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Abstract—The developments of Information and Communica-
tion Technology (ICT) and Internet of Things (I10T) are being used
to enhance quality, performance and interactivity of urban ser-
vices. Benefited from the widespread adoption of mobile devices,
we can collect amount of mobile data for user mobility analysis.
Mining hidden information from users’ mobile data is important
for builders of smart city to provide better location-based service.
This paper focuses on two classical domain-independent prediction
models and one improved Markov model that are capable of
estimating the next location. By using 27-day-long traffic data
of mobile network, we extract trajectories of 4914 individuals
for experiments. We find that the original Markov algorithm has
a better performance in resource consumption than LZ family
algorithms, but its prediction accuracy is lower than prediction
accuracy of LeZi Update and Active LeZi algorithm. In order
to improve the prediction accuracy of Markov and overcome
drawbacks of traditional prediction algorithms, we present a new
method based on Markov, which considers both temporal and
spatial factors. Extensive experiments demonstrate our improved
method has a better performance in location prediction. In
addition, we further study the relationship between prediction
accuracy and trajectory’s regularity, to identify the most suitable
prediction algorithm for a trajectory.

I. INTRODUCTION

It is well known that the movement of people shows a high
degree of repetition since they tend to visit regular places. Study
of human mobility gains mainstream popularity in recent years,
which helps to bring many location-based services for urban
human. Those services, which can improve the citizens quality
of life, are parts of a smart city. Nowadays, smart devices bring
us the ubiquitous mobile Internet access. The movements of
people could be sensed and easily collected by mobile phone,
which generates large volumes of mobility data, such as Call
Detail Records (CDRs) [1], Global Positioning System (GPS)
tracks [2], and data traffic from 2G/3G/4G data networks [3].
Location prediction, which has been applied in many fields, is a
hot topic in recent years. Since most of location-based services
require accurate or approximate position of user, predicting
user’s next location could allow service providers to provide
services for user in advance, which may help to improve the
quality of services and user experience.

For a smart city, builders use digital technologies and infor-
mation analysis algorithms to enhance services performance,
engaging more effectively and actively with its citizens. In the
area of location prediction, several algorithms have been pro-
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posed, including Markov models [4], [5], LZ family algorithms
[6], [7], Bayesian networks [8], text compression-based tech-
niques [9] and neural networks [10]. As we know, algorithms
focuses on prediction are based on known properties learned
from the training data. And many prediction algorithms have
desirable prediction performance if there is enough memory
and time for prediction. However, many services installed in
mobile devices have limits on memory and time. So prediction
algorithms with high resource consumption are of little practical
value. It becomes important to find a prediction algorithm
with high prediction accuracy and low resource consumption.
Among those methods, Markov and LZ family algorithms get
more attentions because of their low realization complexity
and high prediction accuracy [11]. Depending on the diverse
sources of experimental data sets, those two kinds of methods
have different prediction performance. However, comparing
with Markov algorithm, LZ family algorithms need to maintain
a prediction tree in the process of prediction, which leads to
a higher resource consumption [7]. As many applications used
on mobile devices have restrictions on resource consumption,
using Markov-based algorithm to predict users’ future locations
becomes a better choice.

The purpose of this paper is to improve the prediction
accuracy by modifying the original Markov algorithm. Most of
the prediction algorithms aforementioned only take into account
trajectory’s spatial factor during the process of model build-
ing and location prediction. However, they miss many other
available factors of trajectory.In this paper, by considering the
temporal factor and improving the original Markov algorithm,
we propose an improved Markov algorithm. Comparing with
prediction accuracy of original Markov, prediction accuracy of
the new algorithm has a 6% increases. The key contributions
and some interesting findings of our paper are as follows:

« We propose a new location prediction method that based
on Markov algorithm, and consider both spatial and tem-
poral factors while predicting. By comparing with Markov,
this method can significant improve the prediction accura-
cy. Besides, it overcomes many drawbacks of traditional
algorithms. For example, it can make the prediction even
when the mobility pattern has not occurred in the history
trajectory.

o In order to choose the most suitable prediction algorithm



for a trajectory, we study the relationship between tra-
jectory regularity and prediction accuracy. Through the
experiments, we find that the more regular the trajectory
is, the higher the prediction accuracy is. Although the
Improved Markov which considers temporal factor per-
forms better than original Markov, but the gap between the
two algorithms’ prediction accuracy is narrowing with the
decreasing of trajectory regularity. This may be because
that Improved Markov considers too much unnecessary
mobility information for trajectories with low regularity.
When we predict future locations for trajectories with low
regularity, using the original Markov algorithm may be a
better choice.

