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Abstract—This paper addresses the knowledge dissemination
problem in distributed SDN control by proposing an adaptive
and continuous consistency model for the distributed SDN con-
trollers in large-scale deployments. We put forward a scalable
and intelligent replication strategy following Quorum-replicated
consistency: It uses the read and write Quorum parameters
as adjustable control knobs for a fine-grained consistency level
tuning. The main purpose is to find, at runtime, appropriate
partial Quorum configurations that achieve, under changing
network and workload conditions, balanced trade-offs between
the application’s continuous performance and consistency re-
quirements. Our approach was implemented for a CDN-like
application that we designed on top of the ONOS controllers.
When compared to ONOS’s static consistency model, our model
proved efficient in minimizing the application’s inter-controller
overhead while satisfying the SLLA-style application requirements.

I. INTRODUCTION

Existing SDN controller platforms have been architected ac-
cording to different SDN control plane designs to meet specific
requirements in terms of scalability, availability and perfor-
mance. Consistency has also been regarded as an essential
design principle for the physically-distributed, yet logically-
centralized, SDN platforms [1]. The latter use conventional
consistency models to manage the distributed state among the
controllers in the cluster. The consistency models used in SDN
can be categorized into strong, eventual and weak [2, 3, 4].
These static models have both advantages and drawbacks.

In large-scale SDNSs, the Strong Consistency control model is
extremely expensive and costly to maintain for certain applica-
tions. It requires important synchronization efforts among the
controller replicas at the cost of causing serious scalability and
performance issues. By contrast, the Eventual Consistency con-
trol model implies less inter-controller communication over-
head as it sacrifices the strict consistency guarantees for higher
availability and improved performance. In practice, many scal-
able applications in modern distributed storage systems like
Apache’s Cassandra [5] and Amazon’s Dynamo [6] opt “’by
default” for eventual consistency to provide such requirements
on a large scale. However, these applications might suffer
from the associated relaxed consistency guarantees that may
temporarily allow for too much inconsistency.

Recent research works in the area of distributed SDN control
have explored the concept of Adaptive Consistency control
for various applications [7, 8, 9, 10, 11]. Such categories
of consistency models follow different adaptation strategies
that mainly focus on dynamically adjusting the levels of
consistency at run-time under varying network conditions in
order to meet the application-defined consistency and perfor-
mance needs. Unlike strong and eventual consistency options,
adaptive consistency control models leverage the broad space
of intermediate consistency degrees between these two ex-
tremes. They use time-varying consistency levels to support
balanced real-time trade-offs between the desired consistency
and performance requirements that can be specified in the
application-defined Service-Level Agreements (SLAs) [12].
Main contribution: In this paper, we put forward an adaptive
consistency model based on eventual consistency for the SDN
controller applications that are deployed in large-scale net-
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works. Notably, we target the class of applications that tolerate
relaxed forms and degrees of eventual multi-consistency for
the sake of scalability and performance, but yet can benefit
from improved consistency features. More specifically, we
propose a scalable and intelligent replication strategy following
Quorum-replicated consistency models. The proposed model
uses the Quorum replication parameters as the control knob,
allowing for an adaptive fine-grained tuning and control over
the consistency-performance trade-offs. These real-time trade-
offs should provide minimal application inter-controller over-
head while satisfying the application’s continuous performance
and consistency requirements specified in the given SLA. Our
approach was implemented on the ONOS controller platform.
Outline: The rest of this paper is organized as follows:
In Section II, we conduct a background review of eventual
consistency models in modern distributed data-store systems.
Inspired by the scalable consistency techniques used in these
popular data-stores, we present, in Section III, our adaptive
and continuous Quorum-inspired consistency model for the
distributed SDN controllers. In Section IV, we describe the
methodology for implementing our consistency strategy on a
CDN-like application we designed on top of ONOS. Section
V explains the test scenarios we developed to assess our pro-
posal, and discusses the experimental results. Finally, Section
VI gives some concluding remarks and points out possible
directions of improvement of the proposed approach.

