An Intent-based Network Virtualization Platform
for SDN

Yoonseon Han*, Jian Lif, Doan Hoang?, Jae-Hyoung Yoof, and James Won-Ki Hong*

*Division of IT Convergence Engineering, POSTECH, Korea.
seon054 @postech.ac.kr
TDepartment of Computer Science and Engineering, POSTECH, Korea.
{gunine, jwkhong} @postech.ac.kr
tSchool of Computing and Communications, University of Technology Sydney (UTS), Australia.
Doan.Hoang @uts.edu.au
§ Ministry of Science, ICT and Future Planning, Korea.
jhyoo@iitp.kr

Abstract—Currently, the Software Defined Networking (SDN)
paradigm has attracted significant interests from industry and
academia as a future network architecture. SDN brings many
benefits to network operations and management including pro-
grammability, agility, elasticity, and flexibility. With SDN and
OpenFlow, one of the promising SDN protocols, software defined
Network Virtualization (NV) techniques can be designed and
implemented via flow table segmentation to provision independent
virtual networks (VNs). In this paper, we propose an intent based
virtual network management platform based on software defined
NYV. The objective of the proposed NV platform is to automate the
management and configuration of virtual networks based on high
level tenant requirement specifications, called intents. The design
and implementation of the platform is based on ONOS, an open-
source SDN controller, and OpenVirteX, a network hypervisor.
The platform is designed to provide multiple VNs over the same
physical infrastructure to multiple tenants.

Keywords—Software Defined Networking (SDN), Network Vir-
tualization, Intent Framework, Virtual Network Management and
Configuration, Virtual Network Embedding

I. INTRODUCTION

Software-Defined Networking (SDN) is a new networking
paradigm which enables flexible and efficient network manage-
ment. The essential principle of SDN is to decouple network
control and forwarding functions, and leave each function in
its individual network plane. In the context of SDN, all control
related functions are moved to a centralized control plane,
hence optimal network control decisions can be made using a
global networking view. SDN also provides the ability to sim-
plify network design and operations, with this ability, we can
deploy complex network policies. To summarize, SDN brings
four major features such as programmability, agility, flexibility,
and vendor neutrality to network management domain. By
properly utilizing those features, SDN has been promised to
reduce CAPEX by using cheap, open, commodity switches
and cloud computing for replacing expensive middle boxes
and to reduce OPEX by providing simplified and centralized

This work was supported by the ICT R&D program of MSIP/IITP,
Republic of Korea. [B0190-15-2011, Korea-US Collaborative Research on
SDN/NFV Security/Network Management and Testbed Build], and [BO190-
15-2012, Global SDN/NFV OpenSource Software Core Module/Function
Development].

978-3-901882-85-2 (©) 2016 IFIP

management/operation. Currently, most of the SDN controllers
support OpenFlow as an essential South Bound Interface
(SBI) according to the Open Networking Foundation (ONF)’s
specification [1].

Network Virtualization (NV) is a networking technology
that creates dedicated Virtual Networks (VNs) over a physical
infrastructure. With the help of NV, multiple tenants are able
to share the underlying physical network resources, and they
can operate their isolated virtual networks independently. By
provisioning VNs over the physical network, network function-
ality is abstracted from its physical elements. NV technology
has the potential to reduce significantly CAPEX and OPEX
for network and network service providers with its flexible,
on-demand, and scalable provisioning capability. A possible
approach to NV is the slice-based NV whereby a slice of
the network physical resources can be allocated to a VN by
segmenting OpenFlows flow tables into partitions.

A major deficiency of the slice-based NV approaches is
that they require underlying network infrastructure to be con-
structed using OpenFlow protocol. Futhermore, the configura-
tion and management process of each VN are still complicated
and time consuming because of the lack of generally available
VN embedding methods and automated VN provisioning pro-
cesses. Currently, to configure and manage VNs, administrators
have to deal with all technical aspects of networking such as
underlying protocols, addresses, topologies, control rules, and
etc. To overcome this complexity and problems, in this work,
we introduce the principles of intent-based management. The
definition of intent is not standardized yet, but it is generally
perceived as business or system level policies (or higher level
specifications). Intents is independent from specific network
technologies and vendor specific features. Moreover, it allows
the administrator to use higher level abstraction by using
business or system level terminologies and concepts. With
intents, users only need to concentrate on specifying what they
need, rather than how to realize or implement the need.

