
On-demand, Dynamic and at-the-Edge VNF Deployment Model
Application to Web Real-Time Communications

Amina Boubendir∗ †, Emmanuel Bertin‡ and Noëmie Simoni†

∗Convergent Network Control Architectures Department, Orange Labs, Chatillon, France
†Networking and Computer Science Department, Télécom ParisTech, Paris, France

‡Unified Communications and Advanced Services Department, Orange Labs, Caen, France
∗ ‡ {amina.boubendir, emmanuel.bertin}@orange.com, †noemie.simoni@telecom-paristech.fr

Abstract—In the context of Network-as-a-Service (NaaS) for
network operators openness towards Over-The-Top (OTTs) play-
ers, we propose an “On-demand and Dynamic Deployment Model
for Virtual Network Functions (VNFs)”. We consider both, Telco’s
needs for more dynamicity in network service delivery, and
OTTs’ needs for network functions that support requirements of
applications at the network-level. In order to allow third-party
applications to request deployment of VNFs for specific needs, the
proposed deployment model is based on an exposition approach
that uses Network APIs over Network Functions Virtualization
(NFV) Management and Orchestration modules. To illustrate the
proposed model, we focus on Web Real-Time Communications
(WebRTC). WebRTC applications are versatile and have strong
needs for network functions which makes them a relevant use-
case. We have implemented the proposed approach on OPNFV
platform. We exploit the “at-the-edge” feature and location-
awareness to respect the time-sensitivity and QoS constraints of
WebRTC communications. For faster VNF instantiation, we rely
on container-based virtualization (Docker containers). Finally, we
perform experiments and evaluate the advantages of this model
comparing to legacy and alternative approaches.

Index Terms—NFV, Dynamicity, On demand Deployment,
Network APIs, Edge Computing, Real-Time, Telcos, OTTs.

I. INTRODUCTION & MOTIVATIONS

With the evolution of Over-The-Top (OTT) services (Cloud,
Content and real-time applications), users expect ubiquitous
access, via any access network, with strong mobility and high
requirements of network-level Quality of Service (QoS) and
Quality of Experience (QoE). It became clear that these appli-
cations evolve faster than networks and reshape application-
to-network communication models which raises challenges in
operators networks. To answer applications needs, network
operators openness aims at providing access to value-added
and network-level services using exposition of Telco network
functions through Network Application Programming Inter-
faces (APIs). However, exposed network functions are legacy
specific physical nodes, designed and deployed over legacy
dedicated network infrastructures with long deployment cycles
and slow Time-To-Market and the used APIs are (vendor)
specific APIs and not Open. Of course, this is not adapted
to today’s users and applications who have continuously
changing requirements and very versatile behaviors that re-
quire immediate network-level reactions. In legacy exposition
approaches, the static nature of networks makes it difficult
for operators to offer dynamically adapted and customized

network services and even more difficult to deploy a network
function on-demand for an application.

Our objective is to promote Telco openness with efficient
exposition and on-demand deployment of network functions.
In front of these needs for more dynamicity in networks, we
rely on Network Functions Virtualization (NFV) [1] and Open
APIs as strong enablers. With this article, we complete our
work on Network-as-a-Service (NaaS) architecture presented
in [2]. Therefore, we propose a dynamic deployment model
that allows third-party applications and service providers to
benefit from a differentiated orchestration of Virtual Network
Functions (VNFs). To achieve our model for dynamic inter-
actions between OTTs and Telcos, we introduce on-demand
and dynamicity features as the results of the convergence of
control plane and management plane in networks. For that, we
propose to expose Network APIs rather by NFV Management
and Orchestration building blocks [3] to allow VNF discovery,
selection then a location-aware deployment. Moreover, we rely
on Telco assets that cope with Edge Computing promises [4]
to deploy functions at network edge, close to end-users for
fast request handling, reduced delays and improved QoS. Fur-
thermore, we rely on container-based virtualization which is
becoming a pillar within NFV to accelerate VNFs deployment,
especially for real-time applications.

In the next Section, we survey related work. Then, in
Section III, we present our proposition of on-demand, dynamic
deployment model and highlight its features. Later, Section IV
describes in details the implementation of our proposition and
the illustrating WebRTC use-case. Finally, Section V, presents
and discusses the evaluation results. This leads us to give our
conclusions and future work.

II. RELATED WORK

To position our paper, we survey works related to: dynamic
deployment of network functions, the exposition of Telco
network functions and Edge computing in NFV.