II. BACKGROUND ON EVENTUAL CONSISTENCY IN
DISTRIBUTED DATA-STORES

A. Consistency and performance metrics:

Guaranteeing the consistency of replicated data in distributed
database systems has always been challenging. Today’s fun-
damental consistency models (e.g. strong consistency, causal
consistency, eventual consistency) ensure different discrete
levels of consistency guarantees. For instance, the strong
consistency model offers up-to-date data, but at the cost of
high latency and low throughput. As a result, weaker forms
of consistency -most notably the popular notion of eventual
consistency- have been widely adopted in modern data-stores
which need to be highly-available, fast and scalable [5, 6].
Despite being regularly desirable in practice for the latency
and throughput benefits they offer, eventual consistency models
provide no bounds on the inconsistency of the returned data.
Another limitation of these models is that the trade-offs they
make among consistency and performance are difficult to
assess as stated by the CAP and PACELC theorems [13].

Yu and Vahdat proposed TACT [14] which fills in the
consistency spectrum by providing a continuous multi-
dimensional consistency model. The latter can be leveraged
by replicated Internet services to dynamically tune their fine-
grained consistency-performance trade-offs based on client,
service and network features. The authors quantify consistency
by bounding the divergence of replicated data items in an
application-specific manner using three metrics: Numerical
error, Order error and Staleness. Bailis et al. [15, 16] devel-
oped probabilistic models to predict the expected consistency



guarantees as measured by the staleness of reads observed
by client applications in eventually-consistent Dynamo-style
partial Quorums. The authors introduced PBS which provides
bounds on the expected staleness in terms of versions (the
k-staleness metric) and wall-clock time (the #-visibility met-
ric). Another work [17] proposes a self-adaptive consistency
approach called Harmony which embraces an intelligent esti-
mation of the stale read rate metric in Cloud storage systems,
allowing to adjust the consistency level at run-time according
to application needs. That was achieved by elastically scaling
up or down the number of replicas involved in read operations
to preserve a low tolerable fraction of stale reads.
B. Adaptive consistency control

Modern distributed database systems supporting standard
eventual consistency models suffer from the inevitable trade-
offs between consistency and availability. To overcome this
limitation, these systems introduced the concept of adaptive
consistency to find appropriate consistency options depending
on application needs and system conditions. In literature,
adaptive consistency techniques have been broadly classified
into two categories: user-defined and system-defined [18].

Modern storage systems like Cassandra fit into the category
of user-defined adaptive consistency, as they offer multiple
consistency options via built-in settings based on Quorum
replication policies. Although they offer adaptive consistency
on top of tunable consistency providing the applications with
some control over the consistency-performance trade-offs, it is
usually difficult for application developers to decide in advance
about the required consistency options for a given request [18].

Unlike user-defined adaptive consistency where data should
be mapped in advance to the desired consistency levels,
system-defined adaptive consistency takes into account the
fact that user and system behaviors may change dynamically
over time making the consistency decision-making process
challenging for application developers. That is why, system-
defined techniques rely on system intelligence and adaptability
to provide at run-time fine-grained control over the consistency
guarantees. Many factors can be considered to dynamically
predict the appropriate consistency like data access patterns,
system load, and the application’s consistency SLAs discussed
in Section II-A. One famous form of system-defined adaptive
consistency is the continuous consistency used in TACT [14].
Designing system-defined adaptive consistency requires careful
considerations of the appropriate consistency adaptation strat-
egy. In particular, existing adaptive mechanisms use different
control knobs to be configured for consistency tuning such as
the consistency level, the artificial read delay, the replication
factor and the read repair chance [19].