In this paper, we propose an intent based VN management
platform for SDN to overcome these problems. The funda-
mental idea is to automatically manage VNs from high-level
tenant requirements using intents. To be more specific, the
proposed intent-based NV platform addresses the following

challenges: 1) using intent to express high-level VN require-
ment specifications, 2) combining SDN and NV technologies
into a single framework, 3) automating the task of VN structure
composition and embedding. The platform will host multiple,
independent, and isolated VNs, and support multi-tenancy.
VN5 belonging to different tenants may have different network
configurations in terms of network address space, topology,
and may be governed by different policies. The proposed
platform is implemented on OpenVirtex network hypervisor
[2] and ONOS SDN controller [3].

II. RELATED WORK

In this section, we focus on describing the overlay NV
and the software defined NV approaches that can be real-
ized with SDN technologies. Most commercial NV solutions
are based on overlay NV approach by leveraging tunneling
or encapsulation techniques such as VMware NSX [4] and
Microsoft Hyper-V [5]. Overlay NV approach can be further
categorized depending on whether the approach supports layer
2 and layer 3 virtualization. Usually, to deliver packets, an
ingress network device (switch or router) encapsulates packets
by inserting an outer packet header indicating a specific virtual
network instance ID (VVID). The encapsulated packets are
delivered to the destination according to forwarding rules,
and then, decapsulated to restore the original packets at the
egress network device. VXLAN [6] and NVGRE [7] are
two most representative overlay NV approaches that support
layer 2 virtualization, while Generic Routing Encapsulation
(GRE) [8] and Locator/Identifier Separation Protocol (LISP)
[9] are two most representative approaches that support layer
3 virtualization.

The advantages of the overlay NV approach include
1) only network edges are involved in tunnel encapsula-
tion/decapsulation, the remainder of the network remains
unchanged, 2) theoretically, unlimited number of VNs are
supported, 3) VNs are independent from the physical network
topology and configuration, 4) VNs mobility can easily be sup-
ported. As the overlay NV approach is based on encapsulation
mechanism and tunneling, it also brings disadvantages. The
main disadvantages include 1) Two separated networks, VN
and PN, are maintained in terms of network services such as
management, provisioning, and control, 2) it does not provide
mechanisms to provide to guarantee QoS, 3) it introduce high
encapsulation and tunneling overheads, and 4) it incurs high
management complexity for both VN and PN at the same
time. To overcome these disadvantages, cloud platform such
as OpenStack provides several methods (such as Neutron) to
manage network resources.

With the introduction of SDN and OpenFlow technologies,
it is possible to implement NV as an application or a service
provided by an SDN controller via flow table segmentation.
This slice-based NV approach can support layer 1 - 4 net-
work virtualization by matching appropriate packet headers.
Performance degradation caused by tunneling overheads is
eliminated. By inserting appropriate forwarding (flow) rules,
software defined NV approach can provide specific NV fea-
tures. Moreover, this approach introduces network abstractions
that can be utilized by management application such as virtual
links, virtual switches, and virtual routers. Within software
defined NV approach, corresponding physical hardware can be

directly programmed for the virtual elements to provide QoS.
Tenants can use their own specific controllers to control their
own VNs. Currently, available solutions include FlowVisor
[10], OpenVirteX [2], and FlowN [11]. However, the critical
disadvantage of the software defined NV is that the physical
network has to support SDN and OpenFlow.

Another important related technology is Intent-based
mangement. Oxford dictionary defines “intent” as “an aim
or plan or purpose.” The definition of intent for network
management is commonly perceived as business or system
level policies specified with common concepts and terminolo-
gies agreed by all related stake-holders. However, a clear
and concise definition of intent for network management has
not been standardized yet. Several projects are proposed to
introduce intent for SDN application development and network
management based on high-level requirements or management
policies. Recently, intent-based interface has been pursued rig-
orously by IETF and major open-source project communities
(ONF, ONOS and OpenDaylight) to provide a standardized
intent-based northbound interface for SDN [3], [12]-[14]. The
specification methods was also developed by using language
(e.g., NEMO [12], [15]) or policy graph (e.g., PGA [16]).