A. Dynamic Deployment of Network Functions

T-NOVA project proposes a framework for dynamically
providing VNF as a service (VNFaaS) [5] to allow operators
to deploy distinct VNFs to be provided on-demand as value-
added services, [6] [7]. The solutions focus on business-related
and customer front-end aspects.

978-3-901882-85-2 © 2016 IFIP



That is how the stakeholders interact with service but mostly
on resource-aware scheduling methods to ensure optimal use
of resources. Also, Open Networking Foundation (ONF) has
proposed a solution for deployment in NFV in order to deal
with the dynamic provisioning of network services [8], and
a solution for Operator Network Monetization [9] promoting
linkage between the operator’s network and the applications.
However, these works do not integrate a VNF selection and
discovery process using network APIs. Moreover, even dealing
with the same network-to-application visibility problem, these
solutions are only networking-oriented.

B. Network APIs for Network Functions Exposition

In [10], Open Mobile Alliance (OMA) has provided sets of
specifications for Network APIs. These APIs are between the
service access layer and network capabilities to allow operators
to expose fundamental capabilities such as Location Services
and any core network function (e.g., Identity, Messaging,
Billing and Payment, QoS, and Enhanced Communications)
in an open and programmable way. Also, the work in [11]
presents a solution of opening legacy network functions in 3G
mobile architecture via a QoS control API to third parties. We
have analyzed the proposed Network APIs to understand the
general approach used today:

1) OMA QoS Network API: allows to request changing a
QoS level by interfacing with Evolved Packet Core (EPC)
functions and Policy and Charging Rules Function via Rx
3GPP interface through a gateway.

2) OMA RCS Network API: allows to built RCS-based
services using a gateway in operator network to manage
interworking between server API and RCS/IP Multimedia
Subsystem (IMS) network functions.

We illustrate the exposition model of the legacy approach in
Figure 1. Based on our analysis, existing network functions are
exposed through (vendor) specific APIs. They are implemented
based on an approach that requires first to deploy a gateway
in operator network. As legacy architectures are heterogeneous
and physical network functions are configurable (with oppo-
sition to programmable), different protocols are needed and
used. These gateways are needed to act as intermediary nodes
to interface with existing physical network functions.

C. Edge Computing for NFV

The work in [12] is a relevant reference for our work. It
presents an NFV edge-cloud framework to enable operators
to realize any service through open-APIs. It discusses the
functional components in overlay deployment in NFV while
we consider the on-demand deployment.

III. ON-DEMAND, DYNAMIC AND AT-THE-EDGE VIRTUAL
NETWORK FUNCTIONS DEPLOYMENT MODEL

In this Section, we present our propositions for a VNF
deployment model and an exposition approach. We describe
the on-demand and dynamic deployment of VNFs at the Telco
Edge Cloud and highlight the features of the proposed model
with the brought advantages.

Fig. 1: Legacy approach of Physical Network Functions Ex-
position using Specific APIs and Gateways

A. Description of the Proposed Deployment Model

It is important to recall that it is a follow-up work to the
Network-as-a-Service (NaaS) architecture presented in [2]. In
order to allow third-party applications to benefit from on-
demand deployment and differentiated orchestration of net-
work services, we propose a deployment model using a new
exposition approach. We propose that Network APIs be ex-
posed by network applications included in NFV management
and orchestration building blocks, namely NFV Orchestrator
(NFVO). This is because we define the dynamicity feature as
the result from the convergence of control and management
planes. Indeed, the management plane is the one capable of
considering user requests with temporal and spatial prefer-
ences and integrating them in data plane service delivery.
While on the control (signaling) plane, OTT applications will
use such exposed Network APIs to express users needs and
preferences and to request the deployment of specific VNFs
from operator management plane. Upon a request through the
Network API, NFV orchestrator asks VNF Manager (VNFM),
in charge of placement and life-cycle management, to deploy
the requested VNF. Then, the VNFM uses VNF deployment
templates to ask Virtual Infrastructure Manager (VIM) to
instantiate the VNF over the NFV Infrastructure (NFVI).
Figure 2 synthesizes our propositions. We further describe the
proposed model through its features in details.

B. Features of the Proposed Deployment Model

There are three main features: “on-demand”, “dynamic” and
“at-the-edge” features. The on-demand and dynamic features,
for both the demand and the deployment, are achieved thanks
to the convergence of control and management planes that
relies on Open Network APIs, and thanks to the automation
in deployment by NFV. The at-the-edge feature is achieved
thanks to edge computing, location-awareness and to the Telco
extended footprint.