III. THE PROPOSED ADAPTIVE QUORUM-INSPIRED
CONSISTENCY FOR SDN CONTROLLERS

We propose a Quorum-based and system-defined adaptive
consistency model for the distributed SDN controllers. Our
approach is inspired by the Quorum consistency techniques
used by modern data-stores [5, 6]. SDN controller platforms
like ONOS rely on two consistency schemes with two levels of
consistency: strong and eventual consistency [11]. While the
first model is leveraged by the SDN applications that require
strong correctness guarantees, the second model is intended for
SDN applications that favor scalability and performance over
strict consistency. Here, we target the second class of scalable
applications that have relaxed consistency needs, but that can
benefit from improved performance and automated SLA-aware
consistency tuning at scale as offered by our proposed strategy.

A. A continuous consistency model for SDN

As discussed in [11], SDN applications can benefit from the
continuous consistency model introduced by TACT [14], by
continuously specifying their consistency needs using three
metrics to capture the consistency spectrum and bound incon-
sistency: Numerical Error, Order Error, and Staleness. In this
work, we focus on the type of applications whose consistency
semantics can be expressed using data staleness as a metric
to quantify consistency. With such SLA-style consistency
metrics, such applications may avoid the challenges related
to potentially unbounded staleness as in eventual consistency.

Generally speaking, the staleness metric measures data fresh-
ness in distributed data-stores: it describes how far a given
replica lags behind in data operations in comparison to up-to-
date replicas, either expressed in terms of time or versions.
In the literature, the notion of data staleness falls into two
common categories: staleness in time (time-based staleness)
and staleness in versions (version-based staleness) [14, 15].

In this work, we adopt the staleness metric from a strictly
time-based perspective. In our SDN application, we charac-
terize staleness by an "Age of Information (Aol)” timeliness
metric [6] that describes the difference between the query time
of a data item and the last update time on that item. If the last
successfully received update was generated at time u(t) then
its age at time ¢ is A(t) =t —u(t). Besides, SDN applications
can benefit from SLA-style performance metrics: We consider
the read request latency as our continuous performance metric,
and we assess the application inter-controller overhead.
B. Our Quorum adaptation consistency strategy for SDN
1) Quorum-replicated consistency

The Quorum size for reads (R) or writes (1) is the number of
replicas that must acknowledge a read or write operation before
considering it as successful. Different choices of Quorum
configurations ensure different consistency guarantees:

« Strong consistency can be guaranteed with strict quorums
that satisfy the condition that sets of replicas written to
and read from need to overlap: R + W > N, given N
replicas and the read and write quorum sizes R and W.

o Eventual consistency occurs with partial quorums that
fulfill the condition that sets of replicas written to and
read from need not overlap: R+W < N, given N replicas
and the read and write quorum sizes R and W.

Traditionally, partial Quorum systems ensure eventually-
consistent guarantees with no limit to the inconsistency of the
returned data, which is not acceptable for certain applications.
With PBS [15], it was possible for applications to quantify the
consistency level (using staleness) and assess the staleness-
latency trade-offs for partial Quorums. Building on these
concepts, we suggest an adaptive consistency model for SDN
applications using partial Quorums, given their latency and
scalability benefits. To measure the applications’ consistency
semantics (e.g staleness) and meet their consistency needs (e.g
bounded staleness), we leverage the continuous consistency
model (Section III-A). Using eventually-consistent Quorums,
it is possible to configure the size of read and write quorums
such that R + W < N to ensure different consistency levels
(e.g degrees of staleness). These multiple configurations allow
the applications to achieve various staleness-latency trade-offs.
2) Adaptive architecture

In the following, we describe the main architecture compo-
nents of our adaptive consistency model (see Figure 1):

e Application SLA Module
This module allows the SDN applications to express



their high-level SLA-style consistency (staleness) and
performance (latency) needs. Our consistency model con-
tinuously measures the real-time metrics that quantify the
consistency-latency trade-offs for our SDN applications.
Workload Identifier Module