o Our work focuses on the mobile Internet data, instead of
GPS or CDR data. By using nearly 19TB traffic data
bills that cover 3 million users, the data can describe
users’ mobility more comprehensive. Different from GPS
and CDR data, passively collecting human movement
trajectories while he/she is accessing to mobile Internet
has lots of advantages: high cost efficiency, low energy
consumption, covering a wide range and a large number
of people, and with fine time granularity.

The remainder of this paper is structured as follows. We
introduce related works in the field of user location prediction in
Section II. In Section III, three kinds of prediction algorithms,
including Markov, LZ family algorithms and Improved Markov
algorithm, are introduced. Experimental results will be shown
in Section IV. Finally, conclusion and future work are presented
in Section V.

II. RELATED WORK

Recent studies have found that trips mostly consist of regular
travels, such as commuting to work or grocery shopping, fol-
lowing the daily circadian rhythm [12]-[14]. So it’s possible to
predict users’ future movements according to their history tra-
jectories. Researchers have found that the theoretical maximum
predictability can be higher than 85%, when measuring the
uncertainties of movements using entropy [15] and considering
both the frequencies and temporal correlations of individual
trajectories [16].

Previous studies have proposed many different methods to
forecast users’ future locations, including Markov [4], [5],
Bayesian networks [8], Hidden Markov Models [17] and LZ
family algorithms [6], [7] and so on. Most of those meth-
ods only consider spatial factor to predict future movements,
missing other hidden information of trajectories. For example,
based on a Global System for Mobile Communication (GSM)
data set which contains 95 different users, researchers in [6]
focused on LZ family algorithms (LZ, LeZi Update and Active
LeZi) to estimate the next location. However, studies have found
that time significantly impact randomness, size and probability
distribution of people’s movements, and the prediction accuracy
can be increased by considering the temporal factor [18], [19].
Authors in [4] improved the prediction accuracy to 59.2% from
46.8% by applying a time-based Markov algorithm.

In addition, there are more and more location-based ser-
vices that are applied on mobile devices [6]. Since there are
restrictions on resource consumption on the smart phone, many
traditional prediction methods may sacrifice prediction accuracy
for a higher prediction speed. Researchers in [20] present
a method which uses the past trajectory of the object and
combines it with movement rules discovered in the moving
objects database. The method can be performed offline which
can improve the prediction speed. In a previous study [7], we
examined the prediction accuracy and resource consumption
of Markov and LZ family algorithms. We found that although
Active LeZi outperformed Markov at prediction accuracy, but
Markov performed better at prediction speed.

o Independent of time: For location prediction, both of
Markov and LZ family algorithms are independent of time.
But we consider the temporal factor, which has already
been taken into account in [4], is an important feature that
may affect user’s mobility.

o Many unpredictable situations: Markov and LZ algorithm
can’t make the prediction if a mobility pattern has not
occurred in the history trajectory [7].

« High computer resources: The LZ family algorithms take
too much time and computer resources on prediction,
because they need to maintain prediction trees during
prediction [7].

In order to overcome above drawbacks, this paper aims at
proposing a new location prediction method with low com-
plexity and high prediction accuracy, which could be apply
to environment with limited resources, such as applications of
mobile phone. Both spatial and temporal factors are considered
by this new method. As the original Markov and LZ algorithms
don’t consider many hidden information of trajectories, they
can not make a prediction for patterns that haven’t appeared in
the history [4], [6]. However, in this situation, the new method
can also make location prediction because that it considers the
trajectories more comprehensive. What’s more, in order to find
the predictable of trajectories and the most suitable prediction
method for a trajectory, we future research the relationship
between trajectory regularity and prediction accuracy.

III. METHODOLOGY

In this section, our Improved Markov algorithm, which is
modified from Markov algorithm, is presented in detail.