III. OVERALL PLATFORM ARCHITECTURE

The proposed intent-based VN management platform is
designed to have a hierarchical architecture.The platform plays
two roles which are 1) network hypervisor and 2) SDN
controller. As a network hypervisor, the platform possesses VN
management capabilities such as VN provisioning, modifica-
tion, and removal, at the same time, it also provides interfaces
to relaying VN events and messages to external entities running
tenant specific applications. As an SDN controller, the platform
provides network abstractions and control capabilities for both
physical and virtual networks. The overall architecture is
depicted on Fig. 1. The design objectives are 1) to support
multi-tenancy, 2) to provide network abstractions for applica-
tion development, 3) to allow high-level tenant requirements
specification using intents, and 4) to support tenant specific
controllers and applications by providing various interfaces.
The platform has five layers: protocol adaptation, abstraction,
virtualization, virtual abstraction, and intent layer.

The protocol adaptation layer is responsible for processing
protocol specific messages which are used to communicate
with physical hardware such as OpenFlow switches. The
main roles of this layer are: 1) decoding protocol specific
messages and delivering them to proper providers located in
the abstraction layer, 2) managing communication channel be-
tween the controller and network devices, and 3) receiving the
requests from upper layers, encoding the request into protocol
specific messages and transmitting to hardware devices. The
abstraction layer is responsible for abstracting protocol specific
concepts and hiding the details of underlying infrastructure.
The abstractions can represent various elements and properties
in a protocol-agnostic manner. Some representative abstrac-
tions are Device, Link, Topology, Event, Path, Flow, etc.

The main responsibility of the virtualization layer is to
translate VN objects into physical objects by maintaining map-
ping information. The mapping information includes address
mapping and topology mapping. To support various strategies

Off-Platform Tenant-Specific
Apps Controllers

/" Intent-based Virtualization N\
Platform

Extended Northbound Interface
Tenant-Aware
Apps Relaying

Interface RESTful API GuIcLI

Intent Intent Conflict Intent Vocabulary
Layer Manager Checking Compiler Store
parwal VD vLink VEvent VPath

. i in|
Abstraction [Pm’v‘:'::,J [Provider] [Provider] [Provider]
Layer
Virtualization| Topology Address VN NG
Layer mapping mapping Embeder
Abstraction Device Link Event Path
Layer Provider Provider Provider Provider
Protocol R

Adaptation | OpenFlow ovVsDB REST Installer
Layer

Southbound Interface

& -/

swsitlgt,:les @ _____ % -- Y %I @\ _%

The overall platform architecture design

Fig. 1.

to satisfy different user requirements, the platform design
should consider to address multiple embedding algorithms as
plug-ins. In the platform design, a VN embedder plays the
role of a matchmaker between resources and VN embedding
algorithms. Moreover, the actual embedding algorithms can be
deployed as an off-platform component.

The virtual abstraction layer provides network abstractions
for tenant VNs. The fundamental difference between virtual
networks model objects and physical network model objects
is that virtual objects can be freely created and removed on
the top of physical objects. However, physical objects have
strong dependency on physical network infrastructure in terms
of protocol, topology, network addresses, and links. The usage
to consume virtual objects is same as the physical objects
provided by lower abstraction layer after the creation of the
objects.

The intent layer allows tenants to specify their high level
requirements independent from low level details. The services,
which are located in the intent layer, provide 1) intent objects
consumed by applications; 2) an intent confliction checking
service between different intents to avoid conflicted and illegal
intents; and 3) an interface to the administrator to feed the
information that is used to interpret and translate the intents
into installable flow rules. The stored information can specify
various entities such as human domain exerts and network
management protocols provided by the protocol adaptation
layer. The intent layer provides extended North Bound Inter-
face (NBI) that is consumed by various applications.

According to the location where the applications are exe-
cuted, they can be categorized into two types which are on-
platform and off-platform applications. On-platform applica-
tions are developed with tenant-awareness using the abstrac-
tions provided by the virtual abstraction layer. Therefore, they

can be shared by multiple tenants with different VN views.
To support off-platform applications, a special application,
called relaying interface, is provided. The responsibility of
this application is to deliver messages or events from the
virtual abstraction layer to external entities. This application
enables the communication to tenant specific controllers and
applications similar to that in a traditional network hypervisor
such as FlowVisor [10].