This module identifies the application’s workload charac-
teristics. It considers 3 workloads that are representative
of different application scenarios [20]. The first workload
has a balanced ratio between read and write operations.
The second one represents a write-dominated scenario.
The third one describes a read-intensive scenario.
Monitoring Module

This module is responsible for periodically gathering the
application traffic information in a non-intrusive manner.
It measures the system KPIs for different read/write Quo-
rum configurations and according to different application
workload scenarios. These KPIs include the performance
(response latency) and consistency (staleness) metrics re-
lated to client requests for specific application contents, as
well as the generated read and write application overhead.
Automatic Module

The choice of the size of read and write Quorums used
for read and write operations is a fundamental factor that
affects the application’s consistency guarantees but also
the network performance. However, selecting the right
Quorum configuration is a non-trivial task. This module
attempts to find the appropriate time-varying partial Quo-
rum configurations while taking into account the current
application workload conditions. The main objective is
to minimize the overhead generated by the application
(the scalability challenge) and potentially other network
and application metrics, while satisfying the consistency
and performance SLAs specified by the Application SLA
Module. Our automatic module is fed with a set of
application workload characteristics that are gathered by
the Workload Identifier Module. In our case, it relies on a
Machine Learning Module to predict the appropriate par-
tial Quorum configuration for the determined workload,
and then feed them to the Reconfiguration Module.
Machine Learning Module

This module uses a Q-Learning (QL) Reinforcement
Learning (RL) technique. The main idea is to train an
agent that interacts with the environment by performing
actions that change the environment, going from one state
to another. These actions result in a reward received by
the agent as an evaluation of its actions. That way, the
agent learns some rules and develops a policy for choosing
actions that maximize its reward. The QL update rule uses
the Q-function representing the quality of an action in
given state. This function is used for updating the Q-
table at each episode. The agent should also achieve a
strategy for balancing the exploration/exploitation trade-
off inherent to RL. That dilemma consists in choosing
a certain action at each episode: either to exploit the
environment by selecting the best action at that specific
time step given the knowledge provided by the Q-table, or
to explore the environment by choosing random actions.
After each action, the agent updates the Q-table.

In our case, the agent attempts to learn online the best
combination of R and W in an environment built using
our Monitoring Module. An action is defined as an
update (increasing/decreasing) of R and W to certain
possible values, thereby transforming the environment
to a state defined by a new estimation of the network

(overhead) and application (latency and staleness) metrics.
The reward received by the agent for updating the Quorum
parameter values is a function of the read and write
overheads to be minimized and potentially other metrics.
The agent learns also how to respect some constraints to
satisfy the application needs specified in the given SLA.
Reconfiguration Module

This module adjusts dynamically the values of R and
W. It relies on the Automatic Module to optimize the
quorum configuration. The reconfiguration process is a
non-blocking process that is able re-configure at run-time
the Quorum settings selected by the Automatic Module.
Quorum-based Replication Module

Given the quorum replication settings, we adopt the
following strategy when reviewing the techniques used
by eventual consistency models in SDN controllers [11]:

— Replication strategy: In existing SDN controller plat-
forms like ONOS, eventually-consistent stores employ
an optimistic replication technique that consists in
replicating local updates across all controllers in the
cluster, hence causing control plane overhead. Instead,
we put forward a partial quorum replication strategy
where an eventually-consistent data-store writes a data
item on the local replica first and then sends it poten-
tially to another set of replicas, obeying the given write
quorum W. To serve read requests, we propose that the
eventually-consistent data-store fetches the data from
the local replica first and then potentially from another
set of replicas, depending on the given read quorum R.
This is in contrast to ONOS’s strategy where the read
requests are always processed by the local replica.