A. Time-based Markov Algorithm

Here we propose a Time-based Markov algorithm to over-

come the first drawback (i.e., Independent of time) of Markov
and LZ methods. User’s history trajectory consists of time-
location pairs like (I,¢), which means user visit location [ at
time ¢. The k-order Time-based Markov can be tailored as
below:
Step 1: Build user’s everyday trajectory Tyq,, (the trajectory
of i-th day, where ¢ = 1,2,...). Then, divide Ty, into 24
time intervals, each of which lasts one hour long and contains
a series of locations like “(I1,¢1), (I2,t2), (I1,13), (L1, t4)”.



Step 2: For each time interval, select the most frequently
location, which appeared more times in that time interval, as the
interval’s representative location. For example, we select I; as
the representative location of “(ly,t1), (la, t2), (I1, t3), (I1,t4)”.
Then we can rebuild everyday’s trajectory with 24 selected
locations.

Step 3: Select the last k locations of trajectory as a mobility
pattern Ly, where 1 < k < 24, and select a location [, that
we grant as the next interval’s location. Ly and [,, make up the
prediction pattern L, = Ly + [,.

Step 4: Caculate the number of times N, and N, that pattern
L, and L, have occurred in the history. And if there are n days’
trajectories and location [, have occurred m times at the next
time interval in the history, where n > 1 and 0 < m < n. We
can caculate the probability that the next location of user is [,
by the formula bellow:
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Comparing with Markov algorithm, the Time-based Markov
considers time parameter, in the form of a weighted factor 2*
as a influence factor of the prediction probability. Results of
contrast experiments will be given in Section IV.

B. Improved Markov Algorithm

Time-based Markov algorithm overcome the “Independent
of time” drawback of Markov by considering the temporal
factor. However, there are still many drawbacks that make
performance of Markov bad. For example, when we want to
use a 3-order Markov or 3-order Time-based Markov algorithm
to predict the next location of user with history trajectory
“U,loy U3, U1, 1o, Uy, 11, 1o, 13,13, 11,15, we find that all the as-
sumed next location [,;’s appeared probability are 0. It’s because
that any L, with Ly = l3l;lo hasn’t occurred in the history. But
for a 2-order Markov or 2-order Time-based Markov predictor,
the probability can be caculated because that the L, with
Ly = l1l5 has occurred in the history. Using 2-order Markov,
the prediction probability of “I1,ls,l3,14” are “2, 0, 0, £”
respectively. In view of this, we propose our Improved Markov
algorithm by counting the low order probability. The k-order
Improved Markov method is presented in detail as below:
Step 1 and Step 2 are the same as Time-based Markov.

Step 3 Select the next location as [, and let the prediction
probability p(l,) = 0. Let i = k.

Step 3: Select the last ¢ locations of trajectory as a mobility
pattern L;, where 1 < ¢ < 24. L; and [,, make up the prediction
pattern L.

Step 4: Caculate the times Ny, and Ny that pattern L; and
L, have occurred in the history. Then, add the ratio N—-‘fs to
p(l,) with a weighted factor g(i) = 2°=1. So the p(l,) changes
to p(l, )+ML If the ¢ > 0, let ¢ = ¢ — 1. And return to
Step 3 to caculate the prediction probability again.

Step 5: If there are n days’ trajectories and location [, have
occurred m times at the next time interval in the history, where
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Fig. 1: Architecture of 2G/3G networks and the deployment of
TMS.

n > 1 and 0 < m < n. We can caculate the probability that
the next location of user is {; by the formula bellow:

)= 2% Zg NLI )

Here, ¢(7) is employed to assign bigger weight for a longer
prediction pattern.

We can see that Improved Markov considers more infor-
mation than the Markov and Time-based Markov algorithm.
Based on our Improved Markov algorithm, we can give a
more accurate prediction for user’s future location at next time
interval than original Markov algorithm. Experimental results
will be shown at the next section.

IV. EXPERIMENTAL RESULTS

In this section, we first briefly introduce how the experimen-
tal data is collected from mobile Internet. Secondly, we evaluate
performance of the three kinds of prediction algorithms which
are introduced in Section III from the prediction accuracy. At
last, the relationship between prediction accuracy and trajec-
tory’s regularity is studied. All the experiments are performed
under the specified conditions of the data set.