IV. INTENT BASED VN MANAGEMENT AND
CONFIGURATION

A. Definition of Intent

In this paper, an intent is defined as a high-level policy
specified in common concepts and terminologies, and inter-
pretable by both tenants (network service consumers) and
network service providers. However, this does not mean that
all policies are specified in a business-level or system level
terminologies. Our objective introducing the concept of intent
is to mitigate the network management obstacles. With intent,
we expect that the knowledges that are required for managing
network is significantly reduced in application developers’
perspective.

By using intent based interface to specify high-level re-
quirements, consumers (e.g. applications developers) can pro-
gram network services without concerns for technical specifics
and implementation details. Intent tends to be more concen-
trating on describing the outcome rather than the process
that dictates the decisions toward the outcome. By summary,
intent is used to describe “what” the user want, but not
“how” to realize it (with respect to resources, constraints,
and actions). From the user perspective, technology-agnostic
interfaces are more desirable. The intent based interface shields
the complexity of underlying networks and allows users to
focus on expressing their network service demands.

B. Intent Specification for VN Management

The first step of performing intent based management is
to provide an interface to express high-level specification as
a form of intent. The way that is provided by the proposed
platform is based on an intent framework, with which tenant
applications can consume intent model objects. The underlying
design of the proposed intent framework is inspired by the
ONOS’s intent framework [17]. The pre-defined types of intent
objects, which could be extended to address tenant specific
intent types, are depicted in Fig. 2. The proposed platform
also provides a way to use intents with high level network
abstraction objects (e.g., host, switches, link, and middle-
boxes).

- VN Topology Intent: This type of intent only expresses
the connectivity relationships among network nodes (i.e., hosts
and virtual switches) without specifying VN behaviors. The
network behaviors such as packet forwarding or management
policies are managed by SDN controllers.

- VN Endpoint Intent: This intent allows to express high-
level requirements for tenant’s endpoints without concerns
of supporting network infrastructure. Because only endpoints
are involved in the intent specification, a tenant application
developer can entirely focus on describing the relationship

T\
“Q’ \T‘glus

VN Topology Intent

Limit 100 Mbps
Between H1 to H2

VN Endpoint Intent VN Chain Intent

Fig. 2. Three basic types of intents provided by the proposed platform

between endpoints. Various relations between endpoints such
as 1 to 1, 1 to many, and many to many, are possible.

- VN Chain Intent: This intent type is an extended
intent type from the VN Endpoint Intent to chain intermediate
network behaviors. This type of intent expresses network
service chains by composing virtual network functions or
physical middle-boxes.

To specify intents accurately, we need to define the context
that describes what, when, and how the specified intents should
be applied. To express a context, an intent object requires
four attributes; resources, conditions, priority, and instructions.
Resources refers to a set of virtual network objects involved
in intent specification. Conditions are a set of criteria that
describes when the intent will be activated. Priority is used to
determine the execution order of intents. Instructions refers to
a set of actions that to be applied to the packets which satisfy
resources and conditions what have been defined.

C. Intent Composition and Conflict Checking

After specifying intents for each tenant requirement, the
next step is to aggregate all intents to construct the requested
VN model which consists of a set of network objects and
behavior abstractions. The intent composition process is re-
quired to translate high level specifications into a network
driven concepts and terminologies. First of all, we need to
identify and manage VN endpoints. This is needed to unify and
translate concepts, resources, and terminologies into a single
unified form agreed by all involved entities. To address this
issue, [17] proposed an end-point discovery protocol, while
[16] used “label” to apply policies. Note that “label” contains
a group of pre-defined endpoints with the same set of policies.
As outputs of intent composition, VN topology, address space
and policies that are used for governing the VN are computed.
The overall intent composition process is described in Fig. 3.