— Reconciliation mechanism: In SDN controllers like
ONOS, the optimistic replication strategy is comple-
mented by a background reconciliation mechanism (e.g.
Anti-Entropy). That periodic process ensures that the
system state across all replicas eventually converges
to the consistent state. This is particularly useful in
repairing out-of-date replicas and fixing inconsistencies
potentially resulting from controller failures. In this
work, we assume that the system is reliable as we ex-
periment with well-functioning emulated topologies in
the absence of failures. Thus, we propose to deactivate
the reconciliation protocol and focus on the replication
strategy. However, we note that using additional Anti-
Entropy (expanding partial quorums [15]) might be
useful in particular cases where inconsistencies become
high and can no longer be tolerated by the applications.
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Fig. 1: Architectural overview of our consistency strategy

IV. IMPLEMENTATION APPROACH ON ONOS

In this section, we show the details for implementing our pro-
posed adaptive consistency strategy on the ONOS controllers.
A. Design of a CDN-like application

To validate our proposal, we develop a new distributed Con-
tent Delivery Network (CDN) application running on top of a
cluster of ONOS controllers in an emulated SDN network. Our



application replicates contents from providers to hosting cache
servers that are located in multiple geographical locations
(ONOS domains) close to users. In our tests, we consider a
single origin server in each ONOS domain. The main idea is
to serve client hosts with the most up-to-date copies of the
requested content and within a reasonable time (low latency).

More specifically, our application consists of two
main components: An ApplicationManager and a
DistributedApplicationStore. The Application
Manager is in charge of creating a virtual network of cache
servers and providing mesh connectivity between these
server hosts. The Distributed Application Store persists and
synchronizes the information received by the manager. It is
backed by a distributed eventually-consistent map for storing
the service’s application state, namely the list of origin servers
in the network and their respective set of generated contents:
EventuallyConsistentMap<OriginServerlID,
Set<Content>>. Each content that is created on the
origin server and then eventually propagated to cache servers
has five properties; a ContentName, an ID, a real-time
CreationTime, a LogicalTimestamp and a Version.

Each controller replica that is responsible for an ONOS do-
main operates on a local view of the eventually consistent map.
That view consists of the local origin server from the same
ONOS domain with its generated set of contents and other
potential origin servers located in different ONOS domains in
the network with their respective set of contents, as seen by
the local replica after application state synchronization.

We also design a cached map that is local to each controller
application instance and that represents the contents cached in
the local CDN server within the same ONOS domain. The local
cached map is closely linked to the local view of the eventually
consistent map and it reflects the contents stored in the local
CDN server. The latter performs the functions of an origin
server and a cache server: It contains the contents created
locally (origin server) and potentially other contents that are
replicated from other origin servers (cache server). More
specifically, on a local controller, updates to the eventually
consistent state map might trigger specific actions to feed the
local CDN server and then update the local cached map. If the
update to the content is associated in the map with the local
origin server, that means that the updated content has already
been generated on that server. If the update to the content is
associated in the map with another origin server from another
ONOS domain, our application checks the relevance of that
content. If the content is important to our application, then the
update to the content gets automatically pulled from the origin
server to the local CDN (cache) server and gets cached in the
local CachedMap <ContentName, Set<Content>>.
B. State synchronization and content distribution

The custom eventually consistent map we use for the syn-
chronization of our CDN application state is based on our
own implementation of the EventuallyConsistentMap
<K, V> distributed primitive. Indeed, the new implementation
we propose for the eventual consistency map abstraction mod-
els the Quorum-inspired consistency discussed in III-B1.

In particular, it takes into account the size of the write
Quorum W when replicating the updates related to our ap-
plication’s eventually consistent map among the controllers
(see Figure 2). On each local replica, updates to the local
map are queued in time in different EventAccumulators
that are allocated for different controller peers. The latter are
selected randomly, and their number depends on W. Whenever
an event accumulator is triggered to process the previously
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accumulated events and propagate them to the associated
peer, that peer is removed from the list of quorum peers.
New updates will immediately trigger the creation of a new
accumulator associated with a new randomly selected peer that
is is added to the list of quorum peers. That accumulator will
collect the updates along with the other event accumulators
associated with the rest of the quorum peers. That way, we
guarantee that updates to the eventually consistent map on a
local replica are replicated at run-time to exactly W replicas
including the local replica.