1) On-demand Deployment Feature: Physical network
functions are today pre-deployed based on algorithms and
distribution or location of users which requires network di-
mensioning and congestion control mechanisms for requests
arrivals. They are usually over-dimensioned which induces
CAPEX and OPEX and often long deployment cycles. Unlike
this classical deployment of network functions, the on-demand
deployment allows activating a network function or a service
only when there is a request, i.e., we are sure that there
are users needing the service. This feature is coupled with
Dynamic Network APIs to allow a discovery and selection
using the Open Network API.

2) Dynamic Deployment Feature: The dynamic feature
is enabled by the convergence of control and management
planes. First, the dynamicity in demand relies on Network
APIs. The proposed model allows dynamicity in interactions
between application-layer and network layer using easy-to-
use and easy-to-implement REST Network APIs [13]. REST
is a software architectural pattern aiming to simply describe
an API using HTTP client-server protocols without defining
extra-layers. REST design is a prerequisite for adoption by
application developers community. Second, the dynamicity
in deployment relies on NFV automation but we leverage
this feature using NFV with container-based virtualization
approaches [14] which allows a dynamic deployment time
reduced from several minutes to seconds comparing to VMs.

3) At-the-Edge Deployment Feature: The at-the-edge fea-
ture is achieved through the use of information about users
location in the network using geo-localization APIs in users
applications in order to choose the best NFVI PoP location
for VNF deployment at the network edge or in edge clouds.
Comparing to a deployment on OTT Cloud, on Telco Cloud
or on core network, processing of network functions occurs
at the network edge, rather than completely in the cloud. As
edge computing addresses network concerns [15], this features
allows to achieve network resource (bandwidth) savings and
to benefit from delay reduction for network traversal as the
client and server are at a one-hop away distance, and thus offer
better QoS and QoE. The use of container-based approach is
also an enabler for this feature as Docker has been evaluated
as a viable Edge Computing platform [16].

We have implemented the proposed deployment model and
then instantiated it with a WebRTC service (Section IV). The
implementation of these features cross-answer QoS constraints
and VNF deployment issues as we show in Section V.

IV. IMPLEMENTATION & ILLUSTRATING CASE OF STUDY
ON-DEMAND VNF DEPLOYMENT FOR WEBRTC

A. Implementation of the Proposed Deployment Model

The implementation of the proposed deployment model is
illustrated in Figure 3. The right half side of the figure shows
the implemented NFV management modules. We have relied
in this implementation on the OPNFV platform [17] which
represents the NFV Infrastructure. The NFVI resources are
located in an NFVI-PoP at the edge of the network. Actually,
we have two edge NFVI-PoPs (not shown in the figure).

Fig. 2: Proposed Deployment Model: NFV-based VNF Expo-
sition and On-demand Dynamic Deployment on Telco Edge

A node based in Paris and a node based in Lannion. We have
used OpenStack infrastructure orchestrator representing the
VIM to manage the set of virtual resources (server stacks for
compute and storage and switches for networking ) comprised
in each NFVI-PoP. These resources are connected to the
public WAN, i.e., VM instances have public IP addresses.
An Opendaylight SDN controller is also installed to program
the switches of the NFVI. For faster instantiation of VNFs,
we used container-based virtualization approach and precisely
Docker [14] instead of VMs as the Docker software packages
include all elements required to execute VNF container since
the needed libraries are pre-installed in the VNF docker
image. We have considered Cloudify platform manager to
represent the NFV Orchestrator and the VNF Manager in our
implementation. It is responsible for the deployment using
“.yaml” deployment templates and for the management of
VNF life-cycle (starting, terminating,...etc). As the proposed
model suggests, in order to allow interactions between an OTT
application and Telco NFV management blocks this latter has
to expose Open Network APIs to offer deployment services.

We have then developed a REST Network API for VNF
deployment request exposed through Cloudify (NFVO +
VNFM) module. The proposed Network API is a RESTful
API written in python based on the OMA guidelines for
JSON/RESTful Network APIs [18]. It receives a “GET” re-
quest: a VNF deployment or allocation request which provokes
a VNF instance creation and sends response, in a JSON
format, to the application including the VNF virtual machine
IP address and port number, the VNF container IP address and
port number or the VNF container ID. We have instantiated the
proposed approach with a WebRTC communication service as
shown in the left half side of Figure 3. We will present this
illustration in the following. Let us first give a brief overview
of WebRTC services and their shortcomings which highlights
their network-level needs.