A. Data Collection

By the help of our self-developed Traffic Monitoring System
(TMS, which is a kind of network probe that can offer real-time
monitoring without any overhead), we collect data traffic, which
is extracted as flow records, from real mobile networks. Here,
we define ‘flow’ as bidirectional data transmission at the usual
S-tuple source IP, destination IP, source port, destination port,
and transport protocol within a certain period of 64 seconds.
As shown in Fig.1, there are three major components in 2G/3G
networks: User Equipment (UE), Radio Access Network (RAN)
and Core Network (CN). UE is a terminal equipment that
user uses to connect with communication networks, such as
cellphones, laptop computers, electronic paper books, or other
devices that access to the Internet through cellular networks.
RAN, which consists of transceiver stations (Base Transceiver
Station (BTS) or Node-B), establishes the connection between
UE and CN. It receives data traffic from UE (or CN) and then
sends the traffic to CN (or UE). In 2G/3G networks, the CN
consists of two kinds of node: Serving GPRS Support Node
(SGSN) and Gateway GPRS Support Node (GGSN). The SGSN
establishes a tunnel with a GGSN to provide connectivity to
Internet.



TABLE I: The average prediction accuracy of four prediction
algorithms.

Prediction algorithm | Prediction accuracy
Markov 0.294
LZ 0.299
LeZi Update 0.358
Active LeZi 0.361

We deploy TMSs between RAN and CN to collect mobile
Internet traffic and store it as flow record. Both the uplink and
downlink Internet Protocol (IP) packets are collected. And the
packets will be decoded to text bills that contain the connected
transceiver stations’ IP, user identification (ID) and time stamp.

In this paper, we use the data set collected from a Chinese
2G/3G service provider from July 25, 2015 to August 20, 2015.
The data set covers over 3 million users in northern China,
contains nearly 19 TB of traffic bills and covers more than
20 thousand cellular towers. Note that some users generate few
records or don’t move frequently, we select trajectories of 4914
users who connect the mobile networks more than 1,500 times
as our experimental data.

B. Prediction Performance

In this part, by applying original Markov algorithm, LZ
family algorithms and the Improved Markov algorithm, we
first evaluate the performance of different prediction algorithms.
Then, we test the performance of each algorithm on different
kinds of user groups with distinct regularity of trajectory.

1) Prediction Accuracy: As we know, probability of correct
predictions is the most common statistical metric for evaluating
performance of location prediction algorithms. There are two
kinds of prediction accuracy: individual’s prediction accuracy,
and all users’ prediction accuracy. For individual, the probabil-
ity of correct predictions is the value that the number of right
predictions divided by the total number of locations. Since our
users’ history trajectories are extracted from a 27-day-long data
set and everyday’s trajectory consists of 24 locations. So each
user’s history trajectory has 648 locations. For all users, we
define the accuracy of each predictor for each location to be the
fraction of users for which the algorithm correctly identified the
next location. Then, we obtain the average prediction accuracy
for each predictor at each location.

Firstly, we run each user’s trace independently with original
Markov, LZ, LeZi Update and Active LeZi algorithms, using
the average prediction accuracy to see algorithms’ performance.
As shown in Table I, LeZi Update’s performance is similar with
Active LeZi’s, and higher than the other two. To compare the
prediction performance of different algorithms and quantify the
difference, we subtract one algorithm’s prediction accuracy by
another algorithm’s prediction accuracy for all users. As shown
in Fig.2, it can be seen from the fitting line that LeZi Update’s
accuracy value is 6.07% higher than Markov’s accuracy value
on average. It may be because of that LeZi Update and Active
LeZi consider more information when predicting.
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Fig. 2: The distribution of prediction accuracy’s deviation
between LeZi Update and Markov for all users.

TABLE II: The prediction time and average resource consump-
tion (calculated by the method in [7]) of a sample user’s 1500
times of prediction.

Prediction algorithm | Prediction time | Resource consumption
Markov 1.39s 24.55
Improved Markov 3.97s 177.68
LeZi Update 16.19s 766.44
Active LeZi 32.04s 1097.18

In order to explore the influence of temporal feature on
location prediction, we perform experiments with the Time-
based Markov and the Improved Markov algorithm on all
users. Results are shown in Fig.3. From the figure, we can
see that prediction accuracy value of Time-based Markov is
3.2% higher than original Markov’s. And Improved Markov’s
accuracy value can get a nearly 6% increase, which is similar
with LeZi Update’s and Active LeZi’s. In addition, we further
study the distribution of prediction accuracy for the three
prediction algorithm, as shown in Fig.4. Improved Markov
algorithm outperforms others that 60.6% of users achieved
40% accuracy, and in the case of Markov and Time-based
Markov algorithms, the percentage of users is 38.6% and
46.6%, respectively. So we can have a conclusion that Improved
Markov can significantly improve the prediction accuracy value.
In addition, by comparing the prediction time and resource
consumption of algorithms, we find the Improved Markov has
a better performance than LZ family algorithms. The result is
shown in Table II.