C. Content delivery to customers

During a client read operation, our controller application
instance running on the local controller within the same
ONOS domain as that client, receives the read request to be
fulfilled following Quorum-inspired read consistency protocols
(see Figure 2). If the read consistency level is higher than
ONE (R > 1), then the local controller which serves in our
case as the coordinator node sends the read request to the
remaining randomly-selected controller replicas forming the
read Quorum. The size R of the read Quorum including the
local replica is set in advance by the read consistency level.

We use ONOS’s ClusterCommunicationService to
assist communications between the local controller and the rest
of the replicas in the read Quorum. The local controller sends
the read request message with a certain subject to each of the
concerned controllers using that service’s sendAndReceive
method. It expects a future reply from each of these controllers
which had already subscribed to that message subject.

That said, to serve the client read request for a certain content,
each controller that has subscribed to the specified message
subject receives the request and uses the application’s handler
function for processing the incoming message. The applica-
tion instance on each controller replica of the read Quorum
(including the local replica) consults the local cached map.
Using that map, each application instance compares the cached
versions of the requested content (ContentName) based on
their LogicalTimestamps to determine the freshest version
of the content. Then, it produces a reply containing the selected
Content with its five properties discussed in IV-A and the
IP address of the local cache server delivering that content.

The local controller replica playing the role of the coordinator
waits for the read Quorum of replicas to respond. Then,
it merges the R responses (including that from the local
replica) to determine the location of the freshest version of the
requested content among the concerned CDN servers (equal
to R in our scenario). Finally, it sends the final response to
the client and makes sure a host-to-host connectivity intent is
added between the client and the determined cache server using
the ONOS Intent Framework. Based on that response,
the client which has issued a HTTP request specifying the URL



of the requested content, is redirected, using our CDN-like

strategy and a DNS resolution service, to the selected cache

server to retrieve the specified version of the content. After

each client request, our application collects the continuous

consistency and performance metrics related to that request:
« Performance metrics:

— Network-related metrics: We consider the application
inter-controller overhead as a performance metric. We
first capture all inter-controller traffic using TCP port
9876. Then, we filter the captured traffic based on some
conditions to assess the application’s inter-controller
overhead due to write and read operations. Our goal
is to minimize that overhead base(i) on the application
SLA and workload, as well as the network context.

AppOverhead = WriteOverhead+ ReadOverhead (1)

— Client-centric metrics: We use the response time to a
client request as a performance metric. It consists of
the delay to fetch the proper version of the requested
content from the local cached maps of the application
instances running on the R controllers of the read Quo-
rum (Latencyl) and the delay to retrieve that version
from the selected cache server host (Latency?2).

ResponseTime = Latencyl + Latency?2 2)

o Consistency metrics:
As explained in Section III-A, we consider staleness from
a strictly time-based perspective: It describes the Age of
Information in terms of wall-clock time. Accordingly, the
staleness of the application content C being returned by
a read operation at a given time is measured as follows:

Staleness(C) = QueryTime — CreationTime(C) (3)
We also set the staleness ranges used in the consistency
SLA based on the application content refresh rate.
V. PERFORMANCE EVALUATION

A. Experimental setup

Our experiments are conducted on an Ubuntu 18.04 LTS.
We use ONOS 1.13, Mininet 2.2.1, and the provided onos.py
script to start an emulated ONOS network on a single machine.
Wireshark is used as a sniffer to capture the inter-controller
traffic (TCP port 9876). In this section, we test our consistency
approach which we will refer to as ONOS-WAQIC (ONOS-
With Adaptive Quorum-Inspired Consistency) for brevity.
1) TCL-Expect scripts