During the composition process, the proposed platform can
verify incorrect intents and detect conflicts between intents.
By inspecting intent resources, conditions, priorities, and in-
structions, an intent composer can detect conflicts. First of
all, we need to identify the relationship between intents to
check whether they have any dependency on each other. If
any of two intents are interdependent, the platform will lookup
the priorities of intent to check whether the instructions are
mutually inclusive. For instance, if two intents share the same
pair of source and destination addresses, and the identical
instructions are defined in each intent, then they are detected

Tenant 1 - VN Intent #1

T
Ly iy i>

Tenant 1 - VN Intent #2

Conflict Checking
N i)
setve

Switches

Tenant 1 - VN Model

I
- - " Middle
b
Y N oXES

Intent Composer
Tenant 1 - VN Intent #3 p

Fig. 3. Intent composition and conflict checking process

as conflicted intents (possibly through duplication). The intents
that encounter any conflict are required to be modified and
negotiated into composable intents.

D. Intent Mapping and Installation

Our VN model representation consists of a set of net-
work model objects and network behavior abstractions. To
embed a VN into existing physical network resources, virtual
model objects should be bound to actual physical objects.
The network behaviors also require to be translated from
virtual network behaviors into installable physical network
behaviors. The objective of VN embedding algorithm is to find
an optimal mapping between the VN and physical resources
with considering to satisfy a set of requirements defined by
network administrator. To efficiently embed VNs according
to management objectives, the platform may adopt various
algorithms introduced in [18].

To translate VN model objects into physical objects, the
platform should bind all virtual entities into concrete network
nodes. This process can be supported by managing tenant’s
end-points. Discovering and managing end-points of VNs are
challenging because the terminologies are not standardized
among stake-holders yet. To provide a solution, in this paper,
we introduce the concept of “vocabulary store” which refers
to a knowledge store that contains information from various
sources include 1) human domain experts and/or network
administrators, 2) host and network discovery and 3) man-
agement protocols. To efficiently querying the equivalence
between entities, a ontology based knowledge representation is
adopted for the platform to support a semantic based inference
mechanism. This does not mean that “vocabulary store” simply
generates new knowledge by using inference rules, but it
supports checking and finding simple equivalent relationships
between entities.

Manual
Specification ovsbs RestFul API

User-perceived \AL/ Network entity

entity ID:1

N Alias : Database

Database I:‘r/ l:‘> Mac addr : xxx
PN addr : xxx

VN addr : xxx

Vocabulary store

Fig. 4. The role of vocabulary store

E. Intent Lifecycle Management

To manage intents specified from multiple tenants, we have
designed a Finite State Machine (FSM) that represents the state

of each submitted intent. The FSM traces the entire lifecycle
of each intent from intent submission to intent withdrawal.
The main advantage of the state lifecycle management is
that it allows the platform to determine whether the tenant
requirements are satisfied based on their corresponding VN’s
status. Moreover, a recovery plan can be made if an abnormal
state of intent is detected due to hardware failure or attack.

V. IMPLEMENTATION

In this section, we describe implementation details for
realizing the proposed platform design mentioned in previous
section. To accelerate our software development and make our
contributions be available in public, we decided to adopt open
source. To the best of our knowledge, OpenVirtex [2] and
ONOS [3] are most suitable open-source projects. We adopted
those two open-source projects as base software stack.

A. Virtualization Subsystem

To integrate ONOS and OpenVirtex, we extended SBIs and
developed a dedicated service provider for OpenVirtex inside
ONOS. The roles of OpenVirtex provider are: 1) to manage
communication channel between ONOS and OpenVirtex; and
2) to translate requests generated from OpenVirtex into ONOS
consumable format. Note that all information is exchanged
using JSON-RPC format, and to support conversion between
JSON-RPC messages and network objects, we developed a
component that serialize/deserialize virtual network objects
into a documents for device, link, switch, topology, and etc.
Moreover, we defined a VN manager component that supports
OpenVirteX management operations within ONOS. Fig. 5
shows the chain of OpenVirteX and ONOS to realize the
proposed VN platform.

Tenant Apps l

Core
_’l (Device, Host, Link, Topology, Path, Flow, Intent, Network, ...) l

D ﬁ Virtual Providers
ha (Device, Host, Link, Flow) I
OpenFlow OpenVirtex Provider
OpenFlow Monitoring and Management API
Virtualize()
= I t VN Create(),
(@) i %d' 0, Remove()
J)UQEF\VIH’EX VNIPN Translation e
iy

—
Devirtualize() l ! ghobal
ap

Fig. 5. The implementation of the proposed platform on the top of
OpenVirteX and ONOS

The main SBI of our platform is the OpenFlow between the
tenant control planes and the physical network infrastructure.
Using this protocol, it is possible to deliver OpenFlow mes-
sages generated by the physical OpenFlow devices to each
tenant VN control plane. In this case, all VN messages are
delivered through the shared OpenFlow channel for all tenant
VNs. To identify destination VN of each OpenFlow message,
it is necessary to maintain mapping information.