Fig. 3: Implementation of the proposed approach

B. WebRTC Services Overview & Shortcomings

1) Overview: WebRTC [19] is a recent technology driven
by web actors. It allows versatile browser-to-browser audio
and video communications, screen sharing and data exchange.
Typically a WebRTC communication between two peers is
established first through a PeerConnection signaling request
from a WebRTC Client to a WebRTC Server on the control
plane, then directly between two WebRTC peers on the media
plane once the connection is established. Ideally, there should
be no intermediary network functions or media relays in the
media plane between peers as this may add network delays.

2) Shortcomings & Network-level needs: Actually, media
relays are so needed for WebRTC services because of network
architecture implementations. In reality most end users (peers)
are behind one or more layers of Network Address Translation
(NAT), some have anti-virus software that blocks certain ports
and protocols, and many are behind proxies and corporate
firewalls, so peers have non-routable IP addresses and thus
P2P networking cannot be achieved. In such cases, Interactive
Connectivity Establishment (ICE) mechanism is needed to
gather candidates of STUN servers (Session Traversal Utilities
for NAT), to get an external network address, and TURN
servers (Traversal Using Relays around NAT) to solve more
difficult NAT traversal situations (in case of symmetric NAT
for example). TURN servers are needed to relay traffic if direct
(peer to peer) connection fails. Invoking TURN always returns
connection success as every TURN server supports STUN.
A TURN server is a STUN server with added networking
and relaying functionality built in. TURN allocates a public
relayed IP address for the connection. The WebRTC client
advertises this TURN address to be reached then all media
data is relayed between peers via TURN. This makes TURN
server a crucial and value-added network function that can
be deployed to ensure WebRTC communications connection
success. Hence, we take TURN server as an example of VNF
to be requested for on-demand deployment.

C. On-demand TURN for Web Real-Time Communications:
Illustration Scenario

We have considered a WebRTC application to illustrate the
proposed model of Figure 2 as shown on Figure 3.

1) Used Tools and Settings: We have chosen AppRTC as
the WebRTC application running a on web browser.

Coturn is the TURN server code which represents the VNF
to be requested for deployment. We have used two laptops for
a caller and a callee on the same wireless network both are
behind an enterprise NAT using one webRTC server.

2) Scenario Description: The global scenario is about a
WebRTC video conferencing application that requests a TURN
server as a VNF from a network operator using the on-demand
deployment model and the proposed Network API exposed
by Cloudify NFV orchestrator. Starting from the WebRTC
browser to browser call flow specified by W3C , we propose
the scenario summarized by the call flow of Figure 4 to show
the on-demand dynamic deployment of a TURN VNF based
on a demand coming from the WebRTC application at the
beginning of the session. Only the caller side is represented
but the procedure is the same for the callee. Step-by-step, the
call flow shows the initialization of a WebRTC call session
using the proposed approach.

V. EXPERIMENTS & EVALUATION RESULTS

We describe in this Section the conducted experiments and
present our results to evaluate the proposed approach, then
discuss the evaluation results to highlight the advantages.

A. Experiments

In addition to the legacy approach where network functions
are already deployed as physical nodes, we have considered
other situations regarding the VNF and the resource infrastruc-
ture provider (being a network operator, an OTT or a Cloud
service provider) and different possible deployment locations
(Network, OTT Cloud, Telco Cloud or Edge Cloud). So, we
have defined the following experimentation scenarios for our
use-case. For each scenario, we consider a WebRTC video
communication and vary conditions combinating these factors.

1) TURN as a Physical Network Function in the WAN:
This scenario represents the legacy approach for providing
a network function. We use a TURN server deployed as a
physical network function deployed over the WAN, not at the
network edge or near access networks. Two possibilities have
been used: physical TURN deployed by a Telco in the WAN
and physical TURN deployed by an OTT CSP in the Internet.

Fig. 4: On-demand TURN VNF deployment call flow



Thus, in the experiments of this scenario, we configure the
two WebRTC clients to use the physical TURN server.

2) TURN as a Virtual Network Function in OTT Cloud:
We deploy TURN as a VNF in a VM over the infrastructure
(IaaS) of an OTT Public Cloud provider. In this scenario’s
experiments, we configure the two WebRTC clients to use this
TURN VNF (VM). This is done somehow using the legacy
approach since the TURN VNF is pre-deployed.

3) TURN as a Virtual Network Function in Telco Cloud:
We deploy TURN as a VNF in a VM over the infrastructure
(IaaS) of a Telco Cloud at a regional area. Thus, in the
experiments of this scenario, we configure the two WebRTC
clients to use this TURN VNF (VM). Here also, legacy
approach is used since the TURN VNF is pre-deployed.