We write two Expect scripts where we specify the required
steps to automate the tasks for our test scenarios on ONOS-
WAQIC. The first script (main.exp) is mainly used to con-
nect to the Mininet CLI, launch the ONOS network topology,
issue the client requests for contents, and collect the associated
metrics. The second script (onos.exp) (called by the first
script) is mainly used to run spawned processes that interact
with the running ONOS instances through ONOS’s CLI, and
launch the application’s CLI commands that we developed to
perform many actions. The latter include setting R and W, and
adding/updating the CDN contents to the cache server hosts
(and to our application’s eventually consistent map).
2) OpenAl Gym simulator

To implement our ML Module (Section III-B2) for our CDN-
like application on ONOS-WAQIC, we build a simulator using
the Python-based OpenAl Gym [21] RL toolkit. We build a
new environment to simulate knowledge exchange in an ONOS
cluster: We start by preparing an offline dataset using our
TCL scripts. The dataset stores the information collected by
our Monitoring Module about the clients’ content requests.
For a given client request (see Section IV-C), the returned
information contains the current R and W values, the expected

returned version of the content (content update step), the actual
returned version of the content, the staleness of the returned
content, the delay incurred in searching for the freshest version
of the content from the R controller replicas (latencyl), the
read overhead, the write overhead and the application scenario
determined by the Workload Identifier Module.

Our ML Module feeds the dataset to our simulator so that the
agent learns online the R and W parameters. It learns indeed
the Kernel Density Estimation (KDE) for each metric using
the data of some clients. That data is selected with respect to
the current configuration of R and W which was set following
an action performed by the agent (see Section III-B2). Using
KDE, our ML Module estimates the expected metrics for each
selected Quorum configuration (used for updating the Q-table).
3) Various learning agent policies

We implemented three learning agents that adopt different
policies. The latter are evaluated through five scenarios. Each
scenario reflects a specific use case (e.g. a consistency-favoring
application). To minimize the application’s inter-controller
overhead, our agents use the estimated overhead as a negative
“reward” when performing actions (setting R and W) that
change the environment state. The controlled and constrained
agents are proposed to improve the simple greedy agent.

1) A simple e-greedy agent [22]: It follows a simple e-greedy
policy with a fixed e (e is the exploration rate and (1-€)
is the exploitation rate). We test three e-agents: e-greedy5
(€=0.5), e-greedy10 (e=0.10) and e-greedyl5 (¢=0.15).

ii) A controlled e-greedy agent: This agent follows a dynamic
e-greedy strategy where e decays as the episode count
increases. The aim is to account for the fact that the
agent learns more about the environment in time and
becomes more confident and “greedy” for exploitation. To
satisfy the latency and staleness thresholds, the first two
agents reject at each episode any action-state violating
these constraints by removing its value from the Q-table.

iii) A constrained e-greedy agent: To help the agent learn
to satisfy the SLA, we create a Q-constraint list that
we update over the episodes. Its size is the number of
potential R and W combinations such that R + W < N.
The list represents the number of constraint violations
by each Quorum configuration. The constraints are the
latency and staleness SLA thresholds. During exploitation,
we update that list and use it to generate a new Q-
list containing the Quorum configurations that give less
constraint violations. These configurations are exploited:
They are compared using their values in the Q-table to
select the best Quorum configuration (action-state) at that
episode.

B. Results

To assess ONOS-WAQIC for our CDN-like application, we
run our TCL scripts (Section V-Al) with a 5-node ONOS
cluster according to different scenarios. In the latter, we use
different partial Quorum configurations (R,W) and we follow
various application workloads with respect to different ratios
between read and write operations. We use this collected
data as an input to our QL simulator (Section V-A2). In the
simulator, we set « to 0.7 and the episode number to 1000.
We also consider 3 scenarios that reflect different application
needs in terms of performance and consistency (see Table I).