B. Virtualization and Virtual Abstraction Layers

ONOS provides a rich set of network abstractions in terms
of network model objects such as device, link, port, flow, and

etc. However, ONOS and those models are originally designed
for managing a single physical network, rather than multiple
VN5 sharing a same infrastructure. To support multiple VN,
we have implemented VN model objects by extending existing
object model. The fundamental differences between the VN
model objects and existing model objects are 1) the addition of
attributes needed to identify tenants, 2) the target of operations.
The operations on virtual objects must be translated into the
operations on physical objects to be installed on the physical
devices by referring to mapping information.

To help translation process from virtual objects to physical
network model objects, we also need to abstract network
operations as consumable objects such as forwarding, filtering,
and drop. These behavioral abstractions make the translation
process to be simple and transparent. Fortunately, ONOS
has already provided flow abstraction model named “Flow
Objective”. Originally, “Flow Objective” was proposed to hide
the forwarding behavior of OpenFlow devices, as different
OpenFlow devices have different pipeline implementation. To
take advantages of flow objectives, our platform manages all
network behaviors as flow objectives from virtual network
model to physical network model.

C. Intent Layer

To implement intent components inside the intent layer,
we developed VN intent interfaces and service components
like as an original ONOS intent framework. The goal of the
ONOS intent framework is similar to our intent based VN
management because it allows applications to specify their
network control desires in a form of policy rather than mech-
anisms. However, there is a fundamental difference between
the intents for physical network management and the intents
for VN management. In the physical management case, intents
are used to make high-level requests to consume the existing
network model objects. However, for VN management, the
platform has to create virtual network model objects, not
consume. For example, from an intent that desires a connection
between host A and host B, the platform has to create virtual
objects representing virtual switches, links, and ports. To
address this problem, we extended the existing ONOS intent
framework to include the capabilities to manage virtual objects
and operations.

D. Applications and Access Control

Two types of applications are supported by the platform;
on-platform applications and off-platform applications. For
the off-platform applications, the platform just needs to relay
OpenFlow messages to external entities. However, supporting
on-platform applications is challenging because on-platform
applications may be shared by multiple tenants. For example,
a routing application should be adopted to support multiple
VNs having different network topologies and addresses. In our
platform, an application is a closed system that just provides
results in response to its input. Therefore, the state of each
VNs used as application’s input should be managed outside
the application domain. To support this design paradigm,
we have introduced a “VN context store” that stores tenant
specific information about internal and/or intermediate data
consumed by an application. By switching the context store, an

application can be shared by different tenants without having
internal states.

One of the most challenging issues in realizing a VN
management platform is to isolate VNs from different tenants.
An unauthorized access to virtual objects or resources from an
application that does not belonging to the owner tenant would
cause wrong operations and security concerns. To manage
access privileges of each tenant, we have to deliver an access
control feature. To realize the feature, we implemented a
component that intercepts messages between applications and
service interfaces to ensure that they all belong to the same ten-
ant, otherwise the messages will be dropped with error reports.
The implementation is similar to an ONOS subsystem, called
security-mode ONOS, that provides application authentication
and access control services for ONOS northbound APIs.

VI. DISCUSSION

In this paper, we described the initial design and implemen-
tation of the proposed NV platform. Currently, the proposed
VN platform is still under the development. This section
introduces further issues for consideration.

A. Native Support of Virtualization Layer

To accelerate the development process, we decided to
reuse two separated open-source projects, OpenVirteX and
ONOS. However, this initial implementation approach does
not produce optimal design to elicit high performance. A
performance bottle neck may be introduced with the open-
ing of OpenVirtex and ONOS to external interfaces, as this
requires heavy workload to translate ONOS abstractions into
JSON documents used in OpenVirteX API. To overcome this
problem, we need to migrate OpenVirteX functions to support
virtualization layer in ONOS natively.