4) TURN as a Virtual Network Function in Telco Edge
Cloud: We use the proposed approach of on-demand, at-the-
edge deployment. The TURN VNF is not pre-deployed and
the WebRTC clients are not pre-configured, they request the
deployment of a “TURN VNF container” on-the-fly. Based on
their location, TURN is instantiated over Telco Edge Cloud.

5) Direct Peer-to-Peer WebRTC communication: As a ref-
erence or objective for our measurements, we have considered
a direct P2P WebRTC communication without going through
a TURN media relay as it is the ideal situation.

B. Measurements

We have measured call-related QoS core performance met-
rics [20]. We have made 10 experiments per scenario with 20
measurements per experiment for each metric.

• Total time for call setup caller point of view, in seconds.
A very important metric to evaluate the time needed to
establish a call using our approach, i.e. including the
request through the Network API and VNF deployment .

• End-to-end delay, related to one-way delay and Round-
Trip Time (in ms). To characterize the relevant end-to-
end delays, we use the Inter Quartile Range (IQR), i.e.
the values where 25% and 75% of the measurements lie.

• Jitter, the packet inter-arrival delay variation related
to the one-way delay (in ms). Here, the monitor is at the
callee as we assume the caller is the sender. Jitter dD, is
dDi=Di-Di−1 where Di is the measured one-way delay
for measurement i. We also use the IQR.

C. Evaluation Results

We present and discuss our evaluation results per metric for
each scenario. We used Matlab Boxplot tool as it gives relevant
information regarding values distribution and their variation
around a mean value represented by a target point for each
experiment. The X axis represents the experiment number.

1) Call Setup Time: Figure 5 gives the variation of video
call setup time in seconds. The results of scenarios 1 and 2
are more or less comparable but not stable. Results of scenario
3 are more satisfying as they are more stable and call setup
time is reduced to a mean time of 6.5s. Using the proposed
approach (scenario 4), call setup time is further reduced closest
from results of scenario 5 (ideal).

Fig. 5: Evaluation of Call Setup Time Variation

Fig. 6: Evaluation of End-to-End Delay Distribution

It is important to mention that this scenario uses the
proposed solution which means that the measured call setup
time includes the time for sending request and receiving
response through the Network API and the time to deploy the
TURN VNF container at the Telco Edge Cloud. These results
show that the call setup time using the on-demand dynamic
deployment model is almost as fast as P2P call setup time.

2) End-to-End Delay: Figure 6 gives the results of End-
to-End delay. According to ITU-T recommendations, delay
for all applications should be kept below 300ms based on
this rating: [0-200]ms=Good, [200-300]ms=Acceptable, and
over 300ms=poor. However, for real-time applications, delays
should be kept below 150ms so that applications and users will
experience transparent interactivity. Based on this, scenario 1
and 2 are absolutely unacceptable, results of scenario 3 and
4 are very satisfying (largely below 150ms). But comparing
to the delays in P2P communications, scenario 4 provides the
shortest delays comparable to P2P communications.



Fig. 7: Evaluation of Jitter Distribution

3) Jitter: Figure 7 gives the results of Jitter evaluation.
Reliable jitter should be below 10% of average TTL and
the upper limit is 10% of total RTT. For real-time applica-
tions, 95% of jitter measurements should be below 30ms and
jitter=[0-10]ms=Perfect. Furthermore, as jitter is critical, jitters
of less than 1ms are needed. So the more jitter is close to
0, the better is the call QoS. According to these guidelines,
results of scenario 1 and 2 are overally unacceptable (above
10ms). Results of scenario 3 are very satisfying with low
mean values included between [-10ms, +10ms] but they are
so scattered comparing to results of scenario 4 (using the
proposed approach) which are very satisfying and stable with
all jitter mean values around 0 within [-5ms, +5ms], closest
to P2P results where all jitter mean values are equal to 0.

D. Discussions

Our explanations for these results are that, from one side,
physical network functions deployed in the WAN (scenario 1),
and VNFs deployed in OTT Cloud (scenario 2), are located
within the Internet and on large heterogeneous networks
with different technologies and topologies with no location-
awareness. This makes control flows and data flows traverse,
in a best-effort mode, intermediate usually congested networks
depending on the distance between end-users and servers
which hugely impacts delay and jitter.