2) Prediction Performance Among Different Trajectory
Classes: As we know, there are many feathers that influence
the accuracy value of prediction algorithms, such as users’
mobile abilities [21], time interval of prediction [4], trajectory’s
regularity [22] and so on. In Fig.5, we draw all users’ accuracy
value of each movement based on 27 days’ trajectories. It can
be found that prediction results during the nighttime are better
than results during the daytime. It’s because that trajectories’
regularities during the daytime are worse than them during the
nighttime when users are rarely move.

In order to describe the diversity of trajectory’s regularity,
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we use entropy H (L) and cosine similarity CosSim(L) as the
metrics. The bigger the entropy value is, the more locations the
user visits and the less regular the trajectory is. And the bigger
the cosine similarity value is, the more regular the trajectory is.
The two metrics are defined as follows:

H(L) == p(l;)logsp(l;) 3)

Prediction accuracy of Markov
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Fig. 6: The average prediction accuracy of Markov and Im-
proved Markov for users with diverse trajectory’s regularity
value (represented by H(L) and CosSim(L)).
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where n > 1 is the number of different locations that user has
visited, p(l;) € (0,1) is the probability for user staying in a
certain place l;, m is the number of everyday’ trajectory L;
(in this paper, m equals to 27) and cos(L;,L;11) € (—1,1)
is the cosine of vector angle. In Fig.6, the influences of
trajectory’s regularity (represented by H (L) and CosSim(L))
on the probability distribution are presented. We can see that
different algorithms’ distributions of prediction accuracy have
the same tendency. The prediction accuracy is higher with a
lower entropy value and a higher cosine similarity value. The
results indicate that the more regular the trajectory is, the higher
the prediction accuracy is.

In addition, we examine Improved Markov and Markov by
focusing on all users to discover the relationship between trajec-
tory regularity and prediction accuracy. Because the Improved
Markov considers more trajectory’s information than Markov,
its performance may be worse when the trajectory’s regularity
is low (which shows that Improved Markov may achieve a
bad prediction performance when considers many unnecessary
information). As shown in Fig.7, when the cosine similarity
value is big (or entropy value is small), the prediction accuracy
of Improved Markov is significant higher than Markov’s. How-
ever, with the decrease of regularity, the gap between the two
algorithms’ prediction accuracy is narrowing as shown by the
trend line (the ratio of prediction accuracy is increasing with
the increasing of regularity value). We can suppose that the
effect of temporal factor of trajectory becomes little important
when trajectory’s regularity is low.
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V. CONCLUSION

It has been suggested that a smart city uses information
technologies to make more efficient use of physical infras-
tructure, to enhance quality, performance and interactivity of
urban services for citizens and so on. In this paper, we use real
data traffic collected from 2G/3G mobile network in northern
China to do our experiments. It indicates that we can capture the
basic characteristics of human movements. We used two kinds
of classical domain-independent prediction algorithms: Markov
algorithm and LZ family algorithms to predict the next location.
By using users’ real trajectories extracted from our data set, we
evaluated the prediction performance of Markov algorithm and
LZ family algorithms. We find that Markov algorithm achieve
lower accuracy value than LeZi Update and Active LeZi.

In order to improve the prediction accuracy and overcome
drawbacks of the two kinds of prediction algorithms, Improved
Markov algorithm, which considers the temporal feature and
pattern weighting, is applied. Comparing with original Markov
algorithm, the average prediction accuracy of Improved Markov
algorithm gets a nearly 6% increase without building the com-
plex prediction tree. At last, we performed experiments to find
the relationship between prediction accuracy and trajectory’s
regularity. Result indicates that, the more regular trajectory is,
the higher the prediction accuracy is. What’s more, we find
that although our Improved Markov performs better than the
original Markov method in general. But, when the trajectory’s
regularity value is very low, the gap between two methods’
prediction accuracy is narrowing.

For the future work, considering that different prediction
algorithms may adapt to different kinds of users, we will
further reveal the relationship between prediction accuracy of
algorithms and user mobility.
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