B. Virtual Network Migration

The initial optimal mapping between virtual and physical
objects, however, may no longer valid due to VN creations
and removals, and physical network infrastructure failures. In
addition, due to changes in the environment, a running VN may
need to migrate. The platform need to support VN migration
to reflect the new optimal mapping. In this migration process,
all VN states must be managed in a way that conserves VN
structure and configurations to prevent loss of information.
Moreover, a method is needed to reduce service down time
to a minimum.

VII. CONCLUSION

In this paper, we have presented an intent based VN
management platform. The design objective is to automate VN
management process based on intent that allows expressing
high-level tenant requirements. To realize the objectives, we
have described the high level design and implementation
approach. The proposed platform is based on a hierarchical
architecture consisting of five layers to isolate specific level
of concerns from high-level requirements to installable flow
rules. The proposed platform can bring several advantages,
1) an integrated NV platform that integrates seamlessly the
network hypervisor and the SDN controller, 2) an intent-based

management platform that allows management applications
to express their needs in a high-level representation, not
depending on specificic techologies ,and 3) an automated VN
management method can be developed from high-level intents.

The proposed VN platform is still under development. For
future work, the top priority task is to finish the development
according to the described design. Furthermore, our design will
be refined to address the features mentioned in the Discussion
section. Once the implementation is completed, a comprehen-
sive evaluation of the functionalities and the performance of
the platform will be presented with several use cases. We also
plan to publish the platform as open-source software.

REFERENCES

[1] Open Networking Foundation., OpenFlow Switch Specification Version
1.0.0, Std., Dec. 31, 2009.

[2] Al-Shabibi et al., “Openvirtex: Make your virtual sdns programmable,”
in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp.
25-30.

[3] P. Berde et al., “ONOS: Towards an open, distributed sdn os,” in
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN "14. New York, NY, USA: ACM, 2014, pp.
1-6.

[4] VMware NSX, “The platform for network virtualization.”
[Online]. Available: https://www:vmware:com/files/pdf/products/nsx/
VMware-NSX-Datasheet:pdf

[S] A. Velte and T. Velte, Microsoft Virtualization with Hyper-V, 1st ed.
New York, NY, USA: McGraw-Hill, Inc., 2010.

[6] M. Mahalingam et al., “Virtual extensible local area network (vxlan):
A framework for overlaying virtualized layer 2 networks over layer 3
networks,” RFC 7348, August 2014.

[71 M. Sridharan et al, “Nvgre: Network virtualization using generic
routing encapsulation,” Internet Draft, September 2011.

[8] S. Hanks et al., “Generic routing encapsulation (gre),” 2000.

[9] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Rfc 6830: The
locator/id separation protocol (lisp),” 2013.

[10] R. Sherwood et al., “Flowvisor: A network virtualization layer,” Tech.
Rep., 2009.

[11] D. Drutskoy et al., “Scalable network virtualization in software-defined
networks,” IEEE Internet Computing, vol. 17, no. 2, pp. 20-27, 2013.

[12] S. Hares, “Intent-Based Nemo Overview,” Internet Engineering Task
Force, Internet-Draft draft-hares-ibnemo-overview-01, Apr. 2016, work
in Progress.

[13] Open Networking Foundation., “Project boulder: Intent northbound
interface (nbi).” [Online]. Available: http://opensourcesdn.org/projects/
project-boulder-intent-northbound- interface-nbi/

[14] The OpenDaylight Project, Inc., “OpenDaylight - Technical
Overview,” 2013. [Online]. Available: http://www.opendaylight.org/
project/technical-overview

[15] Y. Zhang et al., “NEMO (NEtwork MOdeling) Language,” Internet
Engineering Task Force, Internet-Draft draft-xia-sdnrg-nemo-language-
04, Apr. 2016, work in Progress.

[16] C. Prakash et al., “Pga: Using graphs to express and automatically
reconcile network policies,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 29-42.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2787506

[17] R. Cohen et al., “An intent-based approach for network virtualization,”
in 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), May 2013, pp. 42-50.

[18] A. Fischer et al., “Virtual network embedding: A survey,” I[EEE Com-

munications Surveys Tutorials, vol. 15, no. 4, pp. 1888-1906, Fourth
2013.

