of these APs where the operating bandwidth of the
2.4 GHz interface is selected as 20 MHz, and the operating
bandwidth of the 5 GHz interface is selected as 80 MHz. The
applicable channels are selected as the first 11 overlapping
channels in the 2.4 GHz band and twenty 80 MHz channels
in the 5 GHz band where 80 MHz channels with different
primary channels are considered as separate channels.
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TABLE III: CACS Field trial parameters

Parameter Value
Applicable 2.4 GHz channels 1,2,3,4,5,6,7,8,9, 10, 11
36, 40, 44, 48, 52, 56, 60, 64, 100
Applicable 5 GHz channels 104, 108, 112, 132, 136, 140, 144,
149, 153, 157, 161
2.4 GHz channel bandwidth 20 MHz
5 GHz channel bandwidth 80 MHz
Decision period 60 minutes
Dwell window 1 minute
Dwell duration 30 ms
« [0.2:0.2:1]
wnd [2:2:16]
thriraf fic 5 Mbps
retryCount 60
thrimp 25%
w; for 2.4 GHz channels 10
w; for DFS 5 GHz channels 10
w; for non-DFS 5 GHz channels 40

The decision period is selected as 60 minutes, dwell window
has a duration of 1 minute, and dwell duration is selected
as 30 ms. As for the parameter values for the predictor
techniques, all the values given in Section IV.B are consid-
ered. The channel change related parameters, traffic threshold
(thrirarpic) and retry count (retryCount) parameters are
selected as 5 Mbps and 60 respectively. The improvement
threshold, thr;,,- is selected as 25%, w; values for all 2.4
GHz channels are selected as the same value not to favor
any 2.4 GHz channel over the other, and w; values for non-
DFS 5 GHz channels are selected higher than the DFS 5 GHz
channels to slightly favor non-DFS 5 GHz channels over the
DFS channels.

The field trials are conducted against an LCCS implemen-
tation that considers the number of basic service sets (i.e.,
WiFi networks) as the channel quality metric and if a channel
change is needed it selects the channel with the fewest number
of basic service sets. The first four days of the trials, the LCCS
is selected as the channel selection system. Starting with the
fifth day, CACS is selected as the channel selection system.
The field trial parameters are as given in Table III.

In Fig. 5a, we see the distribution of APs operating at
different 2.4 GHz CCA buckets where the green buckets
represent APs operating at low CCA levels whereas the red
buckets represent APs operating at very high CCA levels. After
enabling CACS, the CCA levels of the whole population im-
proves significantly. APs formerly operating at very high levels
move to mid-CCA levels while APs previously operating at
mid-CCA levels move to low-CCA levels. When we focus on
the percentage of devices operating at 50 CCA level or worse,
while in LCCS nearly 65% of the population is operating at
these levels, in CACS after the first day, only less than 30%
of the population remains at this level.

In Fig. 5b, we see the same distribution regarding the 5
GHz CCA buckets. Here we see that regardless of the selected
channel selection system pretty much all of the population is
operating at very low CCA levels. Our solution only makes
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a small improvement. This can be attributed to the fact that
there are much fewer 5 GHz non-WiFi interference sources
in regular home environments. As for the potential WiFi
interference sources, the reduced transmission power of the
5 GHz WiFi signals compared to the 2.4 GHz WiFi signals
also limits the potential interference between nearby APs.

As for the second performance metric, Fig. 5S¢ shows the
channel change counts of the two systems. Since LCCS acts
solely on immediate channel qualities, it incurs a very high
amount of channel changes for nearly one quarter of the whole
population. CACS on the other hand conducts some number
of channels changes on its first day after which it only makes
very few channel changes in the vast majority of the population
giving a much more stable performance.

VI. CONCLUSION AND FUTURE WORK

In this paper we have described a pro-active DCA solution
for WiFi networks that utilizes CCA information for the
channel quality indicator and uses forecasting techniques for
selecting the ideal channel for a given AP within a WMN. Our
solution focuses on both the 2.4 GHz and the 5 GHz band of
the WiFi networks while it can be easily expanded to the newly
ratified 6 GHz WiFi channels. We have evaluated the perfor-
mance of our proposed solution against an implementation of
the widely-deployed LCCS solution, lacking any forecasting
capabilities in terms of improvement in daily average CCA
buckets as well as number of channel changes using a real
field trial consisting of 50 thousand home APs. Results of the
field trial show that our proposed solution vastly outperforms
LCCS in both performance metrics in the 2.4 GHz frequency
band. Since the performance of the 5 GHz frequency band
does not have much room for improvement to start with, our
proposed solution only has a small improvement in the 5 GHz
frequency band.
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As a future work we plan to extend our proposed system to
also decide on the channel bandwidth of the WiFi interfaces
based on the interference levels. Moreover, we also plan to
build a coordinated centralized channel selection system for
a group of APs within a given geographical area which are
controlled by the same networking entity (e.g., an internet
service provider).
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