Test Latency t_Staleness k_Staleness
scenarios | threshold (ms) | threshold (ms) | Version old
n°1 10 300000 3
n°2 50 180000 2
n°3 100 100000 1

TABLE I: Application SLA scenarios



Using our dataset and knowing the refresh rate of our CDN-
like application, we learn the t_staleness ranges, namely the
relationship between the t_staleness value of a certain content
being returned and by how many versions that returned content
is old. As a result, estimating these ranges allowed us to set
the time-based staleness thresholds in the SLA while having an
idea about the associated version-based staleness thresholds.

In each scenario, our application expresses the performance
and consistency SLAs using the latency and staleness thresh-
olds (in ms). For example, in scenario n°3, our application
which is consistency-favoring enforces this SLA: It expects
that a read operation gets a reply in under 100ms and returns
a content value no older than 100seconds (no older than 1
version stale). Accordingly, our consistency approach attempts
to find the best R and W combination that minimizes the
overhead while ensuring the desired performance-consistency
trade-off. In Figures 3, 4 and 5, we show the results of our
experiments for the three considered application scenarios.

In particular, Figure 3 shows that, in a latency-sensitive
application scenario, the constrained agent policy is the most
appropriate. The number of constraint violations decreases
with episode stages (Figures 3(a) and 3(b)) at the cost of adding
little overhead as compared to the first two agent policies,
but it remains 60% lower when compared to the standard
ONOS implementation. We also notice that the three agents
converge towards Quorum configurations where R = 1 (i.e.
(R=1,W=2),(R=1,W =3)and (R = 1,IW = 4)).
This is due to the given strong constraint on latency.
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Fig. 3: Scenario 1: Latency-sensitive application

Figure 4 shows that, in a balanced application scenario,
the constrained agent policy provides the best trade-offs at
runtime between the application’s latency and staleness needs
(Figures 4(a) and 4(b)). It converges towards balanced Quorum
configurations (i.e. (R =2,W =2) and (R =2,W = 3)).

As can be seen from Figure 5, in a consistency-favoring
application scenario, both the constrained and e-greedy5 agents
perform well at reducing the staleness violations (Figure 5(a)).
Besides, all agents comply well with the relaxed latency
constraint. They converge towards a common Quorum config-
uration (R = 3, W = 2). In this scenario, the gain in overhead
is significant; almost 70% as compared to the standard ONOS.

Other scenarios were tested like an application scenario
where latency is favored and consistency is completely relaxed
(’any”). Our results showed that, in such scenarios, the agents

converge to common Quorum configurations (R =1,W = 1).
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Fig. 4: Scenario 2: Consistency/Latency-balancing application
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VI. CONCLUSION

In this paper, we studied the use of an adaptive and con-
tinuous consistency model for the distributed ONOS con-
trollers following partial Quorum consistency. Our approach
was implemented for a CDN-like application we designed
on ONOS. It uses an intelligent Quorum-based replication
strategy based on various QL approaches. Our experiments
showed that the constrained e-greedy approach we tested on
a 5-node ONOS cluster proved efficient in helping our CDN-
like application find at-runtime the appropriate read an write
Quorum replication parameters. In fact, the determined time-
varying partial Quorum configurations achieved, at runtime,
balanced trade-offs between the application’s continuous per-
formance (latency) and consistency (staleness) requirements.
These real-time trade-offs also ensured a substantial reduction
in the application’s inter-controller overhead (especially in a
large-scale network) while satisfying the application SLAs.

In our experiments, we consider a fixed application work-
load scenario (a read-intensive scenario). Moving from one
workload scenario to another (e.g a write-intensive scenario)
is being addressed as part of our ongoing work. It would
be also interesting to separate the read and write overheads
when minimizing the application inter-controller overhead to
investigate the impact on the generated R and W parameters.
Finally, we note that our Quorum consistency model can be
enhanced by leveraging the compulsory Anti-Entropy recon-
ciliation mechanisms (expanding partial Quorums) [11]. Such
mechanisms are useful in special cases (e.g. controller crashes)
where the consistency observed by the applications is at high
risk and cannot be fixed by only adjusting the Quorum sizes.
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