From another side, when VNFs are deployed in Telco
Clouds (scenario 3) results are acceptable as these VNFs may
benefit from the networking knowledge Telcos have for better
cloud networking and thus, somehow, flows are managed (not
in best-effort). So, from scenario 1 to 3, we conclude that the
existing approaches are not sufficient: real-time interactions
are compromised of QoS. At a further side, beyond the obvious
reduction of time to deploy, to dimension and to configure
physical network functions comparing to deploying a VNF;
the time to deploy a VNF is reduced when using containers
instead of VMs and this has been proven by our results on
call setup time measurements.

Furthermore, VNFs deployed at the Telco Edge Cloud
using location-awareness benefit from reduced users-to-Cloud
distances as VNFs are located at the edge Telco networks close
to users. Thus, control and data flows traverse a minimum
number of hops which explains the very satisfying low call
setup time, delay and jitter results (almost P2P).

VI. CONCLUSIONS & FUTURE WORK

We have presented a Deployment Model with an NFV-
based exposition for an on-demand deployment of VNFs in
the context of operator openness towards OTTs. The model
proposes to rely on dynamicity offered by the convergence of
control and management planes. Network APIs are exposed
through Management and Orchestration modules and VNFs
are deployed on-demand at the Telco Edge. We have shown
the achieved dynamicity in applications-to-network demand
and in VNF deployment at the network Edge PoPs.

As a next step, we study flexible VNF deployment and re-
deployment according to different user mobility constraints.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” Communications
Magazine, IEEE, vol. 53, pp. 90–97, Feb 2015.

[2] A. Boubendir, E. Bertin, and N. Simoni, “Naas architecture through
sdn-enabled nfv - network openness towards communication service
providers,” in NOMS 2016, (Istambul, Turkey), April 2016.

[3] ETSI NFV ISG, Network Functions Virtualisation (NFV); Man-
agement and Orchestration. ETSI GS NFV-MAN 001 V1.1.1.
http://www.etsi.org/technologies-clusters/technologies/nfv, Dec 2014.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, pp. 78–81, May 2016.

[5] G. Xilouris, et al., “T-nova: A marketplace for virtualized network
functions,” in Networks and Communications (EuCNC), 2014 European
Conference on, pp. 1–5, June 2014.

[6] M. J. McGrath, et al., “Performant deployment of a virtualised network
functions in a data center environment using resource aware scheduling,”
in IFIP/IEEE IM Symposium, pp. 1131–1132, May 2015.

[7] G. Xilouris, et al., “T-nova: Network functions as-a-service over virtu-
alised infrastructures,” in IEEE NFV-SDN Conference, Nov 2015.

[8] ONF, Solution Brief, OpenFlow-Enabled SDN and Network Functions
Virtualization, February 2014.

[9] ONF, Solution Brief, Operator Network Monetization Through
OpenFlow-Enabled, April 2013.

[10] “Open mobile alliance. http://technical.openmobilealliance.org/technical/.”
[11] K. Liu and K. Xu, “Open service-aware mobile network api for 3rd

party control of network qos,” in Computer Science and Electronics
Engineering (ICCSEE), International Conference on, vol. 1, 2012.

[12] R. Ravindran, X. Liu, A. Chakraborti, X. Zhang, and G. Wang, “Towards
software defined icn based edge-cloud services,” in Cloud Networking
(CloudNet), IEEE 2nd International Conference on, pp. 227–235, 2013.

[13] M. Lanthaler and C. Gutl, “Toward a restful service ecosystem,” in IEEE
Conference on Digital Ecosystems and Technologies, pp. 209–214, 2010.

[14] C. Anderson, “Docker [software engineering],” IEEE Software, vol. 32,
pp. 102–c3, May 2015.

[15] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta, and
V. Riccobene, “An open framework to enable netfate (network functions
at the edge),” in Network Softwarization (NetSoft), 2015 1st IEEE
Conference on, pp. 1–6, April 2015.

[16] B. I. Ismail and al., “Evaluation of docker as edge computing platform,”
in Open Systems (ICOS), IEEE Confernece on, pp. 130–135, Aug 2015.

[17] OPNFV, Linux Foundation Collaborative Project. PAVING THE WAY
TO OPEN SOURCE NFV, June 2015.

[18] “Open mobile alliance. guidelines for restful network apis.
http://technical.openmobilealliance.org/technical/,” February 2014.

[19] C. Jennings and al., “Real-time communications for the web,” Commu-
nications Magazine, IEEE, vol. 51, pp. 20–26, April 2013.

[20] callstats.io, “[online] available on: http://www.callstats.io/.”


